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PREFACE

The finite difference time domain (FDTD) approach is rapidly becoming
one of the most widely used computational methods in electromagnetics. There
are several reasons for this, including the increased availability of low cost but
powerful computers, and increasing interest in electromagnetic interactions
with complicated geometries, which include penetrable dielectric and/or mag-
netic materials. Just as important perhaps is the extreme simplicity of the
method. The fundamentals of FDTD can be grasped easily by undergraduate
students, more easily than traditional frequency-domain approaches to
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tions for problem geometries that are extremely difficult to analyzc by other
methods. It is this combination of simplicity and power that makes FDTD such
a popular method.

This also allows this book to serve a wide range of potential readers. It can
be used to introduce undergraduate students to time domain electromagnetics,
in which case only the first two parts of the book need be covered. It can be
used in a graduate level course, in which case the mathematical basis of FDTD
would be emphasized with topics selected from the sections on special capa-
bilities and advanced applications at the discretion of the instructor. Finally,
someone who wants to use FDTD to solve a particular problem in
electromagnetics can use the book to learn FDTD basics and special capabili-
ties necessary for their application. In addition, it can be seen, through the
examples in this book, how FDTD has been applied to a variety of problems.

The goals of the book are to provide the basic information necessary to
apply FDTD to problems in electromagnetics, and to illustrate some of the
types of problems that can be analyzed using it. The theoretical and mathemati-
cal basis for much of FDTD is included, but the emphasis is on the practical
aspects of applying FDTD.

While equations are given in the text as needed to develop and understand
the method and applications, complete detail is not included. For example,
equations usually are not given for all vector components but only for one
representative component. There are two reasons for this. One is to avoid a
book filled with pages of almost but not quite identical equations. The other is
that the book includes FORTRAN listings of a complete 3-D FDTD program
based on the concepts presented in Part 1. This provides better documentation
of the actual details of the method than equations included in the text. -

While a joint effort of the two authors, the primary responsibilities were
divided between the authors by chapter. Karl Kunz wrote the majority of
Chapters 1 and 2, all chapters in Part 2, the last section of Chapter 10, Chapter
12, all chapters in Part 5, and Appendix A. Raymond Luebbers wrote the
majority of the remaining chapters, i.e., Chapter 3, Chapters 7 through 11
(except for the last section of Chapter 10), all chapters in Part 4, and Appendix
B. Despite this division of labor we have attempted to make the book consistent
throughout in both notation and philosophy.
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FOREWORD

Any book on the finite difference time domain (FDTD) technique can
expect to be out of date as soon as it is published. We hope that this is the first
book devoted to FDTD and will therefore gladly suffer this fate. We must
apologize to the reader, however, as the reader would undoubtedly prefer to
have a timeless text. We have tried to provide some measure of timelessness
combined with some measure of currency.

The timeless elements are the applications of FDTD which are as broad as
the Maxwell equations they embody in discretized form, the basic formulation
using centered finite difference expressions which can treat virtually any
material type and geometry and the basic “housekeeping” needed to implement
the technique. Our introduction and first section covers these matters and
shouid be of iasting vaiue.

We choose next to address some basic modeling issues well suited to FDTD
— exterior and interior coupling, waveguide propagation and coupling and
scattering from lossy dielectrics. These cases illustrate the operation of the
basic code and also provide, for the most part, the historical origins of the
particular formulation of FDTD we emphasize, the scattered field formulation.
This formulation is easy to implement as a code, is only slightly more complex
in the equations employed than its alternative, the total field formulation, and
offers some pleasing physical insights. Part 2, with these basic applications,
should also remain useful as a pedagogical necessity for introducing the reader
to the actual use of FDTD. One can argue which “history” is the best one to
use. We took the direct approach and used what we have been personally
involved with. Chacun d son goiit.

One of the reasons for stating how short an expiration date comes with any
version of FDTD arises from the work we did for Part 3. Here, we have placed
some of our best work, extensions to the basic FDTD capabilities. Some are
very basic extensions, near to far zone capabilities and frequency-dependent
material modeling capabilities to name two. The need for these capabilities will
not diminish, but we can expect other researchers to improve on what we offer
here. This is all to the good and we trust the reader will make themselves aware
of any evolutions in these areas after reading our book which we would
consider current as of 1992. .

A fourth section trades timelessness for currency. It is our section on
advanced applications and it makes use of the extensions of the prior section.
We know that in time this will become old news and perhaps only hold a little
bit of historic interest. It is today “hot off the press” and tells better than
anything else where some of the research frontiers are and how hard a straight-
forward technique such as FDTD has to be pushed to get there.

Finally, we close with some of the mathematical foundations and some of
the alternatives available to FDTD — a mix of currency and timeliness. A
FORTRAN listing of a simple version of the code completes our offering.
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Chapter 1
INTRODUCTION

Of the four forces in nature — strong, weak, electromagnetic, and gravita-
tional — the electromagnetic force is the most technologically pervasive. Of
the three methods of predicting electromagnetic effects — experiment, analy-
sis, and computation — computation is the newest and fastest-growing ap-
proach. Of the many approaches to electromagnetic computation, including
method of moments, finite difference time domain, finite element, geometric
theory of diffraction, and physical optics, the finite difference time domain
(FDTD) technique is applicable to the widest range of problems.

This text covers the FDTD technique. Emphasis is placed on the separate
field formalism, in which the incident field is specified analytically and only
the scattered field is determined computationally. This approach is only slightly
more complex in its basic implementation than the total field approach and
more readily allows for the absorption of scattered fields at the limits of the
problem space. The total field can be easily obtained from the combination of
the scattered and incident fields. Though slight advantages may be found in
either approach, they are very similar in concept and capabilities. The FDTD
technique treats transients (e.g., puises) in the time domain, and it is applicable
over the computationally difficult-to-predict resonance region in which a wave-
length is comparable to the interaction object size.

As a form of computational engineering, FDTD is part of a three-tier
hierarchy consisting of:

Computer Science

. Stresses the mathematics underlying algorithms as well as the structure
and development of the algorithm

Computer Engineering

. Hardware based on and concerned with hardware architecture and capa-
bilities including parallelism and fault tolerance

Computational Engineering

. Explores various engineering problems via numerical solutions to sys-
tems of equations describing the phenomenon or process in question

Computational engineering relies on computer science and engineering, but is
not hardware, language, or operating system specific. It requires a computer
powerful enough to accomodate the problem in question, running within
acceptable times and costs while producing the desired accuracy.

Electromagnetic computational engineering encompasses the electromag-
netic modeling, simulation, and analysis of the electromagnetic responses of
complex systems to various electromagnetic stimuli. It provides an understand-
ing of the system response that allows for the better design or modification of
the system.
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The FDTD technique offers many advantages as an electromagnetic mod-
ling, simulation, and analysis tool. Its capabilities include:

ing, simulation, and analysis tool. Its capabilities
. Broadband response predictions centered about the system resonances
. Arbitrary three-dimensional (3-D) model geometries
. Interaction with an object of any conductivity from that of a perfect
conductor, to that of a real metal, to that of low or zero conductivity
. Frequency-dependent constitutive parameters for modeling most
materials
Lossy dielectrics
Magnetic materials
Unconventional materials, including anisotropic plasmas and
magnetized ferrites
. Any type of response, inclu
such as
Scattered fields
Antenna patterns
Radar cross-section (RCS)
Surface response
Currents, power density
Penetration/interior coupling

om near fields,

These capabilities are available for a variety of diverse electromagnetic
stimuli covering a broad range of frequencies. Typical stimuli include:

. Lighining

. EMP (electromagnetic pulse)
. HPM (high power microwave)
. Radar

. Lasers

The systems responding to these stimuli are equally diverse. They can be
small to large, inorganic or organic, in an exoatmospheric environment to a
subterranean one. Samples of the diverse types of systems that can be treated

are

. Aerosols
. Sheiters
. Aircraft
. Humans

. Satellites
. Buried antennas

What ties the above stimuli and systems together is that typically the
wavelengths of interest and the characteristic system dimensions are usually

]
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within an order of magnitude of each other. Thus, the broadband

response predictions will typically encompass at least a few system resonances.

Hybrid techniques employing the geometrical theory of diffraction (GTD)
or physical optics (PO) along with FDTD can in principle provide predictions
from below resonance to extremely high frequencies. Numerical techniques,
such as Prony’s method, allow arbitrarily long-time response prediction exten-
sions of the FDTD generated time response predictions. Thus, resonance and
below-resonance predictions can be extended to extremely low frequencies.
Alternately, low frequency versions of FDTD, in which the displacement
current is ignored and the equations become diffusive, can be used to extend
low frequency capabilities. In short, FDTD can span the critical resonance
region over more than four orders of magnitude in frequency, and with low and
high frequency extensions this range can exceed six orders of magnitude.

FDTD has run on a diverse set of host computers, mng-ng from PCs to
LS, aiver of host computers, ranging from PLs &

supercomputers, and is extremely well suited to implementation on parallel
computers because only nearest-neighbor interactions are involved. The im-
portant variables are problem space size in cells required to model the system
and the number of time steps needed. These determine the computer run time
and computation cost. Less important are the material types modeled and the
number of response locations monitored. Of little or no impact on computa-
tional capability requirements are the type of stimuli and the type of response,
except in cases of far fields, which require a modest amount of postprocessing.

Over 1 million cells can be accommodated on personal workstations for a
3-D problem space 100 x 100 x 100 cells large. At a typical 10 FDTD cells per
wavelength, this space is a 10-wavelength cube. The limits of today’s

t ronohly 100) millian calle with comnutation

supercomputers are reached at roughly 100 million cells with computation

supercomputers are reached
times on the order of hours.

The advantages of FDTD can be summarized as its ability to work with a
wide range of frequencies, stimuli, objects, environments, response locations,
and computers. To this list can be added the advantage of computational
efficiency for large problems in comparison with other techniques such as the
method of moments, especially when broadband results are required. Further,
the FDTD code, while inherently volumetric, has successfully treated thin
plates and thin wire antennas. Its accuracy, using a sufficiency of cells, can be
made as high as desired. Conversely, engineering estimates of a few decibels’
accuracy can be made with surprisingly few cells. Finally, powerful visualiza-
tion tools are being developed to enhance the user’s understanding of the
essential physics underlying the various processes that FDTD can model,
simulate, and analyze.

The basis of the FDTD code is the two Maxwell curl equations in derivative
form in the time domain. These equations are expressed in a linearized form
by means of central finite differencing. Only nearest-neighbor interactions
need be considered as the fields are advanced temporally in discrete time steps
over spatial cells of rectangular shape (as emphasized here, other cell shapes
are possible, as are reduced 2- and 1-D treatments).
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. Generation (power, devices, kiystrons, etc.)

. Transmission (transmission lines, waveguides, etc.)
. Reception/detection/radiation (antennas)

. Coupling/shielding/penetration

. Scattering

. Switching/nonlinearities

All but the first can be treated using FDTD. The first area either ref;uires,
as for the klystron, the addition of charged particles or a 60-Hz calculation for
power frequencies which require inordinately many time steps (on the order of
1 billion) for analysis.

While EDTD is most suited to computing transient responses, FDTD may
be the computational approach of choice even when a single frequency or
continuous wave (CW) response is sought. This is especially the case wh.en
complex geometries or difficult environments, such as an antenna t'hat i.s buried
or dielectrically clad, are considered. Interestingly, interior coupling into me-
tallic enclosures is also a situation wherein FDTD is the method of c.hmce. A
CW analysis, using the method of moments, for example, will most likely fail
to capture the highly resonant behavior of a metallic enclos'ure,.even wlfen
made at many frequency points. The highly resonant nature of interior coupling
was verified first experimentally and then computationally with FDTD In-
deed, low frequency resonances may be poorly characterized experimentally
because of their extremely resonant behavior, but are revealed by FDTD runs

because of their extremely
of 1 million time steps. . )
This book is organized into an introduction foilowed Dy 11ve SECtions:

Fundamental concepts

Basic applications

Special capabilities

Advanced applications

Mathematical basis of FDTD and alternate methods

ARl A

The first section treats the most basic aspects of FDTD, providing the reac?er
with the formalism and the basic procedures for FDTD operation. Along with
the introduction describing FDTD’s utility and areas of application, me two
chapters of the first section allow the reader to apply FDTP toa host of
probiems using the nondispersive lossy dielectric FDTD code listed in Appen-
dix B:

. Chapter 2: Scattered Field FDTD Formulation. Discusses the discretiz_ed
central differenced or “leap frog” Maxwell curl equations upon which
the separate field formalism is based. The equations are ft.m'nulated for
lossy dielectrics, which in the limit of infinite conductivity become

!
!
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perfect conductors. The rudimentary computer code requirements and

architecture needed to support the formalism in an op ! code are
presented as well. Much more detail about these issues is given in later
chapters.

. Chapter 3: FDTD Basics. Provides guidance for applying the FDTD
formulations of Chapter 2. This includes limitations on cell and time step
sizes, specifying the incident field and the object to be analyzed, estimat-
ing the computer resources required, and applying an outer boundary
condition at the extremities of the FDTD computation space.

The second section treats the basic applications of the basic formulation of
FDTD given in the first section:

. Chapter 4: Coupling Effects. The scattered field formulation of FDTD
was first applied to an F-111 aircraft to calculate the induced surface
currents and charges from a simulated EMP field. This brought together
all the elements representative of FDTD modeling, and for this reason
and for some sense of history the modeling effort is discussed in detail.
Only exterior coupling is treated with this example and to complete the
discussion of coupling, interior coupling modeling of a simple shield,
penetrated by an aperture and containing an interior wire is presented.
The response is examined above and below aperture cutoff with resonant
and highly resonant behavior noted in the two regimes. A strongly
stressed point is the large number of time steps needed to accurately
characterize the highly resonant behavior of the currents induced on the
interior wire.

. Chapter 5: Waveguide Aperture Coupling. A transient wave propagat-
ing in a waveguide and coupled to a second waveguide via circular
aperture(s) is examined in this section. At issue is whether FDTD can be
employed successfully to model waveguide behavior. It is shown to work
well and FDTD modeling is being rapidly extended into this modeling
regime.

. Chapter 6: Lossy Dielectric Scattering. Chapter 2 develops the scattered
field FDTD formulation for perfect electric conductors and lossy dielec-
trics without frequency-dependent constitutive parameters. Here, the
capability for modeling lossy dielectrics is applied to a simple sphere
geometry where there are known analytic surface responses and to a

ocomnlay himenn had. saacas — tll.-_A p—— ISP}

COMpiCX nilfian ooay geomciry where there are expernmenial resuiis
available for comparison. Excellent to good agreement is obtained in
these early modeling efforts. As will be seen in later chapters, the
agreement has only gotten better. Where FDTD once had to “prove
itself” it has become something of a standard. Results for the models of
complex geometries are treated as nearly exact, with the limits estab-
lished mainly by the skill of the practitioner in defining the geometry and
in properly setting the constitutive parameters.
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The third section treats extensions to the basic formulation that provide
. These extensions and special capabilities are guite varied.

snecial canabi
§pecial capast

They represent in most cases the fruition of past research efforts to extend the
basic capabilities of FDTD.

1

. Chapter 7: Near to Far Field Transformation. Many scattering problems,
in particular RCS problems, require the far fields. In addition, radiation
from antennas and inadvertent antennas or radiators such as transmission
lines require far fields for the radiation pattern. While these problems
typically involve perfect conductors/metals they can also involve more
complex materials as for a stripline antenna, This chapter develops a
broadband time domain near to far field transformation and shows how
it may be applied to 2- or 3-D problems.

. Chapter 8: Frequency Dependent Materials. An advantage of the FDTD
method is its capability to produce wide frequency band results from one
computation with pulse excitation. If materials with constitutive param-
eters that vary with frequency are involved, the FDTD formulation of
Chapter 2 must be extended to include this variation if more than an
approximate result is desired.

. Chapter 9: Surface Impedance. In frequency domain calculations, find-
ing the fields interior to a volumetric scatterer can be avoided by speci-
fying the impedance relating the electric and magnetic fields at the
surface of the scatterer. This concept is extended to the time domain for
materials with both constant and frequency-dependent constitutive pa-
rameters.

. Chapter 10: Subcellular Extensions. Often an FDTD caleul
a structural element much smaller than one cell size for calculation.
Using a finer mesh throughout the problem space is typically too
computationally “expensive”. In this case, a subcellular reduction of the
mesh on and (possibly) about the element is needed. Examples treated in
this chapter include “thin” wires for antennas with diameters well below
a cell size, lumped circuit elements, and the expansion technique for
regridding a subvolume more finely, as in the interior of an aircraft where
important structural details would otherwise be lost.

. Chapter 11: Nonlinear Loads and Materials. Nonlinear materials are
more easily accomodated in FDTD than in frequency domain methods.
Some examples, including transients in antennas with nonlinear loads,
are given.

. Chapter 12: Visualization. Immense amounts of data can be generated
with FDTD, in the terabyte range in some instances. Only by applying
visualization techniques to such data can it be rendered readily compre-
hensible. This chapter discusses the progress made in the visualization of
electromagnetic fields. It is noted that this area of visualization is in itself
very computationally intensive and demanding.

Introduction 7

The three chapters of the fourth section treat advanced applications made
?ncmhlP hv the extensions develoned in Part 3:

........ the extensions developed in Par

. Chapter 13: Far Zone Scattering. The scattered field FDTD formulation
given in Chapter 2 is extremely well suited to scattering calculations.
Several of the special capabilities of Part 3 are combined to provide
scattering cross-section results, including the far zone transformation and
frequency-dependent materials. Scattering examples are also given in
Chapters 7 and 9 in association with the development of far zone trans-
formation and surface impedance.

. Chapter 14: Antennas. A basic approach to using FDTD to determine
antenna self and mutual impedance, efficiency, and gain are presented
for wire antennas, followed by results for more challenging geometries.
Total fields are directly computed, and far zone transformation and sub-
cell methods from previous chapters are utilized.

. Chapter 13: Gyrotropic Media. Gyrotropic media possess both strong
frequency dependence of their constitutive parameters and anisotropy. In
this chapter the frequency-dependent FDTD methods of Chapter 8 are
extended to include these materials. Both magnetized plasmas and ferrites
are considered.

The final part of the book provides the detailed mathematical foundations
for FDTD and related techniques, and includes:

. Chapter 16: Difference Equations in General. The curl equations, from

which a wave equation may be derived and vice versa, are a set of
which equation may 0e derived and vice versa, are a set of

hyperbolic equations for which a number of differencing schemes are
possible. In the interest of mathematical completeness, the different
types of possible differencing schemes are presented. The advantages,
even necessity in a practical sense, of the “leapfrog” method is stressed.
Higher order formulations of the “leapfrog” method are also discussed.

. Chapter 17: Stability, Dispersion, Accuracy. The stability requirement

for the “leapfrog” method (and for several other methods), the Courant
stability condition, is discussed in detail here along with general stability
considerations. Numerical dispersion, a source of error that exists in
FDTD computations except under special conditions, spreads or dis-
perses the scattered field leading to time domain envelope errors and

framanmag Aamania mbiaca asmaas
irequency domain yuaac CITOis.

. Chapter 18: Outer Radiation Boundary Conditions. A finite problem

space is subject to reflections of scattered fields at the faces of the
problem space. These can be minimized by the selection of an outer
radiation boundary condition that absorbs much of the scattered wave,
simulating energy scattering into infinite space. A number of approaches
exist, and a general discussion of the different approaches is given.
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Emphasis is placed on the widely employed Mur absorbing boundary
condition.

. Chapter 19: Alternate Formulations. While the scattered field FDTD
formulation is extremely flexible and effective, other formuiations have
their place and are treated here. Most commonly encountered is the total
field formalism, an approach that can be obtained (quite simply in many
cases) from the scattered field formalism. Less commonly encountered
are implicit, as opposed to the explicit, FDTD formulations given in the
prior discussions. The sought-after advantage in implicit schemes is
arbitrarily long time steps. Another variation is the vector potential
formulation. Both low and high frequency extensions of the FDTD
technique are also possible.

Appendix A gives FDTD eguations in other coordinate systems and reduced
dimensions. While less useful than the general 3-D results given in the previous
text, they have application in special situations.

Appendix B contains FORTRAN listings of basic FDTD codes and associ-
ated computer codes including a fast Fourier transformation (FFT) code. These
listings provide precise documentation of the basic FDTD equations given in
the text.

While providing a mathematical basis for FDTD, this book is intended more
as a practical guide for students and researchers interested in applying FDTD
to actual problems in electromagnetics. This intention is the basis for the
organization of the book, with practical fundamentals preceding the math-
ematical basis.

Bacaioa TD is i i
Because FDTD is an area of ongoing research and development, this book

can provide only the fundamentals and some example applications, with more
advanced topics available only from the current literature.

L' -~

PART 1:
FUNDAMENTAL
CONCEPTS
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Chapter 2

SCATTERED FIELD FDTD FORMULATION

2.1 MAXWELL CURL EQUATIONS

We begin by examining the differential time domain Maxwell equations in

a linear medium:

VXE = —9dB/dt

VxH = dDfot + J

V-D

1
kel

V-B

]
(=}

where

D = ¢E

Lrw

B =

(2.1)

2.2)

2.3)

(2.4)

(2.5)

(2.6)

This is all the information needed for linear isotropic materials to completely
specify the field behavior over time so long as the initial field distribution is
specified and satisfies the Maxwell equations. Conveniently, the field and
sources are set to zero at the initial time, often taken as time zero. The two
divergence equations are in fact redundant as they are contained within the curl

equations and the initial boundary conditions.

Thus, the starting point for the FDTD formulations is the curl equations.

They can be recast into the form used for FDTD:

M= - v xE) - H
n n
3E/dt = CE+ -l—(V x H)
€
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where we have let J = oE to allow for lossy dielectric material and have

tha smoccihilis: of maonatio lgss by ml,lmn a mannntm nnnrhmhv-tv
included ihe possibility of magnetic loss by fic

term G .
The formulation only treats the electromagnetic fields, E and H, and not the

fluxes, D and B. All four constitutive parameters, €, |1, G, and G, are present
so that any linear isotropic material property can be specified. In the formula-
tion developed here we do not attempt to simplify the calculations by normal-
izing to a unity speed of light, or letting the permittivity and permeability of
free space to be normalized to 1, as proposed by some practitioners. We feel
that this removes the intuitive and physical basis of the calculations for very
little, if any, gain in computational accuracy or speed.

It is easily shown that we need only consider the curl equations as the
divergence equations are contained in them. To do this simply take the diver-

gence of the curi Cquallullb \/. 1 and 2. 1_; to obtain

V.(VXE = -9B/dt) - 0 = —3(V-B)/3t - V - B = constant

V. (VxH =9D/3t+]) » 0 = 3(V-D)/at+ V -J
¥V-D)/3t — 3p/ 3t (from continuity V-J+3p/t = 0)

- g[(VD)—p] =0 — V-D -p = constant
t

where we have used the vector identity V - V x A = 0. Because the
fields and sources are initially set to zero in FDTD calcuiations, at that initial

time

Therefore, V - B and (V - D — p) must be zero for all times and the curl
equations are sufficient for FDTD calculations.

Note that while the divergence equations are not part of the FDTD formal-
ism they can be used as a test on the predicted field response, so that after
forming— D = ¢E and B = pH from the predicted fields, the resulting D and B
must satisfy the divergence equaiions.

2.2 SEPARATE FIELD FORMALISM

The two curl equations (2.7 and 2.8) can be discretized to obtain a total field
FDTD technique. Alternately the fields can be expressed as

Scattered Field FDTD Formulation 13

E = Elonl = Eincidem + Escnnered 2.9

H = Hmtal - Hincidem + Hscmered (2.10)
The rationale for the separate field approach is that the incident field compo-
nents can be specified analytically throughout the problem space while the
scattered fields are found computationally and only the scattered fields need to
be absorbed at the problem space outer boundaries. This last feature is an
important one. The scattered fields, emanating from a scattering or interaction
object, can be more readily absorbed than a total field by an outer radiation
boundary condition applied at the problem space extremities or faces. This is
especially important in situations in which the scattered fields are desired and
are of much lower amplitude than the total fields.

On a more philosonhical level this senaration allows further insicht into the
Un a more phtlosophical level, this separation allows further insight into the

interaction process.

The scattered wave arises on and within the interaction object in response
to the incident field so as to satisfy the appropriate boundary conditions on or
within the interaction object. These boundary conditions are the Maxwell
equations themselves, which in the limit of a perfect conductor require Escattersd
= —Eweident i the scatterer. For anything other than a perfect conductor the
scattered fields depend on the constitutive parameters of the material. The
scattered fields are subject to the Maxwell equations for this media when in the
media, while outside the media they satisfy the free space Maxwell equations.
The incident field always propagates in free space (even when passing through
the interaction object or scatterer material) and is defined as the field that would
be present in the absence of the scatterer.

Itis always possible to combine the scattered and incident field to obtain the
total field and with it all the insight the total field behavior provides. Also, if
total field FDTD equations are desired, they can be obtained from the scattered
field equations by setting the incident field to zero and applying initial condi-
tions to the scattered (now also total) field. This is discussed in Section 3.6 and
applied in Chapter 14, when total radiated fields from antennas are directly
calculated.

Incident and scattered fields must satisfy the Maxwell equations-indepen-
dently (we assume here linear materials). The incident field is specified to be
propagating in free space. Free space could be generalized to a uniform media
(soil, for example) if necessary. However, we shall assume free space for
“"““‘"‘"y While the incident field travels thi through fiee space throughout the
problem space, the total field propagates in free space outside the scatterer and
in the media of the scatterer when it is propagating within the scatterer.

In the media of the scatterer, the total fields satisfy

V x Elozal =

~HOH"® /3t — g *H"™ (2.11)
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V x H"* = ¢dE“* /3t + GE** 2.12)
B el e £l ino tha media satisfv free space conditions
WILLIC UIC HICIUCIIL 1ICIUD SliIE uIv INllia sauiol Y %
V x E™ = —p oH"™/at (2.13)
V x H™ = ¢ JE™/t (2.14)

Rewriting the total field behavior as

vV x (Einc +Escal) = _ua(Hinc +Hscal)/at
_ 6*(Hinc+Hscm) (2.15)
vV x (Hinc +Hscal) - ea(Ei“c +Em')/at

+ O(Einc +Escal) (2.16)

we can subtract the incident fields above to obtain the equations governing the
scattered fields in the media

V x ES = _uaHscm /a[ —o* HE —

[(n=n,)oH"™ /3t + o * H™] @17

V x H** = edE** /9t + oE*™" +
[(e-e,)oE™ /asz‘“] (2.18)
Outside the scatterer in free space the total fields satisfy
V x E"* = —p gH"" /ot (2.19)
V x H® = ¢ 9E"/at (2.20)

which can be rewritten as

V x (E™+E<) = —p 3(H"™ + H*")/t .21
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V ox (H" + H*) = ¢ J(E™ + E**)/at 222

Now, subtracting the incident fields we obtain the equations governing the
scattered fields in free space:

V x E¥* = _uoaHscm/al (2'23)
V x H* = ¢ 3E**/ot (2.24)

as expected. Note that these equations could have been found from the
equations for the scattered fields in a media by letting the media become free
space; i.e., Equations 2.17 and 2.18 become Equations 2.23 and 2.24 when

[
€ o g
c - 0
c*¥ 5 0

In summary, only one set of equations is needed for the separate field
formalism. The equations for the incident field, 2.13 and 2.14,

V x E™ = —p 3H™ /3t
V x H™ = ¢ JE™ /ot

merely remind us that the analytically specified incident field must be
Maxwellian. Only the scattered field equations, 2.17 and 2.18

VXE™ =_ uaHsnal /ot — G *H™ -
[(u —p JoH™ /3t + o* H’"‘]

V x H** = ¢dE** /3t + 6E** +
[(e ~€,)oE"™ /ot + oE‘“"]

with y, g, 5*, and o inside the scatterer, and with 6 =0= 0, p = pg, and
€ = g() outside the scatterer, are determined computationally.

These scattered field equations can now be rearranged so that the time
derivative of the field is expressed as a function of the remaining terms for ease
in generating the appropriate difference equations.
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oH*™ G*.

ot u u

—_
[
[
un

~

u a nu
aEu“ - E Escn - _q_ Einc
ot € €
(2.26)
_ (e- €,) OE™ . l(V . Hscul)

€ o €

We could difference this set of scattered fieid equations, but it is more
instructive to difference these equations in the limit of a perfect conductor first
and then the equations as presented here. This allows one to see the essentials
of the differencing scheme in the perfect conductor case, as this is the most
basic formulation possible. We will then return to the more general case of a
scatterer with finite €, J1, ©, and ¢".

2.3 PERFECT CONDUCTOR FDTD FORMULATION

Outside the scatterer the scattered fields satisfy the free space conditions

where 6 = G = G, ji = }i, and € = &, so that Eguations 2.25 and 2.26
reduce to
aHscal 1
= ——(VxE™) @27
ot B,
aESCl! l
= —(VxH* 2.28
- ) @28)

o

In the perfect conductor, Equation 2.26 governing the scattered field may be
written as

£ OE* = _E*®_ EFRC — (E - 80) aEinC/at
c ot c

1
+ ‘(_’_(V x Hscal)

2.29)

ot S MM O
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N

For a perfect conductor 6 = oo, and for this situation Equation 2.29
reduces to

ESa = _Einc (230)

Inside the perfect conductor we apply Equation 2.30, rather than 2.26 with
0 = . Thus, if only free space and perfect conductor are present, only a
specification of the incident field, the free space equations 2.27 and 2.28 for the
scattered field, plus the relation Equation 2.30 are needed to apply FDTD. A
further simplification is to note that Equation 2.30 need only be applied at the
surface of the perfect conductor. Interior portions of the perfect conductor, if
present, are completely isolated from the rest of the problem space.

We now difference the free space scattered field equations. In essence finite

JELY S NI SR SN RSP NPUIURPC S LY . SN
QiIIerencing repiaces acrivatives wiin airierences.

ﬁ - lim f(x,lz) - f(x,tl) _ f(x,tz) - f(x,tl) @31
at At—0 At At
o () - fxt) _ fxp) - f(x,.) 23
ox Ax—0 Ax Ax

where in the above approximation At and Ax are finite rather than infinitesimal.
In short, calculus becomes algebra.
Some criticai issues aside from this aigebraic repiacement inciude:

. What form the differencing takes:
We use an explicit central difference scheme here that only retains first
order terms. The E and H fields are interleaved spatially and temporally
because of the central differencing. What results is often referred as a
“leapfrog” scheme.

. Stability:
Only for At given by the Courant stability condition, At < (Ax)/c+/3 for
cubical cells, is the formulation stable.

We shall return to these issues in later chapters. For now, we will proceed
with the algebra. We must further decompose the vector Maxwell curl equa-
tions governing the scattered fields into their component scalar parts, obtaining

ot €

°

aEicm 1 aHi”' aH;cat
o - (2.33a)

= dy oz
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EY™ gy (aHe amrt)
a el e (2:330)
scat t
E)Es:’“ _ 1 E)Hy _ GHi“ 233
ot g | ox dy (2.33¢)
P Gt 1 JESa SJEscat
2 = (2.33d)
at | oz 9 )
scat
O™ 1 (oE7™ OB 233
at pl ax  az (2.33¢)
N 1 JEseat JEs™
z = — X _ ¥
at u | 9y ox (2.339)

AN 7

For simplicity, we will only treat the pair E,*; and H,**, the other components
follow naturally. (Note that E,** and H* could be used alone in a 1-D
transmission line analysis with propagation in the z direction if only E, and H,
field components exist.)

Replacing derivatives with differences we find

1
scal,n-—l scat,n——

Eical,n _ Eica(.n—l _ _!_ AHz 2 B 2
At Y Ay Az (2.34)

(2.35)

scal,nd»l scat,n —l
H 2 _H 2 1 |:AEsca|,n AESeatn }
L z _ x

At - | Ax Az
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.

This completes the perfect conductor separate field formulation. We next
consider how the formulation can be implemented as an operational computer

code using the FORTRAN language.
2.4 PERFECT CONDUCTOR FDTD FORTRAN CODE

With a little more work, we can recast the above formula into the form used
in a perfectly conducting version of an FDTD code. We quantize space, letting
x =1 Ax, y =J Ay, and z = K Az, and time, letting t = n At. We can define
uniform cells in the problem space and locate them by the I, J, K indices.
Within each cell we choose to locate the field components at offsets (Figure 2-
1) as given by Yee.! This “Yee cell”, as it is called, results in spatially centered
differencing. In Yee notation E (I,J,K) represents the z component of the
electric field at time t = nAt and at spatial location x = 1Ax, y = JAy, and z =
(K+1/2)Az, as can be seen in Figure 2.1. Other field components will have
different offsets as can be seen from the figure.

As a mnemonic aid we shall write Ei“’*“ in the LJ,Kth Yee cell as the
FORTRAN subscripted array variable EXS(L,J,K), with the time step deter-
mined by an index (integer variable) N in the code itself. Similarly H** "*z
in the LYK cell is HYS(IJ,K) and the spatial offset, different from the offset
for EXS, is determined by the H, location in the Yee cell. The temporal offset
is also understood, so that the time index variable N in the computer code
corresponds to time step number n = N for electric fields and n = N + 1/2 for
magnetic fields (this order can be reversed with no loss of generality). We write
E*as EXI(LJ,K), and for the lossy dielectric version of the code very natu-
raily we shall write 6£," / 0 = £, as DEXI{1,J,K).

With minimal algebraic manipulation, then, the FDTD equations for scat-
tered fields propagating in free space are recast in the form of FORTRAN
statements (remember these are FORTRAN assignments, not equalities)

EXS(LJ,K) = EXS(LJ,K)
R E[HZS(I,J,K) —-HZS(LJ - 1,K)

€, AY
(2.36)
_ HYS(LJ,K)- HYS(LJ,K - 1)
Az
HYS(LJ,K) = HYS(I,J,K)
R E[EZS(I+1,J,K)—EZS(I,J,K)
B, AX
2.37
_ EXS(LJ,K +1) - EXS(I,J,K) @3
AZ
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FIGURE 2-1. Convention for imposing the (IJ,K) indices on the (x,y,z) problem space, and
location of the six-field evaluation points in a typical cell.

where it is understood that terms such as AZ, AY, &, etc. would
actually be stored as FORTRAN variables. The above notation shows E at time
corresponding to n = N updated from its prior value at time n = N — 1
and the curl of H at time n = N — 1/2, where t = At. Next, H is evaluated
atn =N + 1/2 from its earlier value at n = N ~ 1/2 and the curl of E atn = N.

is interleaves E and H ggmpnra“y and results in a centered difference
or “leapfrog in time” approach. After each update of E and H the index
N is increased by 1 and the process is repeated. The spatial indices in
the curl calculations are determined by the Yee cell geometry. The curl
calculations are also center differenced, and represent nearest-neighbor inter-
actions.

The above equations apply to cells containing free space. In electric field
cell locations LJ,K containing perfect electrical conductor the FORTRAN
assignment EXS(LJK) = ~EXI(L,J K) is made at each time step rather than
FORTRAN assignment Equation 2.36.

2.5 LOSSY MATERIAL FORMULATION
Using

gt — Eite 4 Esoat 2.9)

H = H™ 4 H%* (2.10)
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we previously derived the equations for scattered field propagation in lossy

materialg
materia:s

aHSC“ - _ o_*_Hscal _ G_*Hinc
ot 1! u
C(eem)on 1 (7xE=) @29)
p ot p
E™ 0w O (E—8)E™
% el ‘_EE e
1 scat @26
E(V xH )

These are equivalent to the equations in the original scattered field paper 2. We
now proceed, however, to apply linear differencing rather than the exponential
differencing used in Reference 2, because it is simpler and (as implemented
here) will yield a more stable formulation for high values of conductivity.

Considering Equation 2.26 and using i for inc and s for scat, we express it
as

edE*
at

s i aEI s
+0E* =—oE —(s—go)y\e(VxH) (2.38)

which is approximated using centered finite differences as

e(E™" ~E*"') + GAE™™ = —OAE™ - (e—¢ JAEM

+ (V st'"‘%)At - @39

and can be reexpressed as

(e+GANE®" = eE*"' - GAE™ - (e-e JAE™

1
+ (V x H“";]Az (240)
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or finally
ES" = ( € )Es n-1 _ ( oAL )Ei‘"
€+ oAt € + OAt
€-¢€ JAt .. 1
. ( 0) El,ll + (V X HS'".‘;)( At ) (241)
€ + oAt €+ oAt

The use of E*" in the expressions involving G, using the most recent value of
electric field to determine the current density, is the key to obtaining stability
for large conductivity values. Note that as 6 becomes infinite Equation 2.41
correctly gives Excat = _Einc,

We can now write the FORTRAN-like expression for updating the electric
field in a lossy dielectric medium as

E(LLK)" = Ef (I,J,K)""(L)

€ + OAt
: e—¢ JAt ..
-( oAt JE‘ (LLK)" - (A B (L),K)"
e+0At) * €+ oAt

1 1

HY(LILK)' 2 - HS(LT-1.K)" 2/ A
4oz ) 2\ ] J
Ay € + OAt

(242

1
HS(IJK)“’_ H;(I,J,K—l)"‘z( At )

+ —
Az € + OAt

In a similar way the corresponding equations for updating the other electric
field components can be obtained. Should we wish to consider lossy magnetic
media the corresponding magnetic field equations can be derived using the
same approach.

2.6 LOSSY DIELECTRIC FDTD FORTRAN CODE

We now consider extending the previous perfect conductor FDTD code to
lossy dielectric materials. The only addition to the previously described perfect
conductor FDTD implementation is that Equation 2.42 must be used to update
electric fields at spatial locations where € # €. Because we are assuming that
no magnetic materials are present, Equation 2.37 can be used throughout the
FDTD space to update magnetic fields.

!
!
!
!
|
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Let us now consider implementing Equation 2.42 in FORTRAN.

One consideration is that we do not want to repeatedly evaluate the

constant multiplying terms, but would prefer to store and reuse them. On
the other hand, storing all of the multiplying terms for each field component
in each cell will require significant amounts of additional memory. To
reduce the storage required significantly for most problems, we recognize that
typically only a few different types of materials will exist in a particular
FDTD space. The space may have millions of cells, but perhaps only a
few different materials with different permittivities, conductivities, and
permeabilities will be modeled in the space. The multiplying constants
need to be evaluated for each type of material rather than for each cell,
with a pointer array used to designate which material is in a given LJK
location. We let IDONE(I,J,K) be the pointer array designating the

nnant ~f alantric fiald
eracting with the x component of electric field at

Yee cell location IJ,K. We have found it convenient to let IDONE(1,J,K) = 0
mean that in cell LJK the x component of electric field is in free space,
IDONE(LJ,K) = 1 for a perfect conductor interacting with this electric field,
and values > 1 for user-defined values of permittivity and conductivity at this
location.

Using this approach, and letting an integer value M denote the Mth type of
lossy dielectric contained in the FDTD space, we can express the above
constant multipliers for this material as:

type of materia

BCRLY(M) = ———— D . A& __
(EPS(M) +SIGMA(M)* DT)* DY (e + CAt)AY
ECRLZ(M) = L4 =N
(EPS(M) + SIGMA(M)*DT)*DZ (e +0CAt)AZ
ESCTC(M) = EPS(M)/(EPS(M)+SIGMA(M)*DT) = —° -
£+ C.

EINCC(M) = SIGMA(M)* DT /(EPS(M) + SIGMA(M) * DT)
CAt
€+ CAt
EDEVCN(M)= DT *(EPS(M) - EPSO)/ (EPS(M) + SIGMA(M) * DT)

(e-e,)At

€+ CAt

Using these definitions the FORTRAN expression for Equation 2.42 for E,* in
the presence of a lossy dielectric becomes:
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EXS(1,J,K) = EXS(LJ,K) * ESCTC(IDONE(LJ,K))

~ EINCC(IDONE(I,J,K))} * EXI(L J,K)

- EDEVCN(IDONE(L J,K)) * DEXI(L, J,K)

+ (HZS(L,3,K) - HZS(1,7 - 1,K)) * ECRLY(IDONE(LJ, K))
— (HYS(LJ,K) - HYS(L,J,K - 1)) * ECRLZ(IDONE(L J,K))

(2.43)

In a lossy dielectric FDTD code the FORTRAN assignment (2.36) is
executed for cells containing free space, (2.43) is executed for cells containing
lossy dielectric, and in cells containing a perfect conductor, EXS(LJ,K) =
-EXI(I,]K) is executed. The contents of the IDONE(LJ,K) array determines
which assignment to execute for EXS in a particular (1J,K) Yee cell. Arrays
IDTWO(1,J,K) and IDTHRE(,J,K) would similarly determine the material
interacting with EYS and EZS, respectively. Because no magnetic materials
are present, FORTRAN assignment (2.37) is executed in all cells. If magnetic
materials are to be considered, the magnetic version of (2.43) can be derived
from (2.25), and arrays IDFOUR(LJ K), IDFIVE(LJ.K), and IDSIX(1,J,K) can
be used to specify the magnetic material interacting with HXS, HYS, and HZS,

respectively.

2.7 FDTD CODE REQUIREMENTS AND
ARCHITECTURE

We have derived the FDTD algorithm for six field components in a 3-D
rectilinear space that is composed of Yee cells. We must still determine what
additional computational support is required, and to these code requirements a
suitable architecture must be given.

Let us first define the code requirements. There must be a main computer
routine that acts as an overseer or driver of the remaining subroutines. This
driver steps through time, calling the subroutines in the appropriate order.

Before time stepping can begin there must be a problem space defined,
including parameters such as cell size, time step, and incident field. Constant
multipliers that need not be computed at each time step may also be evaluated
and stored before time stepping begms There must be a definition of the
scatterer or tesi objeci provided, which consists of coding the information as
to which cell locations contain materials other than free space. Monitor points
or test locations at which responses are examined must be specified along with
the response type: voltage, current, field, power, etc. If a far zone transforma-
tion is being used, the direction(s) of the far zone fields desired must be
specified.

After these specifications the fields are then advanced one step at a time.
This is, of course, the core of the code. Most of the computer running time will
be spent in this section, but it represents a small fraction of the lines of code.

P“mu-u-w—“
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In addition to the time-stepped field subroutines we must also have outer
radiation boundary condition subroutines that absorb the scattered field at the
outermost portion of the problem space.

When time stepping is completed we must have a way of outputting
response data. This data saving routine can store response data at every
time step and then at the end of the run “dump” it out as a listing or as a
file for postprocessing. This output process may involve transformation of
the near zone FDTD fields to the far zone for radiation or scattering calcula-
tions.

These code requirements are summarized as:

. Driver

. Problem space setup

. Test object definition

. E.H field algorithms

. Outer radiation boundary condition
. Data saver

. Far zone transformation

These requirements are not changed by the presence of lossy dielectric and/
or magnetic materials in addition to perfectly conducting materials. The only
change necessary is that the E and/or H field time stepping assignments will
need to be further generalized. When attempts are made to treat portions of the
problem space in finer detail additional code requirements may be added. Each
of the aforementioned code requirements can be implemented as a modular
subroutine or set of subroutines.

The required capabilities of each subroutine can now be given:

Driver
. Calls problem space setup subroutine and the test object definition
subroutine

. Time steps over an index N
. While looping over N, calls E,H subroutines and the outer radiation
boundary condition subroutines
. At each or selected time steps calls data saver or far zone subroutine to
store data samples
- At the completion of all the time steps calls appropriate subroutines to
write output data
Problem space setup
. Sets the problem space size
Sets the number of cells in each dimension
Sets the cell size (Ax, Ay, Az)
. Calculates the At time step according to the Courant stability condition
using the cell dimensions Ax, Ay, Az
. Calculates constant multipliers
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Test object definition
. Cells or individual field components in the cells are “flagged” (with
an integer variable IDONE(1,J,K) for E, in our example FORTRAN)
indicating their composition; this dictates how the E,H algorithm is to
process the data: as perfect conductor, lossy dielectric, free space, or
other more complicated material; it is usually convenient to set
the default material to free space; the array of “flags” can be read
for a preprocessing check of the geometry and composition of the
object.
E,H field algorithms
. Calculate the response of a component from its own prior time value
and that of the nearest-neighbor field quantifies (Es around Hs and Hs
around Es) according to the type of material present at that component
location:
Free space
Lossy dielectric
Lossy magnetic
Perfect conductor
Outer radiation boundary condition
. Absorbs, at least partially, the scattered field at the outermost portion of
the problem space
Data saver
. Saves response data such as E and H field components, currents, or other
quantities in the FDTD computation space in arrays at chosen time steps
Far zone transformation
. Evaluates iangeniial clectric and magnetic currents on a closed surface
surrounding the object and computes the corresponding scattered or
radiated fields in the far zone

The architecture of the code is quite straightforward given the modular
nature of each subroutine. FORTRAN COMMON blocks can be used to pass
data between subroutines, with the main Driver program orchestrating events.
A simplified flow chart of the code appears in Figure 2-2. A computer code
listing is included in Appendix B.
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DEFINE PARAMETERS

BUILD OBJECT

UPDATE E FIELDS

UPDATE H FIELDS

FIGURE 2-2. FDTD flow chart.
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Chapter 3

FDTD BASICS
3.1 INTRODUCTION

In this chapter, the practical considerations of FDTD calculations are treated:

. Cell size

. Time step size

. Incident field specification

. Scattering object construction

. Direct calculation of total fields

. Outer radiation boundary condition
. Resource requirements

The choice of cell size is critical in applying FDTD. It must be small enough
to permit accurate results at the highest frequency of interest, and yet be large
enough to keep resource requirements manageable. Cell size is directly af-
fected by the materials present. The greater the permittivity or conductivity, the
shorter the wavelength at a given frequency and the smaller the cell size
required.

Once the cell size is selected, the maximum time step is determined by the
Courant stability condition. Smaller time steps are permissible, but do not
generally result in computational accuracy improvements except in special
cases. A larger time step results in instability.

When using the scattered field FDTD formulation the incident field must
be analytically specified. An infinite variety of waveforms are possible, but
experience has led to the Gaussian pulse as the incident waveform of
choice. The exception to this is when frequency-dependent materials are
included, in which case a smoothed cosine pulse has advantages, as de-
scribed in Chapter 8.

FDTD is capable of providing very large dynamic ranges, which can be
in excess of 120 dB. Accuracies of 0.1 dB or less can also be obtained
depending on the cell size, frequency, and shape of the objects being consid-
ered.

The scattering object can be “constructed” for the FDTD calculation using
integer arrays for each field component. Different integer values indicate a
different material and determine which FDTD field equations are used with
what multiplying constants (depending on material) to update the field compo-
nent. In the scheme described later in this chapter, free space FDTD equations
correspond to a value of zero stored in the integer array, while perfectly
conducting field equations are used for E field components corresponding to
a value of 1. Numbers >1 may be used for lossy dielectric and/or magnetic
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materials. Any shape and material can be included within the constraints of the

i freauency of interest
m frequency of interest.

cell size chosen and max

For problems which do not have an incident field, antenna radiation ca}cpi
lalions,ﬁ for example, an FDTD computer code based on the scattered field
formulation may easily be converted to computing total fields, as discussed in
Section 3.6.

Whether total or scattered fields are computed, Mur’s first or second order
absorbing boundaries provide a relatively reflection-free and easily imple:-
mented termination for the FDTD space. Other absorbing boundary condi-
tions are available which provide better absorption with fewer cells required
between the object and the outer boundary, but at the expense of added
complexity. These are discussed in Chapters 14 and 18, although for most
FDTD users, the Mur absorbing boundaries are adequate and relatively
simple to apply.

After the user determines the cell size, a problem space large enough to
encompass the scattering object, plus space between the object and the absorb-
ing boundary, is determined. Also, a number of time steps sufficiently large to
allow a full characterization of the interaction of object and fields, most
importantly any resonant behavior, is estimated. From the number of Yee cells
needed and the number of time steps required, resource requirements can be
closely estimated. These resources include CPU time (determined in part by the
speed of the computer being used) and the amount of solid state memory
(RAM) and extended storage capacity (megabytes of hard disc memory)
needed for the calculation and for storing the results.

Upon completing this chapter, the reader should be able to make FDTD

U R H and wanid

calculations with an appreciation of the general constraints and requirements
of the method.

3.2 DETERMINING THE CELL SIZE

The fundamental constraint is that the cell size must be much less than the
smallest wavelength for which accurate resuits are desired. The obvious ques-
tion is “How much less?”, and to this must be added the question, “How
accurate do you want the results to be?”” An often quoted constraint is “10 cells
per wavelength”, meaning that the side of each cell should be 1/10 A or lc_ss at
the highest frequency (shortest wavelength) of interest. For some situations,
such as a very accurate determination of radar scattering cross-sections, 1/20
 or smaller cells may be necessary. On the other hand, reasonable results have
been obtained with as few as four cells per wavelength. If the cell size is made
much smaller than this the Nyquist sampling limit, A = 2Ax, is approached too
closely for reasonable results to be obtained and significant aliasing is possible
for signal components above the Nyquist limit.

A word of caution here is that FDTD is a volumetric computational method,
so that if some portion of the computational space is filled with penetrable
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material we must use the wavelength in the material to determine the maximum
cell size. For problems containing electrically dense materials this results in
cells in the material that are much smaller than if only free space and perfect
conductors were being considered. If a uniform cell size is used throughout this
forces the cells in all of the problem space to be relatively small, which may
greatly increase the number of cells needed. Possible measures to deal with this
include nonuniform cells (smaller cells in the dense material, larger cells
outside) or surface or sheet “impedance” methods, which are considered in
Chapter 9.

To understand why the cell size must be much smaller than one wavelength,
consider that at any particular time step the FDTD grid is a discrete spatial
sample of the field distribution. From the Nyquist sampling theorem, there
must be at least two samples per spatial period (wavelength) in order for the
spatial information to be adequately sampled. Because our sampling is not
exact, and our smallest wavelength is not precisely determined, more than two
samples per wavelength are required. Another related consideration is grid
dispersion error. Due to the approximations inherent in FDTD, waves of
different frequencies will propagate at slightly different speeds through the
grid. This difference in propagation speed also depends on the direction of
propagation relative to the grid. For accurate and stable results, the grid
dispersion error must be reduced to an acceptable level, which can be readily
accomplished by reducing the cell size.

Another cell size consideration is that the important characteristics of the
problem geometry must be accurately modeled. Normally this will be met
automatically by making the cells smaller than 1/10 A or so, unless some

special geometry features smaller than this are factors in determining the

response of interest. An example is thin wire antennas, in which a change in
the wire thickness from 1/10 A to 1/20 A (and even smaller) will affect the
antenna impedance. Another example is computation of low level scattering
from smooth targets in which the “staircase” effects of modeling a smooth
surface with rectangular cells may cause significant errors. Good results in
these and similar situations may require extremely small cells, or alternative
measures such as sub-cell modeling or special grids which approximate the
actual geometry better than Yee cells of the same size. These situations are also
discussed later in this book.

Once the cell size has been determined, the number of cells needed to model
the object and a reasonable amount of free space between the object and the

auter o dars 1o anab diocamcion fo Forind omd facn ehio shio boend olon oF dho
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FDTD space in cells is determined. Assuming a 3-D problem, a total number
of cells from a few hundred thousand up to several million can be accomodated
for computers ranging from personal computers (PCs) and work stations to
supercomputers. We now consider other basic aspects of FDTD calculations in
the following sections of this chapter, with the final section devoted to estimat-
ing the computer resources required for an FDTD problem once the number of
cells has been determined.
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3.3 TIME STEP SIZE FOR STABILITY

Once the ceil size is determined, the maximum size of the time step At
immediately follows from the Courant condition. To understand the basis for
the Courant condition, consider a plane wave propagating through an FDTD
grid. In one time step any point on this wave must not pass through more than
one cell, because during one time step FDTD can propagate the wave only from
one cell to its nearest neighbors. To determine this time step constraint we pick
aplane wave direction so that the plane wave propagates most rapidly between
field point locations. This direction will be perpendicular to the lattice planes
of the FDTD grid. For a grid of dimension d (where d = 1,2, or 3), with all cell
sides equal to Au, we find that with v the maximum velocity of propagation in
any medium in the problem, usually the speed of light in free space,

vAt £ é'i 3.1

a

for stability. More generally for a 3-D rectangular grid’

1 1

+ ( ) * (a2)" 3.2)

Experience has indicated that for actual computations the At va[up given
by the equality in (3.1) or (3.2) will provide accurate results, and in most

—os ha ghtainad by nging a smaller value

cciilic will
11 not be ovtained Dy using a smauer

situations more accuraie resulis wi
of At. In fact, when the equality holds, the discretized wave most closely
approximates the actual wave propagation, and grid dispersion errors are
minimized.

However, exceptions to this occur. One situation in which the time step
must be reduced relative to (3.2) is when the conductivity of the material is
much greater than zero. For conducting materials (6 > 0), stable calculations
require time steps smaller than the Courant limit. This is usually not a problem,
because in most calculations the time step size is set by the speed of light in
free space. As the velocity in the conducting material will be smaller than in
free space, the time step in an FDTD calculation that includes both free space

and conducting materials will be such that the Courant limit will be satisfied

everywhere. However, the short wavelength inside highly conducting materi-

als may require much smaller FDTD cells than in surrounding free space
regions.

Another situation where the time step must be reduced below the Courant
limit occurs for nonlinear materials. Chapter 11 contains discussions of stabil-
ity concerns for both nonlinear (Sections 11.2 and 11.3) and conducting
(Section 11.3) materials.
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3.4 SPECIFYING THE INCIDENT FIELD

A key advantage of usi o rmulation i inci
A key advantage of using the scattered field formulation is that the incident

field is specified analytically. In this section the practical considerations for
doing this are given for an incident plane wave. Such a plane wave may be
needed for a scattering calculation, for example. Other types of incident fields
may be specified for other problems and applications, but the procedure should
be similar.

The specified incident field will be a Gaussian pulse plane wave, as this
provides a smooth roll off in frequency content and is simple to implement.
Provision for arbitrary incidence angle is also made.

First, consider specifying a general incident plane wave in the time do-
main. We assume a spherical coordinate system with the origin coincident
with the origin of the FDTD Cartesian system. Following normal usage 0 is

measured from the z axis and & from the i i
measured from the z axis and ¢ from the x axis. Following the usual scatter-

ing convention, we specify the direction that the incident plane wave is
coming from by 0 and ¢. Letting a unit vector ; point from the origin in the
0,4 direction, an incident plane wave from this direction can be specified as

E = [Bd+EybJe(t+ (7 )+ Rre) 33)

= | Fop Fag)
H=|-20-"24If(t+(r f)c+R/k)
{n 7 !
where éand‘i) are the spherical coordinate system unit vectors, 1 is the
impedance of free space, c is the speed of light, and 7/ is the vector from the
origin to the point in the FDTD computation space at which we desire to
evaluate the incident field. The function f(t) may be any function of time, a
sine wave or a pulse, for instance. R is an arbitrary reference distance. For
transient calculations the pulse must propagate into the FDTD space rather
than suddenly appear at the scattering object, and the value of R is chosen
accordingly.

We can easily obtain the amplitudes of the Cartesian components of the
incident fields as

E,=Egcos® cos¢p — E, sing
E,= Eg cos sing + E, cosd
E,=-E4 sinf

H,= (Ep sin¢ +E, cos® cosp)/ M
H,= (-E, cos¢ +E, cosd sinp) n
H,= (-E, sin¢)/ 1
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Next consider specifying a particular field component for a Gaussian pulse.

Assuming that the amplitude has been found from the above expressions, we

let the function f(t) be a Gaussian pulse and express the x component of the
electric field of the plane wave as

E (LK) = Exexp(—ot((‘c - BAt)z)) 3.5

where the time delay t is given by

=nAt + ' -t/ + Rlc (3.6)

and incorporates the reiative time delay for the E, componen in cell IJ

time step nAt. For our plane wave incident from the 8, direction we have

W o
,A at

-t = ((1-1)+ 0.5)Ax cos sin@
+ (J - 1)Ay sin¢ sin® 3.7
+ (K - 1)Az cos®

Note the 1/2 cell offset in (3.7) corresponding to the location in the (1], K) Yee
cell of the E, component. Corresponding offsets must be included for each field
component.

We now define o and 8 and constrain T so as to provide a suitable pulse as
a funciion of ihe time step size we have chosen. Although an ideal Gaussian
pulse extends infinitely in time, ours must be truncated in our calculations, and
the effects of this must be considered. We must also specify the time duration
of the pulse so that it has a suitable bandwidth.

To start, determine the duration of the Gaussian pulse. We select f§ = 32,
where B is the number of time steps in the Gaussian pulse from the peak value
to the truncation value. The pulse will exist from T = 0 until T = 2BA¢;
approximated as zero outside this range, with peak value at = BAt.

The value at truncation (at T = 0, 2BAt) is determined by «, and as seen from
(3.5) the Gaussian pulse at truncation will have a value exp(-a(£pAt)?) down
from the maximum value. We now need to determine o so that this truncation
does not introduce unwanted high frequencies into our spectrum, and yet does
not waste computation time on determining values of the incident field that are
essentially zero.

There is no correct answer, but a practical solution is to let o change with
B so that at truncation the amplitude of the pulse is always reduced by the same
value. We let o = (4/(BAD)2. Thus, at truncation the pulse is down by exp(~16),
or almost 140 dB. Because a reasonable goal for a single precision calculation
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P_‘IGURE 3-1. Gaussian pulse for 1-cm cubical FDTD cells for a time step at Courant stability
limit and B = 32.

is -120 d.B (six significant decimal digits) this value of o results in truncation
frequencies well below this level. As a maximum a 32-bit world length allows
at most a little over 190 dB dynamic range.

To illugtrate the regnults ghtained with thasa valuas woa conaidac o oitasian
the Will nese vaiuts we COnsiGeT a situation

often used for other examples in this book, a 3-D cubic cell with 1-cm sides.
Applying the Courant stability condition we obtain a At of 1.924E-11 s or
0.01924 ns. Using this time step along with the parameters given above yields
the Gaussian pulse of Figure 3-1. The approximation to the pulse is most
noticeable near the peak value where the curve of the actual pulse is approxi-
mated with straight line segments between the discrete values.

The fast Fourier transformation (FFT) of this pulse, shown in Figure 3-2,
makes it clear that the truncation of the pulse did not introduce unwanted high
frequencies. At ten cells per wavelength we would hope to get accurate results
from our FDTD calculations for frequencies up to 3 GHz, and from Figure 3-
2 itis clear that our Gaussian pulse is providing relatively high signal levels out

tn thie fean
O Ulis 1req

y. On the other hand, we may be concerned about noise and
instability if we have appreciable energy in the incident wave for wavelengths
in which our cell size is less than four cells per wavelength. This corresponds
to a frequency of 7.5 GHz, and from Figure 3-2 we see that our spectrum is
do»t\)r.rll by approximately 120 dB at this frequency — small enough to provide
stability.
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FIGURE 3-2. Fourier transform of the Gaussian pulse of Figure 3-1.

This determination of the Gaussian pulse parameters has assumed that the
entire problem space is filled with either free space or perfect conductor. If
there is penetrable material we must modify our choice of P. To iliustrate this
suppose that we still desire to obtain results that are accurate up to 3 GHz, but
that our problem space contains penetrable material with a relative permittivity
of 4. For the same accuracy at 3 GHz as in the free space/conductor problem,
we would need to correspondingly reduce our cell size by a factor of 2, t0 0.5
cm on each side, as the wavelength in this material would be one half the free
space wavelength.

We next would apply the Courant condition and find that the time step is
now one half as large as the previous value. If we let B remain 32, with the time
step reduced by one half, our Gaussian pulse would be one half of the previous
time duration, and twice the previous spectral band width. Instead, we must
double the size of P to 64, so that the pulse width and frequency band remain
as shown in Figures 3-1 and 3-2. If we do not, we risk noise and even instability
in the volumetric region containing the dielectric material, as the narrower
pulse will contain significant energy at wavelengths too small to be adequately
sampled inside the dielectric. Thus, the only adjustment required in the above
scheme for determining the Gaussian pulse parameters is that the value of
must be increased inversely as the time step size is decreased below the
Courant limit.
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FIGURE 3-3. Yee cell geometry.
3.5 BUILDING AN OBJECT IN YEE CELLS

) In Chapter 2, an approach for using integer arrays to specify the materials
in FDTD ce!ls was presented. With this approach, the IDONE-IDTHRE arrays
are meant for specifying PEC and dielectric materials. IDONE is used to
specify which material type is interacting with the E, field component, IDTWO
for the E, component, etc. The IDFOR-IDSIX arrays are for magnetic materials
and correspond to the x, y, and z components of magnetic field, respectively.
These correspondences are summarized below.

IDONE  Ex IDFOUR H,
IDTWO E, IDFIVE Hy,
IDTHRE E, IDSIX H

3

The LJ,K subscript index identifies in which Yee cell the material is located.
The content of the array identifies which material is at this iocation. For
example, a content of O might specify free space; 1, perfect conductor; 2, a
lossy dielectric with a specific permittivity and condhctivity; 3, for a lossy
dielectric with different permittivity, etc. The constitutive parameters of each
.material type that exists in the FDTD space are set once and the correspond-
ing multiplying terms in the FDTD update equations are calculated and
stored before time stepping is begun. Note that because the material that
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[ [
DO 101~4,7 J " “
D0 10J=4,7 8l -
IF I NE.7) IDONE J,K)=2
IF (J.NE. 7) J,K)=2
10 CONTINUE 5 L
4 5 6 7

Ex (IDONE)

FIGURE 3-4. FORTRAN code and corresponding view of 3 x 3 cell FDTD dielectric plate in
xy plane at z = KAz

interacts with each field component is specified separately, modeling aniso-
tropic materials with diagonal permittivity or permeability tensors is straight-
forward in FDTD.

As six separate arrays are used the user can control independently the exact
placement of dielectric and magnetic material in the Yee cells. The placement
of the field components in a Yee cell is shown in Figure 3-3. For example,
setting an element of the IDONE array at some LJ,K location is actually
teracts with the x component of electric
field located at position I+1/2,J,K in the FDTD space. Setting an element of the
IDFOR array at some LJK location is actually locatiag magnetic material
where it interacts with an x component of magnetic field located at position
1,J+0.5,K+0.5. The spatial difference between the IDONE and IDFOR array
locations is a direct result of the field offsets in the Yee cell. This inherent
offset in the field locations causes “fuzziness” or “staircasing’ approximations
when building objects. Smooth surfaces must be approximated by stepped Yee
cell locations. Even an object that fits the Cartesian coordinate system (for
example a cube) cannot be specified exactly if it is composed of material that
has both dielectric and magnetic properties because the electric and magnetic
field locations are offset spatially. One remedy for this situation is to use
‘nhr or pmrmpnhl]lt\l in the “ﬁl77v remnn% where

locating dielectric material where it
g it

al, narm
average values of the perr

this offset is a factor, but this remedy only reduces rather than removes the
effect.

When “building” an object it is necessary to keep in mind that one is not
filling Yee cells with material, but rather locating material at the field locations
within a Yee cell. To illustrate this let us consider building a flat 3 x 3 cell
dielectric plate in the xy plane located at z= KAz ina 3-D Yee cell space. This
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l A
DO 10 I-4 7
IDFOR W 1
£° IDFIV K)-111
Hy (IDFIV)
—

Hix (iDFOR)

FIGURE 3-5. Attempt to build magnetic material plate with same FORTRAN logic as for
dielectric plate.

plate will be composed of material type “2”, in which the constitutive param-
eters of this material are set elsewhere in the FDTD computer code. Using the
IDONE and IDTWO arrays, this plate can be built with the FORTRAN shown
in Figure 3-4. In this example, note the two IF statements that must be included
so that the plate is properly formed. Merely setting the ID arrays for nine cells
(3 x 3) will not result in a plate with smooth sides.

To illustrate this further, consider “building” the corresponding magnetic
material plate. If the same FORTRAN logic is used to try to generate a
magnetic plate, the object generated would actually be unconnecled as illus-
trated in Figure 3-5. The correct way to build the magnetic plate is with the
following FORTRAN code:

DO 10 I=4,7
DO 10 J=4,7
IF(I.NE.4)IDFOR(IJ,K)=11
IFJ.NE4)IDFIV(L,J K)=11
10 CONTINUE
This COlTlPuLail()fl is a direci consequerce of ihe iocaiions of ihe fieid compo-
nents within the Yee cell.

One can define a correspondence between setting electric and magnetic
field locations, so that the code used to generate a dielectric object can be
modified to generate a magnetic object. To see this consider that we have set
the permittivity at cell locations corresponding to EX(1J,K), EY(LJ,K),
EZ(1,J,K) using the IDONE, IDTWO, and IDTHRE arrays, respectively.
This determines one corner of a dielectric cube. If we wish to define the
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comner of a corresponding magnetic cube, offset one half cell in the x, Y, 2
directions, we would set the locations of ihe magnetic fields HX(I+1,1.K),
HY(,141,K), HZ(AJK+1) as magnetic material using the IDFOR, IDFIV,
and IDSIX arrays. This example indicates the following correspondence
between “building” dielectric and magnetic objects:

Dielectric object Magnetic object

IDONE(LJ.K) = IDFOR(I+1,J.K)
IDTWO(1,J.K) = IDFIV(LJ+1,K)
IDTHRE(LJ,K) = IDSIX(LJ,K+1)

This correspondence agrees with the changes in the FORTRAN code necessary
to build the plates in the preceding exampie.

Before leaving the topic of plates, a pertinent question might be “how thick
are the plates that are built in the above examples, i.e., how physically thick is
a plate that is one cell thick in FDTD space?” More generally, we can consider
where the “surface” of a volumetric conductor “built” of FDTD cells is located.
The answers to these questions will give us some insight into how FDTD
approximates structures, because no unique answer exists.

First, consider the situation that we are computing the scattering by one of
these plates for a plane wave incident from @ = 90°, that is edge-on, and with
the electric field polarized in the 8 or equivalently the —z direction. As only an
E, component is present, and all IDTHRE and IDSIX array locations are
assumed set to O (free space; we would not set these to any other values when
building the plates), the scattered field will be identicaily zero, and we coni-

ciude thai the plates have zero th

However, consider the case in which the plane wave is incident from the 8
— 0° direction, and thus normally incident on the plate. Because the plate is thin
and composed of lossy dielectric we can approximate it as a sheet resistance
or impedance. This is discussed in Chapter 13, which shows that the correct
result is obtained when the FDTD plate is considered to be Az thick.

We might also consider the location of the real FDTD “surface” for a more
general FDTD geometry. For example, consider “building” a perfectly con-
ducting (PEC) cube with FDTD cells. At first we would assume that the surface
‘of the cube corresponds with the outer Yee cell locations, where E fields are
set to perfect conductor. Then we also may consider that the FDTD “cube”
extends halfway between these outer E field locations and the adjacent E field
locations that are in free space. Experience in calculating scattered field cross-
sections from perfectly conducting volumetric targets indicates that the surface
of the FDTD object extends about one fourth of the Yee cell dimension (Ax,
Ay, or Az) beyond the locations where the E fields are set to perfect conductor.”

An explanation for this one fourth cell extension is that when a plane
wave is normally incident on a planar perfect conductor, the tangential
electric fields are zero, but the tangential magnetic fields are maximum.
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In FDTD calculations the zero electric fields are at the Yee locations
where perfect conductor is set, but the maximum magnetic fields are at
the H field locations just outside the conducting regio?\. Thus, the FDTD‘
“surface” is approximated as being halfway between these electric and
magnetic field locations, or one fourth of the Yee cell dimension beyond
the ou}er electric field locations set to perfect conductor.

So just how big is an FDTD object? It is generally a small fraction of a cell
larger t.han the geometry employed. We must keep in mind that FDTD is an
approximate method, and our physical reality of the plate is only approximated
by FDTD.

Returning to the general topic of “building” objects, a good approach is to
generate squares (in 2-D or for thin objects in 3-D) or cubes of material, where
setting a cube of material is not the same as setting one Yee cell. Scttiné acube
of dielectric or magnetic material requires setting 12 Yee cell field locations as
shown in the following FORTRAN, which fills a cube of space located in Yee
cell LIK with dielectric material type “MTYPE™:

IDONE(LJ,K)=MTYPE
IDONE(1,J, K+1)=MTYPE
IDONE(J+1,K+1)=MTYPE
IDONE(1,J+1,K)=MTYPE
IDTWO(LJ,K)=MTYPE
IDTWO(I+1,J K)=MTYPE
IDTWO(I+1,J K+1)=MTYPE
IDTWO(1,J,K+1)=MTYPE

INTUDL/T ] VDI
IDTHRE(,] K)=MTYPE

IDTHRE(I+1,] K)=MTYPE
IDTHRE(I+1,J+1,K)=MTYPE
IDTHRE(I,J+1,K)=MTYPE

Thls app.roach to modeling a solid object, a sphere for example, is to determine
if a Pamcular Yee cell cube is within the sphere, and if so set all 12 field
locat.xons to the material of the sphere as shown above. Setting individual field
locatxor}s will result in a sphere that does not have a closed surface. This may
not be important for penetrable materials, but for a conducting sphere would
correspond to having short “wires” sticking out of the surface, where individual
field components are set that are not a part of a complete cube.
Another poini 0 keep in mind is that overwriting the value in a particular
ID array does not cause problems, but rather may be a useful technique.
Writing ‘m(o the ID arrays is analogous to painting ona canvas, in that the last
color painted is the color seen and the last value written into an ID array is the
value used in the calculations. Just as an artist may paint a background sky.
then partially cover this with grass, and in turn paint a lake over a part of the:
grass, we can consider that we can fill all the FDTD cells with free space, then
fill a section of these with some other material, then fill a portion of this s(;ction
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with some different material by overwriting the ID arrays. This approach is
simple and has the advantage that it eliminates the possibility of leaving voids
within the material region.

In summary, the point of this section is not that “building” objects in Yee
cells is difficult, but rather that it is not trivial and that some care must be taken.
Simple objects can be built by writing FORTRAN code specifically, as in the
plate example above. For more complicated structures, translation programs
may be necessary. These will take geometrical data already in some database,
from a computer-aided design (CAD) software package for example, and
translate it into Yee cell locations. However, one must always keep in mind the
distribution of field components in a Yee cell, and that setting one spatial
location to a material type is equivalent to specifying the material which
interacts with a specific electromagnetic field component at a specific location.

3.6 DIRECT COMPUTATION OF TOTAL FIELDS

In this book we stress using the scattered field formulation in FDTD
problems, an approach that has many advantages. Some have already been
discussed in Chapters 1 and 2, and others will be illustrated in later chapters
involving applications of FDTD. Mathematically, the scattered and total field
equations are equivalent and yield, in the limit of infinitesimal cells, exactly the
same results. However, due to the approximations inherent in the finite differ-
ence implementation, scattered and total field results can differ, and situations
exist in which direct calculation of the total fields may be simpler or yield more
accurate results.

One of these involves computing small values of total field, such as in
shielding problems where a plane wave is incident in which one is concerned
with calculating relatively low level total fields which may penetrate a shielded
region of space. This means that the incident and scattered fields are nearly
identical in magnitude but opposite in sign. Both total field and scattered field
formulations are limited in dynamic range by the precision of the variables
used in the computer calculations. However, in the scattered field formulation,
the incident field propagates exactly through the FDTD space, while the
scattered field propagation is subject to grid dispersion and other errors. This
slight error (or more precisely, lack of error in the incident field) may prevent
the incident and scattered fields from canceling accurately in the scattered field
formulation implementation. The error vanishes as frequency goes toward zero
and grows to appreciabie size only as the Nyquist frequency is approached.

In the total field formulation, the total field propagates through the FDTD
mesh and thus grid dispersion errors exist for both the incident and scattered
fields. The hope is that because they are subject to the same error, they may
tend to cancel one another better. However, some contributions to the scattered
field will travel in directions through the FDTD mesh differently from the
propagation direction of the incident field, and therefore will not be subject to
the same grid dispersion errors. Thus, one cannot count on total compensation
of grid dispersion errors in the total field mode of calculation.
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Other situations in which total field computation may be desirable occur due
to difficulties in computing the incident field. Consider the problem of apply-
ing FDTD to antenna radiation problems. If we are dealing with a wire antenna
and wish to excite fields in the gap of the antenna, analytically determining the
transient near fields of a pulsed current source radiating in free space would be
tedious and time consuming. As shown in Chapters 10 and 14, it is relatively
simple to specify a source in this gap and directly compute the total fields that
result from this source interacting with the antenna geometry.

When we wish to compute in the total field mode computer codes based on
scattered field formulation are simple to use, because total field formulation is
a special case of the scattered field formulation. We merely specify a zero
amplitude incident field and then insert into the FORTRAN code the necessary
source terms. For example, consider the case in which we are modeling a wire

antenna and wish to locate a voltage source at the location of E_ (1,1 K) in the
the location of E, (1,J K) in the

FDTD grid. We set the incident ﬁeld amplitude to zero, and after each update
of the E, field values, we execute a line of FORTRAN specifying the source
field at this location. This process is described in Chapter 10, and examples are
given in Chapter 14.

In summary, for most situations, and especially for scattering problems,
directly computing the scattered field using the scattered field formulation is
preferable. However, in some situations direct computation of the total field
may be more accurate or simpler, and in these cases the scattered field FDTD
code emulates a total field code merely by setting the incident field amplitude
to zero.

3.7

An outer radiation boundary condition (ORBC) may not always be neces-
sary when applying FDTD. If the FDTD problem space is bounded by a
condition that can be implemented directly into the finite difference equations
of Chapter 2, an ORBC is not necessary. For example, if we are modeling
electromagnetic phenomena inside a closed waveguide system, the tangential
electric field at the walls is zero, and we implement this by setting the ID arrays
appropriately.

For many applications, we are attempting to model a structure that is
situated in free space, such as a scatterer or radiating antenna, and we would
like the scattered or radiated fields to propagate into boundless space, satisfy-
ing a radiation condition. Unfortunateiy, the FDTD computationai space is by
necessity bounded, and when the scattered or radiated fields arrive at the
boundary they will be reflected back into the computational space unless we
take preventive measures. The usual measures involve application of an ORBC
to absorb the scattered or radiated fields when they arrive at the limits of the
FDTD space so that scattering or radiation into boundless free space is at least
approximately simulated. The only alternative for these problems is to stop the
time marching before reflections from the outer boundary return and corrupt
the data, but for most problems this is not a viable alternative, as the large
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number of cells needed to model an extent of free space surrounding the
scatterer or antenna could be greatly reduced with a corresponding savings in

computer resources by application of an ORBC.

To understand the need for an ORBC in scattering and radiation probiems,
consider that field components are found at the boundaries. These cannot be
updated using the usual FDTD equations of Chapter 2 because some of the
nearest-neighbor field components needed to evaluate the finite-difference curl
enclosing it are outside the problem space and not available. The usual basis
for ORBCs is to estimate the missing field components just outside the problem
space by some means. This typically involves assuming that a locally plane
wave is propagating out of the space, and estimating the fields for the outward
traveling plane wave on the boundary by looking at the fields just within the
boundary. Because in most situations the wave incident on the outer boundary
will not be exactly plane, nor will it be normally incident, the absorbing

boundary will not absorb the wave perfectly.

There are many different schemes for accomplishing this, and some are
discussed in Chapters 14 and 18. However, rather than provide the theoretical
basis of these ORBC conditions, a popular and easily applied ORBC is
presented. This is commonly called the Mur? absorbing boundary, or more
particularly first or second order Mur, depending on the order of the approxi-
mation used to estimate the field on the boundary. A first order condition
looks back one step in time and into the space one cell location; a second
order condition looks back two steps in time and inward two cell locations,
etc.

Consider that we are at the x = 0 limit of our FDTD computational space.

We decide that on this plane we will locate E, and E, field components.

Using these field components we can evaluate the finite difference curl
operations needed to update the H, magnetic field components at x =0, and
of course all nearest-neighbor field components will be available for updat-
ing the field components located at x = Ax/2 and beyond (at least to the
maximum x dimension included in the problem space, at which location we
must again apply an ORBC). However, we cannot update the E, and E, field
components at X = 0 with the usual FDTD equations because the magnetic
fields at x = -Ax/2 are not available.

We may update them, however, with the Mur expressions. Let us consider
the E, component located at x =0, y = jAy, and z = (k+1/2)Az. The first order
Mur estimate of this field component is

10 -

E}* (0,5k+1/2) =
cAt — Ax
cAt + Ax

E"(Ljk+1/2) +

(E'z‘”(l,j,k+1/2)—E:(O,j,k+1/2)) (3.8)

The second order estimate for E, at the boundary x = 0 is
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E(0,jk+1/2)=-E"(Ljk +1/2)
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j+ +1/
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+1/2))

WYY
l_l)\\\aLIll
2(Az) (cAt + Ax)
—2E7(0,j,k +1/2) + EX(0,j,k —1/2) +
- 2E2(Ljk+1/2)+EX(1,5,k -1/2))

-(E2(0,j,k +3/2)

E’(Ljk+3/2)

where we have extended the expressions given in Reference 1 to include
noncubical cells.
Considering the first order Mur approximation, we see that the current value

of E_ at x = D ig estimated from th. io11s and currant ualaas
of E, at x = 0 is estimated from the previous and current values at x = Ax and

the same y and z positions. The second order estimate uses previous values
from the preceding two-time steps, and values at the adjacent y and z positions.
The equations needed to determine other ficld components at other limiting
surfaces of the FDTD space are readily determined by modification of (3.8)
and (3.9).

These expressions are straightforward to apply, but there are some practical
considerations. First, we must be careful when determining the limits of our
FDTD space in terms of the ranges on the DO loop indices that determine
which field components in which Yee cells are on the problem space limits.
These indices will not be set properly if we merely set all of them to run
between the same limits. Instead we must consider the Yee cell geometry, and
at cach of the six surfaces that limit our FDTD space carefully determine the
values of the array subscripts (Yee cell coordinates) of the electric field
components on the surface and set the DO loop limits accordingly.

Another consideration is that because the second order ORBC requires field
values from adjacent Yee cells it cannot be used for determining electric field
values that are adjacent to the intersection of two of the terminating planes.
Even if second order Mur is being applied, first order must be used for field
components located adjacent to the edges of problem space.



46 The Finite Difference Time Domain Method for Electromagnetics

One other consideration is that of determining the distance between the
object and the outer boundary. The farther from the object the outer boundary
is located the better the absorption of the outward traveling waves. This is due
to these waves becoming more like plane waves as they travel farther from the
structure that radiates them. However, the number of cells that can be placed
between the object and the outer boundary is limited by computer memory. A
common criteria is a minimum of ten cells between the object and outer
boundary. For some situatiofis more than ten will be required, especially if high
accuracy is needed. Some examples are shown in Section 13.5.

Moving the outer boundary too close to the object may cause instabilities in
the Mur (and other) outer absorbing boundary implementations. This may be
more of a problem for antenna and other calculations, which are excited by a
source within the space rather than by a plane wave, as the outer boundary must

absorb total fields. Also, some fields that are required for an accurate solution

may be absorbed if the outer boundary is too close. For example, sphere
scattering includes a “creeping” wave that propagates around the sphere and
radiates energy. The radiation from this creeping wave can easily be seen in the
transient backscatter results (see Chapter 13). If the absorbing outer boundary
is too close to the sphere this wave will be disturbed and the scattered field
results will be incorrect.

3.8 RESOURCE REQUIREMENTS

When considering application of FDTD to a particular problem one of the
first things that must be considered is (given the computer resources avail-
abie) will the FDTD method be capable of providing a solution to the
problem. While we are primarily working in the time domain, such questions
can be considered by first determining how large the problem geometry is
when measured in terms of the shortest wavelength for which we desire
results. This is because the object size in wavelengths determines the number
of cells (a guideline for obtaining good accuracy is that the side of each cell
should be one tenth of a wavelength or less at the highest frequency of
interest), which in turn determines the amount of computer storage required.
The number of cells also provides an indication of the number of time steps
needed for the transient fields to dissipate or for the sinusoidal excitation to
reach steady state.

This section provides the basic relationships for estimating the computer
resources required for a particular probiem. it is assumed that based on the
smallest wavelength of interest, the cell size has already been determined.
From this and the problem geometry the total number of cells in the problem
space (here denoted as N) has also been determined. We also assume that the
material information is stored in 1 byte INTEGER*1) ID??? arrays, with both
dielectric and magnetic materials considered. Then, to estimate the computer
storage in bytes required, and assuming single-precision FORTRAN field
variables, we can use the relationship
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Storage = N X (6 Com,]‘Jo‘Illenls x4 Bytes
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Mg Bute )
6 D8 Byte
Cell ID

where we have neglected the relatively small number of auxiliary variables
needed to store temporary values, index DO loops, save results for later
processing or display, and similar functions, and we are also neglecting the
memory needed to store the executable instructions. This overhead is nearly
independent of the number of cells in the problem space, so that as the total
number of cells increases it will become a smaller fraction of the total memory
required

We can also estimate the computational cost in

floating point operations required using
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Operations = N x 6 components / cell 10 operations / component X T

where T is the total number of time steps. The actual number of calculations
for each component depends on the material type and existence of the incident
field at a particular time step. There are also logical statements which must be
executed to determine what type of material (free space, perfect conductor,
dielectric) is located in a particular location.

The number of time steps T is typically on the order of ten times the number
of cells on one side of the problem space. More precisely, for cubical cells it
takes /3 time steps to traverse a single cell when the time step is set by the

Courant stability condition,
X L .
At= NS Ax = cell side dimension
c

so an estimate for T is

T=10x+3 N = number cells on a side

of ifie probiem space

Combining the above we find that the total number of floating point operations
is approximately given by

Components %10 Operations
Cell Component

Operations =103 N*/* x 6
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From this we see that the total number of floating point operations required is
proportional to the number of cells in the FDTD space raised to the 4/3 power.

Now, let us consider how the number of floating point operations scales
with frequency. The size of the FDTD cell must be scaled proportional to
wavelength to maintain a certain number of cells per wavelength, so that the
number of cells in each linear dimension will scale in proportion to frequency.
This means the number of cells in the (3-D) problem space will be proportional
to frequency to the third power, and the number of floating point operations
required proportional to frequency raised to the fourth power. This fourth-
power scaling with frequency compares favorably to other methods, such as the
method of moments. Indications are that as problem sizes become larger in
wavelengths, the FDTD method will tend to require fewer operations than
approaches which require the solution of a matrix, especially if results over a
band of frequencies are required.

Consider a (100 cell)? problem space. For this number of cells approxi-
mately 30 Mbytes of memory would be required, with the actual amount being
somewhat greater due to storage of other variables and instructions. Problems
of this size can be run on machines ranging from supercomputers to 32-bit PCs.
As available memory is reduced, the maximum number of cells that can be
accomodated is correspondingly decreased. For example, with 16 Mbytes of
memory, the problem space size would be estimated from the above relation-
ship as (79 cells)’. In actual experience 16 Mbytes will accomodate approxi-
mately (72 cells)?, indicating a memory overhead for instructions and auxiliary
variables for this problem size of about 30% of the memory needed to store the
field components. Again, for larger problem spaces with more cells, this
overhead percentage would be reduced.

Next, we consider the computer time needed for a typical problem. These

estimates are only approximate, as the total number of time steps required\

depends on the geometry being considered. More time steps will be necessary
for resonant geometries; fewer for lossy geometries with highly damped re-
sponses.

For a (65 cell)® problem with 1024 time steps 10 be calculated, approxi-
mately 16.9 x 10° floating point operations are required, and about 8 Mbytes
of memory are required to store the field components and ID??7? arrays. Speeds
of available machines range from 1000 or more MFLOPS (Million FLoating
point Operations Per Second) for a supercomputer through 10 to 50 MFLOPS
(or more) for work stations to approximately 2 MFLOPS for a 32-bit PC. The
run (CPU) times are then estimated from the above discussion as 17 s, 28 min
(for a 10-MFLOPS work siation), and 141 min, respectively. In practice, with
a 20-cell radius dielectric sphere in this problem space and far zone fields
calculated, running times on a 10-MFLOPS work station and a 33-MHz 486-
based PC are 38 and 210 min. Obtaining results for problems of this size is
feasible on all these machines.

The above estimates of the number of required operations assume basic
FDTD calculations and neglect the slight overhead of applying absorbing
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boundaries, setting up the problem geometry, etc., since for large calculations
these will be an extremely small fraction of the total number of operations.
However, if the FDTD code being considered requires a significant x:umber of
additional computations, such as may occur when calculating far zone fields
(Chapter 7), especially for many far zone directions, or evaluating recursive
convolutions in large numbers of cells filled with dispersive materials (Chapter
8), the above estimates may be somewhat low and actual resource requirements
will depend on the particular application and FDTD computer code. In any
case, the above guidelines will provide a basis for estimating the resources
required for a particular FDTD calculation.
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Chapter 4
COUPLING EFFECTS
4.1 INTRODUCTION

While FDTD was introduced to the electromagnetics community by Yee in
1966, it was nearly 1 decade before it was used to any great extent for actual
applications. There were several reasons for this, including the lack of the
necessary computer hardware capabilities. What really got FDTD started was
an application for which it was uniquely well suited: determining the electro-
magnetic energy which would interact with and penetrate into an “almost”
closed conducting object, such as an aircraft, due to an incident pulse of
electromagnetic energy. This pulse may be due to natural phenomenon such as
lightning, or it may be due to a nuclear detonation. Because the problem dealt
with transient fields interacting with (to a good approximation) perfect conduc-
tors at relatively low frequencies (but not too low), it was ideally suited to
FDTD.

This problem was divided into two parts. The first dealt with determining
the exterior surface charges and currents which would be excited on an object
(again, perhaps an aircraft) due to the incident pulse. The second part dealt with
how electromagnetic pulsed energy might penetrate into a region that was
partially enclosed by conducting materials designed to shield it from the
incident energy. This problem was often idealized to a representative geom-
etry, since modeling actual electronic equipment, cable bundles, etc. was too
challenging for the computer power then available.

In Chapter 2 we developed the governing finite difference equations for
lossy material media. A simplified and specialized case was the treatment of
a perfect conductor. In this chapter we show how this capability can be used
to treat exterior response and interior shielding with pulse excitation. In addi-
tion some more recent results for shielding effectiveness at frequencies below
the cutoff frequency of the shield aperture are presented. These illustrate real-
world applications of FDTD that often require only modest resources, but
typically show relatively complex behavior.

Under exterior response we will consider FDTD calculations of aircraft
exterior charge and current response to an incident electromagnetic pulse
(EMP). This application was an early impetus to FDTD development. A
nonoperational F-111 aircraft was EMP tested in one of the EMP simulators in
the U.S., the horizontally polarized dipole (HPD) facility, to obtain system
responses that could in principle be extrapolated to true threat levels. We show
here how well FDTD was able to predict the measured simulated EMP re-
sponses for this aircraft test.

In the second broad area of this chapter, interior coupling, we are con-
cerned with shielding of an interior component, in particular a wire, from an
incident EMP. We divide this topic into two subsections based on whether
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the frequencies of interest are above or below the cutoff frequency of the
shield aperture. FDTD prediction of shielding involves extremely resonant
behavior that requires large expenditures of computer time for accurate
characterization. This offers yet another challenge for the FDTD method.
Before proceeding to detailed discussions of FDTD applications in these
areas we provide some background on the phenomenon of EMP in general and

FDTD attempts to predict and understand it.
4.2 ELECTROMAGNETIC PULSE

The EMP associated with a high-altitude nuclear burst can induce large
currents and charges on an aircraft in flight that, in turn, couple into the interior
of the aircraft where they can cause failures or temporary outages in mission-
critical subsystems, if these systems are noi efficiently hardened. Military
aircraft in many instances must be hardened in an electronic sense to the
nuclear weapons effect known as EMP.!

Once called radio flash and later labeled HEMP for high-altitude EMP, it
arises from Compton electrons produced by a nuclear detonation in the extreme
reaches of the upper atmosphere. These electrons, the direct result of gamma
rays colliding with air molecules, are preferentially directed toward the earth,
the result of the burst location and air density profile, and spiral about the
earth’s magnetic field. EMP is the result of collective radiation from these
downward spiraling electrons. An area nearly equal to the continental U.S. can
be covered with a single pulse. Field strengths on the order of 50 kV/m are
possible. The pulse may be approximated by a double exponential of the form
A, (e~ - e™) with a rise time on the order of 10 ns and wiih fail time somewhat
under 1 ps. There is strong spectral content up to a few megahertz and
appreciable content to around 100 MHz. N

A related “threat” is naturally occurring lightning. In the older literature rise
times were on the order of 2 ps and fall time might be around 50 ps. More
recent work with step leaders? indicates rise times can be as short as 50 ns or
less. Lightning is certainly very energetic with nominal peak currents of 10,000
A and occasionally going as high as 100,000 A and higher. Debate has
periodically arisen on which “threat” is more severe, EMP or lightning. With-
out fully characterizing electronic devices, their failure mechanisms, critical
interior coupling geometry considerations, and developing the tool (such as
FDTD) to model the interior coupling with fair exactitude, this question cannot
be definitely answered. Lighting does occasionally down airpianes and the
1.S. military does view EMP as a very serious danger.

In either case much of the early work on assessing potential problems
concentrated on external aircraft responses such as skin currents and charges.
These are externally generated responses, although just barely, in that normal
electric fields could be measured with surface mounted capacitance sensors
and may be related to surface charge, just as the magnetic fields linking half-
turn solenoidal sensors (also surface mounted) could be used to infer currents,
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often decomposed into axially and circumferentially flowing, on the aircraft. It

waag £ 1
was assumed that some transfer function would relate these

to interior responses and electronic device failure. Awaiting the success of a
much more ambitious interior coupling program the transfer function could
only be guessed at. The process of characterizing the transfer function may be
said, with some debate, 1o be ongoing. What was taken as a starting point in
this earlier work was that the larger the exterior response the more likely
electronic damage or upset would occur inside. Certainly much could be
learned and was learned in these early efforts in which FDTD played an
important role.

TiQr resnonses

TIQr responses

4.3 EXTERIOR PULSE RESPONSE
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FDTD was
external charge and current responses to a simulated EMP. The EMP simulator
was the HPD facility located at the Kirtland Air Force Base in Albuquerque,
NM. The key issues in this application were the simulator fields illuminating
the aircraft, the aircraft model, and the computational resources available for
the effort. These issues in slightly altered form are present in all modeling
efforts.

What may not always be obvious is the underlying physics. For example,
the exterior response of an aircraft is resonant but much more damped than the
resonant response of, for example, a thin dipole antenna. As a result a relatively
short time record will suffice for an exterior aircraft response prediction as
compared to the record required of a thin dipole antenna. If the antenna is
placed inside a caviiy as in the case of a wire inside a cavity pierced by an
aperture, even for a large aperture, the wire/antenna response is now much
more resonant than the bare antenna. Extremely long records in terms of
number of time steps required are then needed. Rather simple insights provided
by the antenna-like features and the distinction between exterior and interior
response have proved very useful in anticipating the length of the response and
therefore the computer resources required to predict the response using FDTD.

Many other aircraft exterior response studies have been performed by the
authors and other investigators. Of particular interest was an F-106 aircraft
outfitted by NASA for the assessment of lightning effects on aircraft. It
required modeling lightning attachment and detachment channels as wires
entering and exiting the aircraft at the nose and tail. The aircraft/lightning
model* was able 10 provide reasonabie exterior response predictions. interior
response predictions were also attempted with limited success. The problems
encountered arose from vastly underestimating the time duration and resources
needed to accurately characterize the interior responses.

4.3.1 MEASUREMENT FACILITY
The HDP facility is located in Albuquerque, NM. This is the site of numer-
ous EMP simulators including the vertically polarized dipole (VPD) facility,
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advanced research EMP simulator (ARES), and TRESTLE, the world’s largest
EMP simulator, reported to have used 2% of 1 year’s lumber production in the
U.S. in its construction. The HPD facility (Figure 4-1) is a half loop of wires
arrayed on a series of hoops 30 m tall at its center where there is a 1- or 2-MV
high voltage pulser, depending on the model employed. The current discharged
by the pulser into the antenna-like arms of the loop produces the nominally
horizontally polarized E fields desired of the simulator.

The fields radiated by the HPD simulator are quite complex. The electric
field is approximately horizontal in the test pad area below the pulser and along
the main or z axis of the facility where a test aircraft is typically placed. An
approximation of the simulator fields that assumes the efectric fieid to be
horizontal was derived from measurements and used in the FDTD model. A
free space magnetic field (E/H = 377 ) was associated with the electric field,
The ground was modeled as a conducting surface that produced a time varying
reflection coefficient, R = 1 + (0.75) e*2® ns. This heuristic field model
reproduced reasonably well the measured field data in the volume enclosing
the aircraft when placed either directly below the pulser or along the main axis
of the facility.

This model did not account for the field variations arising from pulser shot
to shot variation, which could be considerable. The pulser exhibited 10 to 90%
rise times that varied between 7 to 13 ns, with 9 ns being nominal. Variations
of 10% or more in the spectral content between 10 to 50 MHz were common.
Comparisons between measurements and predictions do not account for these

crrors. Above S0 MHz the variations were large enough that the experimental

data could not be relied upon.

4.3.2 FDTD MODEL OF THE AIRCRAFT

The aircraft used in the measurements was a nonoperational F-111, with
much of its internal components, including the engine, removed. lts exterior
surface was, however, intact. The FDTD model used 3-D, rectangular cells

wawmgmm» :
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FIGURE 4-2. F-111 FDTD model.

having dimensions of Ax = 1 m, Ay = 0.5 m, and Az = 1 m that were part of
a total cell space of 28 x 28 x 28 cells. This model is shown in Figure 4-2 along
with the outline of the actual aircraft. The nonsquare cell allowed increased
modeling detail in the y direction, where it was most needed. The problem
space provided either four (in the x and y direction) or nine cells (in the y
direction) from any extremity of the model, which is centered in the space, to

tha onter adoac of thae nraohlam snace whara tha antar radiatiae hoviadae
e Cuitr SGges OF i prod:8m Spact wallie in€ Ouilr raGiation oouniary

condition is imposed. This outer radiation boundary condition was a look back
scheme developed prior to Mur’s conditions, but was similar in nature.

The aircraft fuselage was defined by zero tangential total fields on the
exterior faces of the outermost cells, explicitly Elfn. . = -E::f‘gemial. No
specification was made on the interior fields as the surface boundary condition
completely decouples the exterior fields from the interior fields. The wings
were defined by zero total tangential electric at the interfaces of the appropriate
cells, and hence were of zero thickness. By extrapolating and interpolating the
fields on either side of the wing to the wing surface to find E e and Hyngental
the charges and currents on either side of the wing, which generally will be
different, were found for any location on the wing. The nose of the FDTD
mode! of the aircraft was truncaied because a dieleciric nose cone is used ai the
end of the actual aircraft. For an FDTD code limited to perfect conductors only,
such a dielectric nose cone was best modeled by free space.

The cells inside a box that just encloses the modeled aircraft were kept
constant while those outside were made progressively larger as they ap-
proached the outer boundary. A scale factor of 1.3 was used in the x and z
directions and 1.15 in the y direction. This scaling increased the distance of the
outer boundary from the aircraft to lessen reflection. Larger scale factors than
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FIGURE 4-3. Model of test aircraft showing sensor locations.

1.3 were observed to lead to numerical instabilities. Using A/4 equal to a cell
size as the upper limit of accurate modeling yields 75 MHz as the highest
frequency accurately modeled.

4.3.3 COMPARISON OF PREDICTIONS AND MEASUREMENTS

Let us proceed to compare the FDTD predictions with measurements. A set
of comparisons of the data predicted with the fieid and aircrafi models and
actual aircraft measurements® are presented here for the aircraft located 30 m
out along the z axis of the facility, with the fuselage center 2 m above the
ground plane. Other test locations were also employed, but the geometries, for
example, directly under the pulser, were less demanding when it comes to
comparison with the code. The aircraft fuselage is oriented parallel or perpen-
dicular to the HPD loop so that at early times the electric field is parallel to the
fuselage or the wings, respectively. Various sensor location about the aircraft
surface (Figure 4-3) were employed. The magnetic loop and capacitive gap
sensors’ derivative output of the charge and current response, namely,
Q, i 4> and JC , where the derivative currents J A and J care axial and circum-
ferential, respectively, were left unchanged. The predicted responses were
differentiated so that a direct comparison was possibie.

The comparisons,® a sample of which are shown here (Figures 4-4 to 4-11),
range in agreement from excellent to poor. It is good to excellent when a strong
response is involved and can be poor when a weak response is involved. This
characterization of responses rests on treating the aircraft fuselage as a thin
half-wavelength dipole when the E-field is parallel to the fuselage, and the
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wings to behave the same when E is parallel to the wings. Note that circum-
ferential currents are always weak responses and that sensor locations at or near
the null in the lowest resonance or half-wavelength responses are troublesome.
Based on record lengths and dynamic range of the instrumentation the data are
nnnnnnn A anly Avas o frannnnay sanon ~f § 6 &0 MLIT.
compared only over a frequency range of 5 to 50 MHz.

Even with all these limitations it is evident that this early version of FDTD
was an effective tool for predicting exterior aircraft response to EMP.

4.4 INTERIOR ELECTROMAGNETIC SHIELDING

In shielding, electromagnetic energy (at least over selected frequencies) is
excluded from a cavity by the cavity walls, which to keep the problem
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interesting are penetrated by at least one opening or aperture. Because of the
energy exciusion we speak of the cavity walls or shell as 2 shield. An
important aspect of cavities with apertures is the shielding provided. Char-
acterizing the shielding provided by a shell and aperture is the objective of
the FDTD modeling discussed here. The most important feature we will
observe is the highly resonant nature of the interior response of an interior
wire.

Let’s begin our discussion of shielding with a brief overview of the funda-
mental considerations. A measure of the shielding effectiveness of a conduct-
ing shell forming a cavity pierced by an aperture on the response of an interior
wire is the ratio in the frequency domain of the current induced on the wire
inside the shell normalized to the current induced on the wire without the shell.’
Alternately, the square of the frequency domain current integrated over fre-
quency can be used.® This is proportional o the energy coupled to the wire. For
each wire resonance the integral can be approximated by A,X(@,)Af, where
A () is the resonance peak amplitude and Af the resonance width. Equiva-
lently via Parsival’s theorem we could use the time domain current squared
integrated over time.

One can distinguish between two shielding regimes, frequencies above
aperture cutoff, wherein aperture cutoff is the frequency at which the wave-
length equals the aperture circumference, and frequencies below aperture
cutoff. Above cutoff the antenna-like resonances have Qs somewhat greater
than the corresponding unshielded wire, while below cutoff the Qs are much
greater.

We first treat the higher frequency regime at which FDTD works with
relative ease and has been vaiidated experimentally. The first definition for
characterizing shielding effectiveness is employed here. We then treat the far
more difficult low frequency regime, where the behavior of the interior wire is
extremely resonant and requires exceedingly long FDTD runs for accurate
characterization. The second definition of shielding effectiveness is employed
here as the signatures of the resonances (Qs) are so different.

Shielding effects in either regime are found to be far from intuitive and
much of the discussion shows how FDTD modeling has modified our under-
standing of shielding. We will see that very large resources must be expended
to accurately characterize shielding effects.

4.4.1 FREQUENCIES ABOVE APERTURE CUTOFF

Let us first consider shielding at frequencies above aperture cuioff. The
FDTD modeling presented here on this topic and its experimental validation’
was performed by one of the authors (Kunz) while at the Lawrence Livermore
National Laboratories (LLNL). A generic coupling test object, called the
preliminary Livermore universal test object (PLUTO), had its transient interior
coupling response measured at the Transient Range Facility. FDTD, in a
version substantially duplicated in the listing in Appendix B, was used for the
computational modeling.
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FIGURE 4-12. Preliminary Livermore universal test object (PLUTO).

4.4.1.1Cavity Shielding Model Description

Before further considering the FDTD calculations let us describe the com-
putational PLUTO model.

PLUTO (Figure 4-12) was a nominally 1-m tall (99.1 cm to be precise)
aluminum sheet-metal cylinder of 0.2 m diameter. It was mounted on the floor
of the Livermore Transient Range Facility so that its electrical image was
formed. Various size apertures on a “face plate” were mounted on the surface
of the cylinder next to the floor. A number of aperture sizes (including the
gmund_ plgne i_mage) was available; the size emploved for the nnmpmagignal

the s1ze empioyed for the Co

model was 7.5 x 7.5 cm. This was considered a stressing case because of the
relatively large aperture size linking exterior and interior and because of the
aperture “fatness”. Only fields incident broadside on the aperture with E
parallel to the interior wire were treated computationally. Two interior cavity
heights were physically employed and computationally modeled, namely 22.5
and 30 cm. These two heights allowed a 22.5-cm wire to span the cavity so that
a wire shorted at both ends was present, or to only partially span the cavity so
that a wire shorted at one end and open at the other was present. The wires
could be situated at any one of five locations (Figure 4-13). All five locations
were computationally modeled for the 22.5 cm cavity and the central wire
locz?[ion at Test Point (TP) 2 was computationally modeled for the 30-cm
cavity.

The wires were computationally modeled using the relationship

ES® = _ Einc

along the wire run. This is a “thick™ full cell wire computational model.
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FIGURE 4-14. Finite-difference model of PLUTO.

Methods for “thinning” the wire are discussed in Chapter 10, but wgre r}(‘)t
en;pl(;yed here. The vcylindrical shell (Figure 4-14) was computauonz.u;y
modeled out of plates in which the two co.mpon.ents of E of a cell fa;c satllls y
the perfectly conducting boundary condition given above for the wire wd ;r:
only one component is set. The PLUTO c?mpum.nonal model was embe‘d e
in a problem space 32 x 32 x 88 cells with cubic cells 1.25 cm to a side.
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4.4.1.2 Transient Range Test Facility

The PLUTO experimental object must in turn be illuminated by an incident

iNC LU experim ental ooject mustin ea b

pulsed electromagnetic field (EMF). This field was provided experimentally
by the Transient Range Facility at Lawrence Livermore Laboratory. The
Transient Range Facility was undergoing a transition during the time the
measurements were taken. The existing monocone was being replaced by an
upgraded monocone with a machined “nose piece” at the vertex and with
rigidly supported conical side panels. This newer monocone called the EMP
engineering research omnidirectional radiator (EMPEROR) allowed operation
up to at least 18 GHz, but was not yet available. A long wire was substituted
in its place. The advantage was an extremely well-behaved field for short
times. The disadvantage was an approximately 12 dB lower field strength. An
indoor facility (only later surrounded by an electromagnetic absorber), it

these conditions had to be limited to a 20-ns duration. As seen later, this data
truncation obscured some very important response features.

The measured field was approximated in the FDTD calculations as a point-
source radiator with a damped sinusoidal temporal behavior

E =|E| ¢ and |E| = 770 V/m (F|/ 2.4m)
-sin2(0.625 x 109)t]e_(0’625"109)‘

where qA) is the elevation angle. This time-domain computational [El field
model is hased on a very simple physical model of the wire as a slender bicone
and is approximately twice as large as the experimental time domain field. It
is also correspondingly larger in the frequency domain. The transfer function
formed between these two sources, the measured and FDTD model, was
applied to all the predicted data, allowing a direct comparison of PLUTO
measurements and predictions. The upper frequency limit was set by the pulser
used in these measurements at approximately 3 GHz. Later measurements with
EMPEROR in place used an electromagnetic absorbing shroud and a swept
continuous wave (CW) source. They provided frequency domain measure-
ments to 18 GHz in amplitude and phase. These measurements could be
inverse transformed to yield time domain data.?

In either configuration, thin wire or EMPEROR, it was not feasible to

directly measure currents on an interior wire. Commercially available current
directly measure currents on an interior wire. Commercially available current

probes suitable for this type of wire measurement, such as the Tektronix CT 1
respond only up to 1 GHz. To maximize frequency response an equivalent
current technique® was employed. Antenna modeling concepts were applied to
a coaxial cable entering the base of PLUTO with only its center conductor
extending beyond the floor. Using time domain reflectometry (TDR) input
impedance measurements and the measured coaxial-cable response, the wire
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FIGURE 4-16. Overlay of the measured short-circuit current of a 22.5-cm wire at TP 2 (solid)

vs. the compensated computed results (dashed).

responses for a wire arbitrarily terminated at its base within PLUTO could be
inferred. For the comparisons made here the wire was assumed to be shorted

to the floor.

4.4.1.3 Data Evaluation

A 100-ns prediction (Figure 4-15) was made for the 22.5 cm cavity, with the
wire at the center of the cylinder at TP 2; the wire was shorted at both ends.
The run was 4096 time steps long and took 84 h on a VAX 11 /780. The time-
domain predicted response was truncated and overlayed with the measured
data (Figure 4-16). FFTs (Figure 4-17) of these 20-ns long data records were
compared and the agreement was good. We noted at the time that the 100 ns
record, with what appears to be ~64 cycles at the lowest resonance, showed
little decay. Not surprisingly, then, an overlay of the FFTs of the 100 ns
predicted data and 20 ns truncated predicated data (Figure 4-18) show signifi-
cant differences with the 100 ns record, yielding much sharper peaks with
higher amplitudes. What we learned later and what is discussed in the section
below on aperture cutoff is that the lowest resonance had a Q in the thousands.
This requires a time record more like 10,000 ns long or the better part of
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a run time exceeding 8000 h on a VAX 11/780. ployedhere and

The sh: ak icti i i
of mOdes:arp peaks of the 100 ns prediction can be associated with two types

L Wire. or antenna-like modes corresponding to the TEM modes of the
coaxial geometry with frequency given by

f=(2n+l)ﬁ

where Z .is the wire height, ¢ is the speed of light, D is the diameter, and
(2n+1) gives odd-order harmonics in keeping with the symmetry.
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2. Cavity modes corresponding to the transverse magnetic (TM) modes of

Cavity moges Lo

the cavity picked up by the wire acting as a cavity probe and given by"

2.2
f =L _)(_“‘!’_2_+E_nT.
mp - 2m| R D

where R is the cavity radius and X, is the nth root of the equation J(x)
=0.

As a detailed examination of the transform o{ ﬁlﬁe‘IOO‘-ns rec:)r(i SEI.OV_V_S

i - e modes account for virtually ail of the ODSErvea Structurc.
(F‘gil:;i:arl?c)s‘ut::sheld for the 30-cm cavity with the 22.5-cm wir.e open at the
end and shorted at the bottom. Here, a 200-ns record. was predicted and the
spectral peaks (Figure 4-20) were even sharper. A smgle.mode a¥ 2.5 G}-[zl
was examined by filtering out the rest of the sngne?l using rf)unne.sxgna
processing methods. By examining the rate of decfly in tl}ls residual signal a
Q of approximately 800 was found. We still believe this value to be true,

however, had we characterized the peak at 300 MHz in the same way, using
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FIGURE 4-20. Fourier transform of a 22.5-cm high wire inside a 30-cm high cavity at TP 2200-
ns record.

the 200-ns data record, we would have been very surprised to find an even
higher Q at seeming variance with the transform of Figure 4-20. The 200-ns
data record provides a Af = 1/T = 5 MHz in the transform so that at 300 MHz,
aQ < 100 is all that can be resolved. The higher Q comes from fitting the data
in the time domain, an approach we rely on heavily in the next section.

4.4.1.4 Validation of FDTD Resuits at Frequencies Above Aperture
Cutoff
Time and frequency domain comparisons have already been shown at TP 2
for a 22.5-cm wire shorted at both ends. Similar comparisons for TP 1, 3, 4, and
5 for the same geometry show generally similar good agreement. The code

agrees to within 0 to —6 dB in power amplitude and to within +6 % in matching
the frequency of the resonant peaks. We concluded that FDTD is capable of
making reasonably accurate interior coupling predictions for modestly com-
plex metallic objects. Even at this early stage of development we noted that
frequency domain codes should be used with extreme care if they are to be used
at all. We noted that Qs on the order of several hundred imply extremely close
frequency spacing requirements for an experiment if the response is to be
accurately characterized. Now we know Qs in the thousands are possible with
the type of geometry examined here and that even FDTD must be run a long
time to fully capture the data.

4.4.1.5 Shielding Effectiveness Characterization Above Aperture Cutoff

When the wire current responses for a shieided and unshieided wire are
ratioed in the frequency domain after being smoothed over a modest frequency
band using the auto spectral density algorithm,’ the ratios are near unity above
aperture cutoff (Figure 4-21). This had led to the conclusion that the shield
provides little or no shielding above aperture cutoff. Below aperture cutoff the
data generated in this effort for wires shorted at their base are too short to
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FIGURE 4-21. Shielding effectiveness function of a 22.5-cm wire located at TP 2 in a 30-cm
high cavity.

adequately characterize the response below aperture cutoff where the highly
resonant shielded response requires very long time records to resolve it.

4.4.2 FREQUENCIES BELOW APERTURE CUTOFF

A perfectly conducting shell about a cavity with a small aperture and an
internal wire with varying wire terminations were used in the previous section
to model electromagnetic shielding. Experiments show little shielding above
aperture cutoff, where the ratio of the wire response with and without the shell
determine the shielding. These experiments did not have sufficient resolution
to adequately resolve the shielding behavior below aperture cutoff where the
wire resonances have extremely narrow bandwidth when the wire is shorted at
its base.

FDTD is used here with up to 1 million time steps to accurately characterize
wire resonances below aperture cutoff. The results obtained were quite surpris-
ing and are briefly summarized here. Only a modest shielding effect is ob-
served below cutoff for perfectly conducting shells with varying size apertures.
The amplitudes of the wire resonances rise rapidly as 1/0? as frequency
decreases. The Q of the wire resonances also increases rapidly with decreasing
frequency. These effects are nearly offsetting leaving the energy in each wire
resonance only slightly reduced from the unshielded wire response as the
aperture size varies. This reduction only increases modestly with smaller
aperture size.

4.2.2.1 FDTD Geometry

In place of the PLUTO geometry used in the LLNL measurements and code
predictions described in the previous section of this chapter a coarser rectan-
gular cavity modeled by 28 x 8 x 8 FDTD cells (Figure 4-22) was used. With
each cell dimension 2.5 cm, this object has roughly the same dimension as the
PLUTO model. The cells are twice as large as had been used for the previous
EDTD model of PLUTO. This cell size and interior cavity dimension limits the
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rectangular cavity model to only the first four resonances of an internal wire.
This is the region in frequency from about the aperture cutoff frequency on
down for the aperture sizes we chose, namely 8 x4, 6 x 3, and 4 X 2 cells. There
are enough resonances at and below aperture cutoff to characterize the low
frequency amplitude envelope behavior and the resonant width at least ap-
proximately. A model with more cells, on the order of the 32 x 32 x 88 cells
used to model PLUTO at LLNL or more, would have allowed a more detailed
study, but could not be run on the available resources, a VAX 8550. Run times
on this machine for a million time steps were approximately 400 h of CPU
time.

The wire was centered in the cavity, shorted to the base of the cavity and
run nearly to the top of the cavity, stopping four cells short of the top, leaving
the wire in an “open” termination condition at the top and “shorted” at the
bottom. The antenna-like resonances appeared at approximately 125 , 375 ,
625, and 875 MHz, as expected from the 60-cm height of the wire and its
terminations. The wire length was roughly two to three times that of PLUTO,
depending on PLUTO configuration, accounting for the lower resonant fre-
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quencies despite the roughly equivalent cross sections. Aperture sizes (20 x 10
cm, 15x 7.5 cm, and 10 X5 cm) for the rectangular cavity were similar in size
to the larger apertures used with PLUTO. The rectangular cavity model was
configured to give responses similar to what would have been seen with
PLUTO had the measurements been much more finely spaced in frequency and
the code modeling PLUTO run for a few million time steps.

Our model first used a perfectly conducting metal and then aluminum. We
discovered that the inclusion of the conductivity of aluminum had only a
negligible effect even for the smallest aperture. To more clearly see the effects
of conductivity we increased the ohmic losses of the shield until they equaled
the radiation losses for the 4 x 2 cell aperture and the lowest resonance. This
occurred when o was approximately 10 as large as ¢ for aluminum. As this
was such a large and unrealistic change in G the remaining discussion only

treats the perfect conductor results.

4.4.2.2 Incident Field Description

Because this was a shielding study, when the shielded and unshielded
responses are ratioed the response dependence on field amplitude is removed.
For either response alone the response can be normalized for the driving field.

Our approach was to use 2 Gaussian waveform similar to that described
in Chapter 3, which decays to approximately 0.00001 of its peak amplitude
before being truncated. Truncation effects are therefore on the order of 120
dB down from peak response amplitudes. Further o is selected so that the
amplitude of the spectral content of the Gaussian waveform or pulse is down
by a nearly equal factor at the Nyquist frequency. Any aliased signal is then
insignificant.

4.4.2.3 Response Predictions

Current response at the base of the wire was calculated for the three aperture
configurations. The response was characterized in the frequency domain after
Fourier transforming the time domain responses as the resonance amplitude
A,(w), resonance width Af, and Q,, and resonance energy U, (w) at each of the
four resolvable resonances (the highest frequency resonance displayed here
corresponds to approximately 16 FDTD cells to a wavelength, a reasonably
conservative upper limit in frequency for interior coupling). The response was
characterized in the time domain as an extrapolated peak amplitude A, (t =0),
decay rate @, and energy U,". These values were found from filtered (using
a rectangular frequency domain window) time domain responses that iet only
one resonance through at a time.

Our attention was first focused on the 8 X 4 cell aperture which has the
fastest decay rate for all the resonances, since as the largest aperture it has the
greatest radiation transmissitivity through the aperture. Initially we made runs
of 64K, 128K, 256K, 512K, and finally 1 meg time steps. This progression
developed as we were forced into longer time records to fully capture the decay
of the lowest frequency resonance (Figure 4-23).
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FIGURE 4-24. Effect on transform of longer records for 8 x 4 cell aperture, 1st harmonic

' Transforms of thlesc time domain records yielded a lowest frequency reso-
nance whose amplitude climbed dramatically at first as the record length
increased and finally converged to a stable amplitude, but at a much higher

level than expected and with a much higher Q, or equivalently a much narrower

resonance width (Fioure 4-24). This convereence

dth (Figure 4-24), This convergence was hfasteratthe h
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Nearly identical values of U (®) and U,® were found using the relations
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FIGURE 4-25. Effect on transform of longer records for 8 x 4 cell aperture, 3rd harmonic.

When we ran the smaller apertures we found that the lowest frequency
resonance had not decayed much after 1 million time steps. Nevertheless we
could get energies U, (from filtered A (f) using the above relations) that we
were now confident corresponded to the U(w) we would have obtained had we
extended the runs to even more time steps. Figures 4-23 to 4-25 show for each
aperture size the envelopes of the first four resonances from which A (t = 0)
and o, were derived. From these data the energy in each resonance for each
aperture size was tabulated (Table 4-1).

We cross checked our results where possible in the time and frequency
domain to ensure that the surprising trends seen in Table 4-1 are indeed correct,
namely that the energy in the resonances increased with decreasing frequency
below aperture cutoff. The earlier rolloff observed was indeed an ariifaci. In
fact, the energies in the resonances below aperture cutoff for all three aperture

sizes are only modestly reduced as compared to the energy in the correspond-
ing unshielded wire. This observation leads us to state that for a perfectly
conducting shell with even a small aperture only modest shielding is afforded
from an energetic viewpoint.

What is happening is that the resonances below aperture cutoff become
progressively narrower in bandwidth while their amplitudes, previously thought
to diminish, grow rapidly. A rough fit to this behavior is an amplitude that
behaves as 1/w? and a Af that goes as @ so that energy behaves as A(w) 2Af
o (1)/e?, the same as for the unshielded wire.

The Af proportional to @? can be related to the transmissitivity through an
aperture'® below aperture cutoff which behaves roughly as @?. It is the 1/w’
behavior of A () below aperture cutoff, seen in our 1 meg time step runs
(Figure 4-26), that was not expected and that results in roughly equal energies
in shielded and unshielded resonances when ohmic losses are not present.

It is important to note that for real systems such as aircraft a much greater
conducting surface area is present within the cavity in the form of many wires
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TABLE 4-1
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FIGURE 4-26. FFT magnitude response for 8 x 4 aperature.

as well as interior “fill”. Clearly more realistic interior geometries and repre-

sentative conductivities need to be examined using the insight obta

ned here to
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more fully characterize shielding effectiveness.
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WAVEGUIDE APERTURE COUPLING
(Article by P. Alinikula and K. S. Kunz)

5.1 INTRODUCTION

Waveguide coupling through an aperture is a fundamental electromagnetic
problem. It has been approximated reasonably well with Bethe small hole
theory,! and with some more recent modifications of it.> However, these
analytic solutions do not apply to arbitrary shaped complex waveguide cou-
pling structures. Instead, numerical methods must be used.

FDTD is an appropriate technigque for time-domain analysis of passive
microwave and millimeter wave structures. The strength of FDTD lies in 11s
capability to model any volumetric structure with what are typically rectangu-
lar cells. No requirements for symmetry or smooth surfaces are needed. Better
modeling is, of course, achieved by using more cells. Additionally. the FDTD
technique, as shown in Chapters 2 and 7, can handle complex materials.
Examples are lossy and anisotropic dielectrics as well as ferromagnetic mate-
rials. Some modeling of nonlinear materials has also been performed, with
results presented in Chapter 11.

Recently, FDTD has been used in modeling microstrip structures,”* and in
predicting aperture coupling for a shielded wire.® These results suggest that
FDTD can be successfully applied to waveguide coupling problems. To show
this we will model coupled waveguides using FDTD and demonstrate both
propagation and coupling capabilities. The forward and backward couplings are
predicted for two geometries: a single circular aperture and a dual circular
aperture. The single aperture coupler simulations are performed using different
mesh dimensions and different simulation durations to observe the sensitivity of
the model and by that means determine a suitable setup for FDTD waveguide
simulations. The dual aperture geometry, however, is selected to be the same as
in Reference 2 in order to be able to compare the calculated results with
measurements.

5.2 APPROACH

In this section the representation of the waveguide geometry with FDTD
cells and the method used to launch a waveguide mode in an FDTD waveguide
cajculation are both discussed.

The problem geometry, shown in Figure 5-1 consists of four sides that are
defined to be perfectly conducting, i.e., the tangential electric field components
on these planes are forced to be zero. The remaining two sides, the ends of the
waveguides, are terminated using Mur’s first order approximate absorption
condition® (discussed in Chapter 4) to absorb the incident waveguide mode
fields, thus approximating matched waveguide terminations. This condition
produces some reflection for waves that are not normal to the boundary. In a
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FIGURE 5-1a. Coupled waveguides, single aperture (16-cell diameter hole shown).

waveguide problem, however, the wave is more or less normal and the first
order Mur condition is shown to be sufficient at least at frequencies above
cutoff.

The metal plate between the two waveguides is defined to be infinitely thin,
but effectively it has an approximate thickness of half of the cell. Circular
apertures are approximated with square cells. Several different cell diameters,
8, 12, 13, and 16, were used. Naturally, the actual shape is modeled more
accurately when more cells are used. The distance of the aperture from the
source launcher was selected so that the whole pulse can fit inside the guide
before the aperture is encountered. The test locations of the electric field
components in the backward and forward propagation directions were selected
to be one fourth of the aperture diameter away from the edges of the aperture.
Transversely, the test locations are in the middle of the upper waveguide. The
coupling coefficient was calculated as the ratio of electric field at the test
location inside the upper waveguide and the electric field inside an undisturbed
single waveguide.

Two different aperture geometries that were analyzed are shown in Figure
5-1. The first consists of a single centered coupling aperture with circular shape
and relatively large size. The diameter of the aperture is 0.375a, where a is the
broad side dimension of the waveguide. All the waveguides have a 2:1 ratio
between the sides. Three different mesh dimensions were used: 22 x 16 x 55,
32 x 16 x 80, and 43 x 16 x 108 in %, ¥, and z and directions, respectively.
The corresponding diameters of the apertures were 8, 12, and 16 cells. The
second structure has two parallel circular coupling apertures that are slightly
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FIGURE 5-1b. Coupled waveguides. double aperture coupling (16-cell diameter holes shown).

smaller in size. Mesh dimensions are 42 x 26 x 108 in X, y, and z directions.
The diameter of the apertures is 13 cells. This geometry was constructed to be
identical to that in Reference 2 in order to compare the results.

The incident waveguide mode is introduced into the waveguide using an
electric wall behind the source location so that the mode propagates in only one
direction. A transverse electric field source is allowed to appear spatially only

planc at one end of the lower waveguide. The amplitude of the
field has a sinusoidal distribution across the plate resulting in a wave that
approximates the TE,, mode. Temporally the incident field appears in the
shape of a truncated Gaussian envelope about a sinusoidally varying signal.
The sinusoidal variation is used to minimize the DC power and shifts the
spectral content of the pulse upward in frequency. However, a truncated pulse
has energy in a band of frequencies around the carrier frequency and therefore
some energy is forced inside the waveguide at frequencies below cutoff. This
energy is kept to a minimum by using a relatively long Gaussian envelope.

5.3 RESULTS

Si.ngie aperture coupier simuiations showed that after 8192 time steps the
remaining energy in propagating waves was so small that time truncation had
a negligible effect for the fast Fourier transformed (FFT) response. The for-
ward and backward coupling coefficients for 32 x 16 x 80-cell geometry with
12-cell hole diameter are shown in figures 5.2a and b.

) The sensitivity of the model to mesh dimensions was examined by compar-
ing responses of the single aperture geometry with three different mesh dimen-
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FIGURE 5-2b. Backward coupling, 32 x 16 x 80 cells, hole 10 cells.
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FIGURE 5-3b. Backward coupling, 8-, 12-, 16-cell holes comparison

sions. The forward and backward coupling coefficient comparisons at a nar-
rower frequency band are shown in Figures 5-3a and b. The results show
significant difference between the 22 x 16 x 55 and 32 X 16 x 80-cell
geometries, whereas the responses for 43 x 16 x 108 and 32 x 16 x 80-cell
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FIGURE 5-4. Two-hole coupler: FDTD results and measurements.

geometries are very close. The results indicate that 32 cells is sufficient for
modeling the broad side of the waveguide and 12 cells for the aperture
diameter, respectively.

The forward and backward coupling coefficients for a coupler with two
apertures is shown in Figure 5-4. The experimental forward coupling results
from Reference 2 for the same structure are also shown. The forward coupling
coefficient is a very close match to the experiment. Except for the band edges,
the simulation results fall inside the measurement accuracy range. Moreover,
in Levy,? it was observed that the directivity (forward/backward coupling) was
larger than 3 dB. Simulations support this with a minimum of approximately

2 dB directivity.
5.4 CONCLUSION

Simple waveguide coupling problems can be analyzed using FDTD. With
a well modeled geometry an accuracy inside the measurement error range can
be achieved. Although these simple problems can be approximated reasonably
well with analytical expressions, the results show the potential of FDTD 1o
solve more complicated waveguide problems because combinations of dielec-
tric and metal screws and slabs as well as waveguide junctions can be analyzed

in the same manner and with the same resources.
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Chapter 6
LOSSY DIELECTRIC SCATTERING
6.1 INTRODUCTION

In Chapters 4 and 5 we showed results obtained using perfect conductor
implementations of scattered field FDTD and compared them to measure-
ments. In this chapter results obtained using scattered field FDTD extended to
lossy dielectrics will be shown. Before presenting these results we restate the
finite difference equations for a material media developed in Chapter 2. For the
results presented in this chapter these equations do not incorporate any fre-
quency dependence in the constitutive parameters, €. 1. and 6. as discussed in
Chapter 8. The materials considered are frequency independent and linear. This
formulation can nonetheless treat, at least approximately, most materials com-
monly encountered in electromagnetic problems.

In order to demonstrate the capabilities of the scattered field formulation
applied to lossy dielectrics we treat two lossy dielectric code applications: Mie
sphere scattering and electromagnetic (EM) penetration into the human body.
The first application demonstrates the validity of the approach. The
computationally generated dielectric sphere results' overlay the analytic and
accepted Mie series response predictions very accurately. The second applica-
tion® indicates the geometric and material level of complexity that can be
successfully modeled using this approach, even with limited computer re-
sources.

A review of the lossy dielectric equations is followed by a physical inter-
pretation of the new terms arising from a lossy dielectric material scatterer in
place of a perfect conductor. The applications are given next.

6.2 INTERPRETATION OF THE SCATTERED
FIELD METHOD

In this section we discuss the physical interpretation of the scattered field
approach to FDTD calculations. The equations have already been presented in
Chapter 2 and are repeated here for convenience:

aHscat _(p - “{)) aHinc I

ax u rH u (V g Em[)
0 e S e[ 10
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For simplicity we have removed the magnetic conductivity o°, as we are
interested only in lossy dielectrics in this chapter. In differenced form, as

PSSR,

shown in Chapter 2, these become (using E, and H, components as exam pies)

E(L1LK)" = E;(I,J,K)"’][——E—j - (—&]E;(I,J, K)"

€+ CAt €+ CAt

((e £O)At] (LK)

€4 CAt

Hz*(L1,K)" % - HZ (1,1 - 1,K)" ™
* 6.1)
Ay €+ CAt

HyS(I,J,K)"“?—HyS(I.J.K—I)"'%( At }
\E+ /

Hy*(LL.K)™# = Hy*(L,K - 1)

—[“—;“_0 AtJHy‘(I.J, K)™t

ES(IJK )" —Ey(I-1LK)" (At
Ax u 6.2)

. ES(LIK)" -EN(LILK-1)" [_A_l)

Az ey

While these equations may provide little initial insight, they can be inter-
preted on the basis of incident, scattered, and total field. As defined in Chapter
2, the incident field is the field which exists in the absence of the scatterer, the
total field is the field in the presence of the scatterer, and the scattered field is
the difference between these two such that the scattered field added to the
incident field gives the total field.

Let us first consider a perfect conductor. Within the perfect conductor the
scattered electric field is equal to the negative of the incident electric field such
that the total electric field is zero. Outside the perfect conductor the scattered
electric field excited at the surface of the perfect conductor propagates away
from the surface (in free SpdCB) and when added to the incident field produces

ihe total field, including all scattering and shadowing effects.

For lossy dielectric, scattered fields are created throughout the scatterer.
These scattered fields propagate through the lossy dielectric region so that
scattered fields excited within the interior region, not just those on the surface,
can affect the total field outside it. For this reason we refer to the difference
equations that apply to the lossy dielectric as embodying volumetric boundary
conditions, so that terms such as
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(H_—%A:)Hy‘(l,J,K)“*%
1
give rise to scattered fields as does the term

A
(i'—)E; (LLK)"
€ + GAt :

The first two terms are symmetric if we reintroduce magnetic conductivity
G so that the second term becomes

[MJH}"(LLK)M

h+0*At

We choose not to employ 6" in this chapter, and its inclusion is not necessary
unless lossy magnetic materials are being considered.

If either € = g, or {4 = Y, the terms disappear, an expected result is that the
material is no longer dielectric or magnetic. The terms also disappear if the
incident field does not vary in time so that F‘ = H' =0, If in addition ¢ =0,
we have a lossless dlelectrlc and the equanons are nearly those of free space
except that € and p appear in place of €, and H, in the curl portions of the
equations for ES and H used as an example here.

The term in ES whlch depends on ¢ involves E,\, not E , and thus does
not disappear as do the terms for the other constitutive parameters for a time
invariant field. Stated another way, € and 1 become more important as the time
variation becomes more rapid. Taking a Fourier component of E,' with fre-
quency ® we see that we are simply observing the well-understood behavior
of a conductive lossy dielectric (magnetic) material; when o/me(u) << 1, the
material is more dielectric (magnetic) than conductive.

A somewhat different insight is obtained by letting either € or u go to

hanginag & _\ oo tha a on fare S o o
hoosing € — = the equation for E° becomes
X

O

ES(LI,K)" = ES(LJ,K)"™' —EL(1,],K)" At (6.3)

or ¥ = —E! which implies E'**! = 0. Therefore, for € — e no total field will
be found inside the lossy dielectric. For a high, but not infinite €, the total field
only very slowly penetrates the body, moving with the characteristic velocity
of the material.
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6.3 NEAR ZONE SPHERE SCATTERING

To illustrate the accuracy and capabilities of the scattered fietd FDTD
formulation for lossy dielectrics we determine the near fields scattered b)f a
dielectric sphere and compare them to the exact Mie solution. To accomphs.h
this an FDTD approximation to a dielectric sphere was constructed of cubic
cells. The sphere (Figure 6-1) was 16 cells in diameter. Two different values
of € were employed, € = 2€, and € = 9¢,. For a sphere of e =(n/2)2 €= ?‘5 %
electromagnetic signals can propagate around and through the sphere in the
same interval. If € < 2.5 €, propagation through the diameter is faster. The
values of ¢ selected yield one case in each region. The cell size was selected

so that the sphere diameter d = 2a was unity.

6.3.1 INCIDENT FIELD o
The incident field was a uniform plane wave of the torm

E' =2 E (f(t - (z+2))k)
E, =592x10*
f0=(1-e>" v

U(t) = unit step function

so that f(t) behaves as a step function with a “smoothed” leading edge rising
in approximately 10 ns. Note that the waveform first contacts the §ph§re at
t =0, z = —a for the coordinate system and sphere geometry shown in Figire
6.1

O-1.

6.3.2 SPECIAL NOTES

The results presented here were obtained with an earlier version of thg lossy
dielectric FDTD code' which was slightly different from the form derived in
Chapter 2. It used an exponential differencing scheme (shown below) for two
of the field components and included the magnetic conductivity 6* that is not
needed for lossy dielectric materials.

Hi(I,J,K)"” =H(LJ, K)n o OrAU (1 _ e’MA'N)

4)

_(’Hi (1, J,K)“”%) _ (ﬂigﬁ H;(LJ, K)""(’l
ES(L]+1,K)" 09 B3 (11, K)" )
ox(Yo(T+1) - Yo ()
Y s A+(5) (6-4)
CES(LLK+D)™OP —E (LK)
6% (Zo(K +1)~Zo(K))
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_EF) i g gk 4 Hel ) 2 )
c o(Y(N)-Y(J-1))
s 0y n 6.5)
HE (13,K)" —H3(L1,K-1) (
o(Z(K)- Z(K - 1))

This scheme reduces to a form nearly the same as derived in Chapter 2 when
GAtfe << | so that e 9% = | — gAt/e. Ostensibly, this approach was taken to
handle large values of 6. However, the code becomes unstable in this form for
GAt/e > 1, while the nearly identical formulation of Chapter 2 remains stable
for all values of G, a cautionary tale on the importance of time indices.

Of only minor note is the use of an earlier version of the absorbing outer
radiation boundary condition than first order Mur. The code was otherwise
functionaily identicai to the dielectric treatment listed at the end of the chapter.

6.3.3 PREDICTIONS

The analytic results used for comparison' were found by inverse Fourier
transforming the sinusoidally excited scattered field response H(w) given by
Stratton® and weighted by the Fourier transform of the incident field F(w).
Thus, the analytic time domain scattered-field response r(t) is obtained from
the frequency domain response using

f(0)= FoHo)e®do )

_
=N
(=)

2

Figures 6-2a through h compare the FDTD and Rayleigh-Mie analytic
solutions in the time domain for € = 9¢, for the tangential electric and magnetic
fields at the four points on the sphere surface in Figure 6-1. Agreement is
excellent, especially considering that relatively few cells were used in the
computations. Figures 6-3a through h are for € = 2¢,. Except for some high
frequency noise, agreement, again, is excellent. This noise! can be removed by
appropriate filtering or alternatively and somewhat preferably by using a
spectrally less “hot” pulse.

3

A extremely challenging problem is prediction of the penetration of electro-
magnetic fields (EMFs) into a human body. The structure of the body is quite
complicated, and the constitutive parameters vary with position. Subsequent to
the results discussed here,2 FDTD has been extensively used for this problem,
employing more powerful computers and more detailed modeling of the body,*>
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FIGURE 6-1. THREDE model of a dielectric sphere with incident field and observation points
indicated.

with a recent effort® including the frequency dispersive effects of human tissues
using the methods of Chapter 8.

This section illustrates that reasonably accurate results were obtained for
this problem using scattered field FDTD with very limited computer resources.
In this effort? a coarse rendition of a human body was generated using cells 4
X 4 X 6 cm in size in a problem space of 20,736 cells. The body was
homogeneous with material properties of average tissue (two thirds muscle).
This whole body model yielded responses that were used as the response at the
outermost surface of a second more detailed model of a portion of the body.
The second model is enclosed in a subvolume of the first model (Figure 6-4a,
b). The second model renders the shape of the body more faithfully (Figure 6-
§) and can include interior detail (Figure 6-6a through c) not possible with the
whole body, along with the appropriate constitutive parameters (Table 6-1).

The approximate responses of the first run are used in lieu of the outer
radiation boundary condition in the second run. The second run, at least at low
frequencies, incorporates approximately the presence of the whole body be-
cause of the stratagem. At higher frequencies the responses in the interior of
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the second run problem space can still be used because the losses in the body
materials effectively decouples a small local from its distant surroundings. This
technique, called the expansion technique, is discussed in more detail in
Chapter 10.

The incident electric field used in this example is a uniform plane wave
propagating in the y direction with E polarized in the x direction. This corre-
sponds to the electric-field vector being parallel to the major length of the body
and propagating from the front to the back. The time domain behavior of the

o PPy T P gls iermcco PRPRP J T .
field is that of a damped sin wave described by

E! =E sin(2mot’)U(t")

where t’ = retarded time = t — (y-y’)/c, y’ = source point, y = observation point,
¢ = speed of light, U(t") = unit step function, E, = 1 V/m, and o = oscillation
frequency (typically o = 500 MHz).
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FIGURE 6-5. A side view enlargement of the subvolume showing the refinement of the exterior
surface of the chest.

TABLE 6.1
Relative Dielectric Constant and Conductivity of Various
Tissues for 350 MHz

Relative dielectric Conductivity
{ay (s, S/m)
&) (s, s/m)
Muscle 38.0 04.95
Lung 350 0.73
Fat 46 0.06

Bone 8.0 0.05
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FIGURE 6-6. Subvolume inhomogeneous model of the chest: (a) front view; (b) side view; (c)
top view.

Predictions were made of the instantaneous specific absorption rates (SAR)
according to

SAR() = 2[E(0 + B 67

where p is the density in kgm/m’ of the tissue associated with the cell.
Frequency domain information was obtained by applying the FFT 1o each
vector component of E' apd ES separately. The normalized SAR(w) was formed
from squaring the magnitude of the resultant total field after normalizing for
the incident field spectrum.
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FIGURE 6-7. Frequency-domain SAR in the chest normalized with respect to incident power
density. The observation points are (12, 13, 15) for run 1 and (19, 13, 13) for run 2.

Normalized SAR (w) for the first and second runs were compared (Figure
6-7) when the second run had the same average tissue of the first run (€ = 38¢,,
G = 0.95 S/m). Reasonable agreement between the curves is seen over the
frequency range at which they are expected to overlap. The SAR () predicted
by the second run for the homogeneous average tissue was compared to
measured local values* at 350 MHz (Figure 6-8) with very good agreement.

When the inhomogeneous detailed human model is used for the second run
the same SAR (w) prediction for front to back variations (Figure 6-9) differs
considerably from the homogeneous model. The reduction near the front
surface is likely due to the presence of the sternum in the inhomogeneous
model of run 2. When a side to side “scan” is made of the inhomogeneous
model of run 2 a considerable SAR increase in the lung is observed compared
to the homogeneous run 2 results (Figure 6-10). The enhanced SAR in the lung
may be of significant importance, especially for RF-induced hyperthermia in
cancer treatment. More detailed results can be obtained with the greatly in-
creased memory and speed of modern computers, and interested readers are
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referred to References 5 and 6. However, these early results indicate that even
with limited resources scattered field FDTD is capable of providing insight into
problems extremely difficult to analyze using other methods.

~
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FAR ZONE TRANSFORMATION

All of the applications and examples given in earlier chapters have involved

nn]\f fhP P]P(‘trnmngnptm FIP]HQ \ulthln or gd]ar‘ent to Lhe Sca{terlng or radla“ng

object such that the fields are contained within the FDTD calculation space.
FDTD can also be applied to analyze scattering from radar targets or radiation

from antennas, with the desired resulte hp:ng the far zone scattered or radiated

2287022 AQiit i8S L AW AL W

fields that lie outside the FDTD space. Near zone to far zone transformations
applicable to time harmonic fields are well known. Early FDTD calculations
of far zone scattered fields used these frequency domain transformations.
Because of this the FDTD far zone results were obtained at only one frequency
per FDTD calculation run, and usually obtained with sinusoidal time variation
excitation.?

The procedure for these single frequency far zone calculations is straight-
forward. With a sinusoidal time-harmonic source specified, the FDTD calcu-
lations are stepped through time until steady-state conditions are reached. The
complex time-harmonic electric and magnetic currents flowing on a closed
surface surrounding the object are then obtained. This involves very little
computer storage, being four complex tangential fields (two electric and two
magnetic) or surface currents for each Yee cell face on the closed surface. If
these complex fields or currents are written to disk, then in postprocessing the
far zone radiated or scattered fields can be calculated in any direction. This a
good method to apply when far zone radiation or scattering patterns are desnred
at only a single frequency.

In order to obtain far zone results at multiple frequencies a hybrid approach
is available which uses pulsed excitation for the FDTD calculations, but
supplies frequency domain far zone fields. For each frequency of interest a
running discrete Fourier transform (DFT) of the time harmonic tangential
fields (surface currents) on a closed surface surrounding the FDTD geometry
is updated at each time step.>* The running DFTs provide the complex fre-
quency domain currents for any number of frequencies using pulse excitation
for the FDTD calculation. This is more efficient than using time harmonic
excitation, which requires a separate FDTD calculation for each frequency of

interest. It reguires no more comnputer storage (per frequency) for the Cemplex

A S A Lot R LAENIE W W IpuAvE SRS

surface currents than the frequency domain far zone transform described
above, and like it, provides frequency domain far zone fields at any far zone
angle If far zone results are desired at a few frpqungRes then the mnnmg DFT
approach seems to be the optimum choice.

The running DFT method requires more computational effort than the time
domain far zone approach described in the following, however, if far zone

LW e S el 2 RS LRIV

results are desired at more than a few frequencies, and does not efficiently
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allow for computation of transient far zone fields. One reason is that the hybrid
approach requires complex multiplications at each cell on the transformation
surface rather than real multiplications as in the transient approach. A more
important reason is that the hybrid approach directly computes the DFT while
the fully transient approach allows utilization of the fast Fourier transform
(FFT) with a corresponding increase in efficiency.

There are two time domain approaches that roughly correspond to the
straight frequency domain and running DFT approaches described above.
The most straightforward time domain approach requires saving the time
domain tangential fields (surface currents) over a closed surface containing
the FDTD geometry for all time steps. With this approach transient far zone
fields can be computed in postprocessing for all angles, and frequency
domain results computed using FFTs for all frequencies at all angles. This is
extremely versatile and provides all possible far zone results available from
the EDTD calculation. The difficulty with this method is that except for very
small geometries (thin plates or wires, for example), arelatively large amount
of computer storage is required to save all the surface current components at
all the time steps. If all this information is required, then this method is
preferred.

In many situations, however, transient and/or broadband frequency domain
results are required at a limited number of angles, for example, transient
backscatter for a scattering calculation or transient antenna radiation for a
limited number of pattern cuts. For these situations it is economical to directly
compute the transient far zone fields at each angle of interest as a running
summation. This approach requires storing transient results for each time step
for six far zone vector potentials per far zone angle rather than for four
tangential field components (surface currents) per cell face on the transforma-
tion surface.

To illustrate the storage savings involved consider an FDTD calculation for
a 72 x 72 x 72 cell problem space. Because the far zone transform becomes
more accurate as the transformation surface is moved farther from the FDTD
geometry, let us assume that this surface is four cells in from the outer
boundary. In this case it will consist of 64 X 64 X 6 = 24,576 FDTD cell faces.
Now suppose we desire to calculate far zone antenna patterns in two planes
with 360 angles in each. Then for T total time steps the storage required by the
running summation approach would be (6 X 2 X 360 x T) + [(4 % 24,576 X T)
= 4.4% of that required to save all the transient surface currents.

If frequency domain results are desired they can be efficiently obtained
from the far zone transient results with application of the FFT. In this way
one FDTD computation using puise excitation, along with an FFT, produces
wideband far zone scattering or radiation results at any number of angles.
When utilized in conjunction with FDTD algorithms that include effects of
frequency dependent materials (Chapter 8), wideband results can be effi-
ciently obtained even for scattering targets or antennas which contain fre-
quency-dependent materials.
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In the remainder of this chapter running summation transient far zone
transformations for both 2- and 3-D will be given. While for most electromag-
netic anaiyses the 2-D case is simpier, the derivation of the transient far zone
transformation is more straightforward in 3-D. For this reason the 3-D trans-
formation will be given first, followed by that for 2-D. For both transforma-
tions only Cartesian coordinates are considered, because these are the most
widely used. However, the transformations given in this chapter could be
madified for application to other coordinate systems, if desirable.

In addition to the examples included in this chapter, results obtained using
the far zone transformation developed here are also given in Chapters 13 and
14 for scattering and antenna applications.

7.2 THREE-DIMENSIONAL TRANSFORMATION

The FDTD approach given in this book is based on a scattered field
formulation, which makes obtaining the far zone scattered fields somewhat
simpler than if a total field formulation were used. Thus, the scattered field
FDTD approach in this book is well suited for obtaining far zone scattered
fields.

However, an FDTD code being used for antenna radiation calculations
when the antenna is being fed must operate in a total field mode, becasue there
is no inctdent field to excite the problem. This is not a source of any difficulty
for scattered field FDTD codes, however, as FDTD codes based on the scat-
tered field formulation can be used easily for computation of antenna radiation
by numerically setting the incident field amplitude to zero and adding discrete
sources at cell locations corresponding to antenna feed locations (see Chapter
14 for some examples).

In the following discussions in this chapter it is understood that all time
domain field quantities are scattered fields as computed by the FDTD methods
of this book, and that for antenna (radiation) calculations the incident field is
set to zero so that the scattered fields computed by the FDTD code will be
identically equal to the total (radiation) fields.

To obtain the 3-D time domain far zone transformation we begin with a
frequency domain near zone to far zone transformation as found in Ramo et al.¢
If the scattering or radiating object is surrounded by a closed surface S’, and
if { is the local surface unit normal, then vector time harmonic equivalent
scattered surface currents J, () =nx H (w)and M_(®) = -0 X E (0) exist

on the curface whara ”(l

on the surface, where H{w)

fields at the surface.
Reference® defines time larmonic vector potentials N (®) and L () as

N(w)= JS,JS((D)exp(jkf’- £)ds’ (7.1)

L(w)= [ M_(w)exp(jkr’- f) ds’ (1.2)
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with j= /-1, k as the wave number, ; as the unit vector to the far zone field
point, ;’ as (he vector to the source point of integration, and S’ as the closed
o) the time

surface surrounding the scatterer. After finding N (w) and L (®) the time
harmonic far zone electric fields are easily obtained from Reference 6.

Eq = jexp(~jkR) (- NG +L, ) /(2AR) (1.3)
E, = jexp(~jkR) (- 1N, +Lg)/(2AR) (1.4)

where 1) is the impedance of free space, R is the distance from the origin to the
far zone field point, and A the wavelength at the frequency of interest.

In order to develop the corresponding time domain far zone transformation
we need to take the inverse Fourier transforms of the above. However. as
written there is frequency dependence in (7.1) to (7.4). To simplify the inverse
Fourier transformation process we first define time harmonic vector potentials

W (0)= jwexp( _JwKJ N(w)/(47Rc) (7.5)
C

U ((1))=j0)€xp[ _j:)R) L(w)/(47Rc) (7.6)

Recognizing that k = 2rf/c = w/c and A = ¢/f = 27tc/w, where f is the frequency
and ¢ the speed of light, the corresponding equations for the far zone electric
fields have no frequency dependence and can be written

Eg= -nW,-U, (7.7
E —_ mWwW .11 T
Ey=-0W, + Y (7.0}

Now considering (7.1) and (7.2), we recognize that the jo multiplier in (7.5)
and (7.6) corresponds to a time derivative, and the exponential factors contain-
ing jo (or equivalently jk) correspond to time shifts. Thus we can readily
inverse transform W(w) and U(w) of (7.5) and (7.6) to obtain the time domain
vector potentials

W(t) = ;n!}?(;%{;[’JS(t +(F P~ R/c)ds’} (7.9)
Ut = () JIM,([ +(v e - Rlc\ds'l (7.10)
YV anRe o ) o )

where J (1) = nx H(t) and M, (1)=—-nxE(t) are the time-domain electric
and magnenc scattered surfdce currents on the closed surface S” surrounding
the scatterer. Because there is no frequency dependence in (7.7) and (7.8)
they apply in the time domain as well and are used with (7.9) and (7.10) to
convert the time domain vector potentials to far zone electric fields.
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To apply (7.7) through (7.10) to FDTD calculations we must incorporate the
correct temporal and spatial quantization. First, a closed surface must be

defined. To simplify the calculations let us define the closed surface S as a
defined. To simplify the calculations let us define the closed surface S as a

rectangular box such that all surfaces of the box are Yee cell faces. To make
the process of obtaining the correct surface currents as simple as possible, let
us further agree to evaluate the tangential electric and magnetic time domain
fields at locations corresponding to the center of each Yee cell face which lies
on the box surface.

In order to illustrate the process of determining the tangential fields and
surface currents let us consider the contribution from a single FDTD cell face
which is on the surface of the S’ integration box. The complete far zone
scattered field will be obtained by summing similar contributions from all of
the tangential field components at the center of each cell face lying on the
integration surface at each time step.

The guantization using Yee notation is t = nAt, x = IA v=JAy and 7 =
quantization using Yee notation is t = nAt, x = IAx, y = JAy. and z

KAz, where n, 1, J, and K are integers. Because we are using the Yee unit cell,
the field quantities are not specified at any particular surface of the cell. To
determine the tangential field values at the centers of cell faces which are on
the integration surface §’, field values from different cells will be spatially
averaged. This is necessary to obtain sufficient accuracy. Also, the electric and
magnetic field values are specified at '/,At time displacements and this must be
compensated for as well. The time derivatives in (7.9) and (7.10) will be
approximated as finite differences.

When evaluating (7.9) and (7.10) one has a choice of storing the surface
currents (or equivalently the tangential fields on the integration surface) vs.
time or the far zone W and U vectors. Because for most situations significantly
more storage will be required to store the time history of the surface currents
than that of the far zone W and U vectors, the surface currents at each time step
will be evaluated and their contribution to the future time (delayed by distance)
far zone vector potentials W and U will be determined and stored. Some
storage could be saved if the theta and phi components of W and U were
determined at each time step, as six Cartesian vector components of W and U
must be saved as opposed to only two spherical coordinate field components.
Because the amount of storage needed to save the six components of W and U
is a very small fraction of the storage needed for the FDTD cells themselves,
the implementation chosen stores the six Cartesian components of W and U for
each time step and evaluates (7.7) and (7.8) after all time steps have been
computed.

LUHC&PUIlUlIlg io lypltdl usage, the l/K ampmuuc and R/L Ilmt: UCldy IFOIH
the reference point to the far zone field point is suppressed, so that the factor
I/R and the time delay —R/c in (7.9) and (7.10) are not included when these
equations are evaluated.

To illustrate the approach we will consider the scattered field component E.®
tangential to the transformation surface S” and at the center of a particular I,J,K
Yee cell face. The value of E," must be found by appropriate spatial averaging
of E,” values from cell I, J, K and from adjacent cells. Let us assume that the
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portion of the integration surface which we are considering has an outward unit
normal vector n =y, and that the LJ K Yee cell is within the integration sur-
face. Then at the center of this cell face E.* = (E,"(LJ+1,K) + E&(1LJ+1,K+1))/2
(obtaining the magnetic field components at this point will require avcragiqg
four terms). This electric field component will produce a scattered magnetic
surface current

M, =-yxE=E}z (7.11)

so that on this surface E,” contributes to U, only. Our surface area of integration
is Ax - Az, and we approximate E," as constant over this surface. To keep track
of the relative time delay for each cell face in the integration, we will locate a
spatial reference at the center of cell I.J_,K.. A cell near the center of the space
would provide a convenient reference point. The vector from the reference cell
to the center of the Yee ceii face we are integrating over is then

F=(1-L)Ax R+ (T +12-1,)Ay §+(K-K,)Az (7.12)

The value of !/, is added because the integration surface of the LJ,K cell face
we are conside;ing is one half cell in the y direction away from the cell center.
Similar £/, cell corrections must be made for all of the cell faces on the S’
integration surface.

Now let us consider how to approximate the time derivative in (7.10) using
a centered finite difference. We time shift (7.10) by (') / ¢, then substitute
(7.11) into (7.10). If we then evaluate the time derivative in (7.10) as a centered
finite difference we find that E," will contribute to U, at times t = (n+!/,)At and

i= (ﬁ‘1llz)f—Aﬁ:

R s i=s a1 o Teana+l enl./. PN .
Ull(n +1/2)At = (1 -1)jc] = AxAZE T - B [/{4wcAr) (

W
2z

~J

U, [(n - 12)At = (7 )ic] = Axag[Ef — B3| f(dmeAt) (7 14

In order to be accumulated and stored, the far zone fields must be temporally
quantized, and the contributions from different cells and time steps must be
apportioned into the correct storage locations based on relative time delay.
Also, a few more storage locations may be required for the far zone vector
potentials than the number of time steps, as fields scattered from parts of the
scatter closer to (farther away from) the far zone field point will be advanced
(retarded) in time. We must be careful not to have any far zone responses which
might occur for times corresponding 1o negative array subscripts of o su"a—
scripts beyond the dimension of the arrays used to store the U and W potential
values.

Let us first determine the size of the vector potential arrays needed to store
the complete range of possible times. If we define R, as the distance from the
reference cell to the point on the integration surface closest to the far zone field
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point, and R, as the corresponding distance farthest from the far zone field
point, then for the rectangular parallelepiped integration surface the range of
time which must be accomodated for the far zone scattered fields is

R
RicictasRe (1.15)
C C

where T is the maximum number of time steps in the FDTD calculation.
Practically speaking, with the reference cell at the center of the FDTD space,
it is simple and safe to take both R; and R, as half the maximum diagonal
distance of the FDTD computation space. If we now define a shifted far zone
time variable

U=t+—> (7.16)

then t’ wiil aiways be positive. After quantizing t’ = mAt, M storage locations
will be required for each U and W vector component, where

it o

- R, Ry
M=T+ cAt * cAt (7.17)

The array size variable M typically will be only slightly larger than N.
Consider for example a situation in which R, and R, correspond to 50 FDTD
cells each. Then Rb/c and Rf/c will each be approximately 100 time steps
(assuming At the Courant stability limit) and M will equal T + 200.

One warning is that when computing scattering cross sections or far zone
transient radiation, the time offset given in (7.16) must also be applied to any
reference signal. For example, in calculating radar cross-section (RCS).the
compiex FFT of the far zone FDTD field is divided frequency by frequency by
the complex FFT of the incident plane wave. For accurate frequency domain
phase the time advance of (7.16) must be applied to the time record of the
incident wave. Of course, the incident wave must also be sampled at the [,J K,
reference location in the FDTD space consistent with (7.12) before (7.16) is
applied so that it has the same spatial reference as the far zone fields. If FDTD
and frequency domain scattering results are to be compared in phase, then the
phase reference of the frequency domain calculations must also be the location
of the FDTD spatial reference point. For example, to compare phase between
the exact solution for sphere scattering and the FDTD result the FDTD spatial
reference at the center of cell I.J. K, must be at the center of the sphere.
Adjustments using (7.16) also must be made to the time reference of the source
within the FDTD space in an antenna radiation calculation if time accurate far
zone fields are required,

Returning to the example being considered, we must next find the contribu-
tions of E," to the time-quantized U,. To do this accurately we must consider
that the time offset (f"-f)/c will not in general correspond to an integral
number of time steps, so that the times when E," contributes to U, as given in
(7.13) and (7.14) will not correspond precisely to quantized times mAt. In order
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to obtain accurate far zone results we must store the contributions to U, from
each integration cell in as time accurate a way as possible. We now consider

one approach. L.
Assume that E," is constant over a time interval At. Then on the t’ time scale

Assume thatl

the integer m closest to the center of the time period of duration 2At over which
E," contributes to U, is, from consideration of (7.13) and (7.14),

t 1
=GINT| &+ — 7.18
" l:Al 2} -18)
where
-t R
t =nat- L4t (7.19)
¢ c c

and GINT is the greatest integer function. (For magnetic fields add an

additional !/, to the argument of (7.18) to compensate f(?r‘ the i/,At time
advance.) According to (7.13)and (7.14) E;? contributes posmve.ly (oAUz over
the At time interval prior to t, and negatively over the following time interval.
This means that U, time storage locations (m ~ 1), m, and (m + 1) a.ll
correspond to time intervals in which E;" is contributing to UZ. In rbxs
discussion we consider U, time storage location m to span the time pen'od
from (m — '/,)At to (m + '/,)At. Apportioning the E,* contributiol.is b)f t'akmg
the average value of U, over a particular At time span and storing it in the

corresponding location we have:

U, [(m+1) At} = -AxAz E} B + (iﬂ - m}/(4ncAt) (7.20a)

e \1
U,[m &= axaz ES - 2] -5 — m |} /(@mea) (7.200)
L N7 /d

a (bt
U,[(m +1) At] = -AxAz E] [2 T m}/(%cm) (7.20¢)

The above example gives the contribution to the time quantized U, vector
potential from the E," component at the center of the face ofAcell L] K which
lies on closed surface S’ and has unit outward normal i =y. The complete
vector potentials W and U for all time steps can be obtained by summing the
contributions from the other tangential electric and magnetic field components
at the center of the same face of cell LI, and then in like manner from all of
the cell faces on S”. This must then be repeated for each time step. After all of
the time steps are completed, the U and W vector pot-em"ials are cl?ang.edjrc‘)in
Cartesian to spherical coordinates, and the time domain far zone eiectric tieids
determined using equations (7.7) and (7.8). _

Note that determining far zone results at a number of bistatic scattering
angles during the same FDTD computation would be quite simple and straight-
forward, and would not add a significant computational burden.

In order to illustrate the application of the 3-D time domain near zone to far
zone transformation, plane wave scattering by a perfectly conducting plate for
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different incidence angles and polarization will be determined. From these time
domain transient scattered fields the frequency domain RCS will then be
determined. Examples of far zone scattering results for plates composed of
other materials, for other scattering geometries, and of transient far zone
radiation from antennas are given in Chapter 14.

The FDTD problem space for these examples is 60 x 60 x 49 cells, with cells
being 1-cm cubes. The plate is 29 x 29 x 1 ¢m, and is located parallel to and
9 cells above the x-y plane, as shown in Figure 7-1. The plate is not centered
in the z dimension to reduce unwanted reflections from the Mur second order
absorbing boundaries. It is important to avoid situations in which the specular
reflection is directed at a corner of the problem space, as this produces the
worst performance for the second order Mur absorbing boundary. The time
step is 0.0192 ns. The incident plane wave is a Gaussian pulse 1 kV/m in
amplitude with an e pulse width of 2.46 ns. The integration surface is a
parallelepiped four cells in from the boundaries of the problem space.

To illustrate the accuracy of the transformation when there are significant time
delays across the integration surfaces, backscatter calculations are shown for the
flat plate in Figure 7-1 with a ¢-polarized plane wave incident from 8 = 45°, ¢
= 30° (spherical coordinates with 6 measured from the positive z axis). The
transient far zone cross-polarized scattered electric field is shown in Figure 7-2.
The results are Fourier transformed and divided by the Fourier transform of the
incident pulse and used to calculate the scattering cross section, with the results
shown in Figure 7-3. Results obtained via the method of moments’ are shown for
comparison. Sources of the differences between the two methods include the
imperfect FDTD radiation boundary conditions and the finite thickness of the
FDTD plate (approximately 1 cell = 1 cm), as opposed to the infinitesimally thin
moment method plate.

7.3 TWO-DIMENSIONAL TRANSFORMATION

In the previous section a method for transforming near zone FDTD transient
results directly to the far zone in 3-D was presented and demonstrated. In this
section the corresponding 2-D transform is determined.® The 2-D geometry
being considered has no variation in the z direction. Rectangular Yee cells are
used to model the space. After deriving the 2-D transformation, some sample
results for 2-D far zone scattering by a perfectly conducting infinitely long
circular cylinder will be given.

In the 3-D derivation the frequency domain far zone transformation equa-
tions were Fourier transformed to the time domain and served as the basis for

for oo S R T P,
1ar Zon€ airécuy in in€ iime

transforming n
domain. In order to simplify the derivation of the 2-D transformation our
approach will be to compare the frequency domain far zone vector potential
equations for both 2- and 3-D, and by comparing them obtain the factors
needed to convert the 3-D time domain far zone transformation to function
in 2-D. Because the application we are primarily concerned with is calculat-
ing the far zone scattering width, our derivation is directed at obtaining this

2ane EYTTY Fialde sn sl
ZONC rv1u 1iCias {0 ine



114 The Finite Difference Time Domain Method for Electromagnetics

Ty

197
=

4

J
N[O

\

[ |

29

-

SASSSSSAON
PPN
PN AN
ASSSOSAIANSNN
ASSOOOSOO

PN
PAAAANANA Y,

AERARARAARR
SSSANSNK
ARSI
200000000000

NN NNNNNNNND

Y
-

\

i i
2 60

FIGURE 7-1. Geometry of FDTD plate scatterer showing the 29 cell x 29 cell (29 cm % 29 cm)
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Far Zone Transformation 115

3
N
o =30 -
3
z
[*]
H -40 A
[
+ o+

ll;{ 3
a ~50 +
o +
g
g

60

/A
_70 -
N
-80 T T T v v T T T 7 T T
0 0.4 0.8 1.2 1.6 2 2.4

FREQUENCY (GHZ)
—— FDTD +

MOM

FIGURE 7-3. Far zone cross-polarized backscatter cross section vs. frequency for a perfectly
conducting 29 cm? plate, 1-cm thick, obtained from the FDTD results of Figure 7-2 using an FFT.
For comparison, moment method results for an infinitesimally thin plate are shown.

capability. Of course in these 2-D calculations only three field components
(either transverse electric (TE) or TM polarization is assumed) will exist
rather than the six components in a 3-D calculation.

We again surround the scatterer with a closed surface S’, and consider that
equivalent tangential electric and magnetic time harmonic surface currents
may exist on this surface. The 2-D vector potentials which correspond to the

3-D potentials defined in (7.5) and (7.6) are

A(w)= % exp(jceg)js,Jb(w)cxp(jkp’cos(cb - ¢’)) ds’ (7.21)

.(BW —jo [N , ’
F(w)= \/8:;5 exp[JTp]Js.Ms(w) exp(jkp’cos(d - ")) ds” (7.22)

where p” and ¢’ are the coordinates of the source point of integration, and p and
¢ the coordinates of the far zone field point. The corresponding far zone
radiated fields are obtained from
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.= MA, +F (7.23)

E =—-nA +F (7 2AN

¢ W z (i.c5)

One can then easily convert to RCS by applying

R—oe IEi

= lim 411:RZi ’2 (1.25)
|

in the 3-D case, where E is the Fourier transform of either Eq or E, of (1.7)
or (7.8), and E' is the Fourier transform of the incident plane wave electric field.

5)s ouner transt

The corresponding 2-D scattering width is defined as

ES 2
Gap = lim 2HP,IEZT‘ (1.26)

where ES_ is the Fourier transform of either E, or E, of (7.23) or (7.24).
The 3-D approach of Section 7.2 which produces the physically observable
far zone fields cannot be conveniently applied in the 2-D case. To understand

the reason for this consider that we want to obtain the transient fields scattered
ion of this transient scattered field can

hv an infinitelv lone structure, The d
by an infinitely long structure. T

be orders of magnitude longer in time than the duration of the pulsed plane
wave which excited it. The mathematical aspect that warns us of this compli-
cation is the factor of \/36 in (7.21) and (7.22).

In order to evaluate the Fourier transform of (7.21) and (7.22) directly in
the time domain the VT(B factor requires a convolution operation. To avoid
this our approach will be to modify the 3-D results given previously to
provide representative but not physically observable (in the sense of imagin-
ing that an infinitely long scatterer could be physically constructed, or at least
approximated) 2-D time domain far zone fields. These will be the fields
radiated by a unit length of the scatterer, corresponding to the definition of
the scattering width. This far zone transient field can then be converted to the

actual far zone steady-state frequency domain fields and used for wide band

scattering width calculations (assuming pulsed excitation of the time domain
FDTD computation). This conversion will involve a simple multiplication in
the frequency domain, rather than the more complicated time domain convo-
lution. Should the actual time domain far zone fields be required, they can
then be obtained by an additional Fourier transform of these results back to
the time domain.
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In order to convert our previous 3-D results to 2-D, we compare the two sets
of equations. First, comparing (7.7) and (7.8) with (7.23) and (7.24), since the
spherical unit B vector is Pqug[ to the negative of the gy!m_d_rlca_l unit z vector,
(7.7), (7.8), (7.23), and (7.24) correspond exactly, and no adjustment relative
to this part of the 2- and 3-D transformations is needed.

Next, comparing (7.5) and (7.6) to (7.21) and (7.22), since the 1/R factor is
understood and normalized out of 3-D far zone field calculations while the 1/
ﬁ factor is similarly normalized out of 2-D calculations, no compensation is
needed here either.

Finally, consider (7.5) and (7.6) vs. (7.21) and (7.22). The additional dimen-
sion of integration in (7.5) and (7.6) is compensated for by computing the fields
scattered by a unit width of the scatterer, corresponding to the scattering width
per unit length defined in (7.26). This corresponds in (7.5) and (7.6) to having
no z variation and integrating the z’ variable over a unit distance. The expo-
nents provide equivalent phase (time) delays and need not be compensated for.
Considering the remaining factors, it is easily determined that in the frequency
domain, the relationship between far zone electric fields obtained from a 3-D
far zone transformation for a unit length of the scatterer with no z variation and
the 2-D transient far zone fields is

s % s
20:\{’j—w 3D (7.27)

With these results the 3-D transient time domain far zone transform given
previously can be easily adapted to calculating wideband scattering widths in
2-D as follows:

1. Consider Ol‘uy ihe field Components and corre €spon umg surface currents
excited in the 2-D problem. For example, for a TE, computation only H,,
E,, E,, and the corresponding surface currents are included.

2. Calculate the representative transient far zone time domain fields using
the 3-D method described earlier, but for a 2-D integration surface which
encloses the scatterer. Let Az, the z coordinate unit cell dimension in the
surface integrations ((7.20), for example), equal 1 (meter). Keep in mind,
however, that this field is not physically observable. It represents the
scattered field radiated from a unit length of the scatterer in the time
domain.

3. Fourier transform the result of step (2) and multiply the result by the
factor '\/Tnc/j(l) in (7.27). This result is the steady-state frequency do-
main 2-D far zone fieid, which can then be used in (7.26) to caicuiate the
scattering width as a function of frequency.

4, If the time domain 2-D far zone field is desired, it can be obtained by an
additional Fourier transformation of the result obtained in (3) back to the
time domain.
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In order to demonstrate the capabilities of the above approach to obtaining
transient far zone fields in 2-D, scattering widths vs. frequency for a circular
perfectiy conducting cylinder of radius §.25 m are calculated. Both TE and TM
polarizations are considered. The cells are 0.5 cm squares in a 500 x 500 cell
problem space. On a 32-bit 486-based PC running at approximately 1 MFLOPS,
each polarization required about 2 h. The 2-D FDTD code was scatered field
formulation. The Mur second order absorbing boundary was used.

For both polarizations the incident plane wave was a Gaussian pulse which
traveled in the 3 direction, backscatter was calculated, and 2048 time steps
were evaluated. In order to clearly show the response, not all time steps are
included in the plots. The time domain relative far zone scattered field for the
TM polarization is shown in Figure 7-4. The scattering width amplitude and
phase obtained from these results by Fourier transforming them and dividing
by the Fourier transform of the incident pulse is shown in Figures 7-5 and 7-
6 and agrees well with the exact solution. Accurate piase results were obtained
by sampling the incident pulse at the center of the cylinder. The corresponding
results for TE polarization are shown in Figures 7-7 through 7-9. This is the
difficult polarization for approximating a smooth surface with a “staircased”
FDTD code, yet the agreement in both magnitude and phase is quite good. A
smaller than usual cell size was required to obtain these results, as the 0.5-cm
cells correspond at the 3.0 GHz upper frequency limit in the plots to 20 cells

per wavelength.
7.4 SUMMARY

An efficient time domain near zone to far zone transformation for FDTD
computations has been presented. The approach is to keep a running accumu-
lation of the far zone time domain vector potentials due to the tangential
electric and magnetic fields on a closed surface surrounding the scatterer at
each time step. At the end of the computation these vector potentials are
converted to time domain far zone fields. For scattering calculations, many far
zone bistatic directions can be included efficiently during one FDTD compu-
tational run. For antenna radiation calculations, transient radiation in many
different directions can be efficiently computed during one FDTD calculation,
resulting in a transient radiation pattern. However, if radiation patterns at many
angles and at only one frequency are required, the approach described in
Reference 1 will require less memory and be more efficient. If radiation
patterns at many angles and at a limited number of frequencies are desired then
the running DFT approach of References 3 and 4 will take less computer time
and memory than the time domain methods described in this chapter.

The 3-D far zone transformation given above directly produces the physi-
cally observable transient far zone fields. If desired, these fields can be con-
verted to steady-state frequency domain results via FFT. The 2-D time domain
far zone transformation gives the fields radiated by a unit length of the
scatterer. These fields can be used to determine wide band scattering widths
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after application of a Fourier transformation with the appropriate multiplying
factor given in the text. Accuracy was demonstrated for both 2- and 3-D far

: Feviatione by calondation of oida bandaidth soartarine from infi-
Zone iransiornmailons vy Caiciiiaiitii 01 Will GaiiGwilin Staudimg

nitely long cylinders and plates through pulsed plane wave excitation in the
time domain. Using pulse excitation is significantly more efficient than com-
puting many FDTD results using sinusoidally varying excitation if a wide
frequency band is of interest. Coupled with the capability to compute FDTD
results for frequency dependent materials, wideband results for far zone scat-
tering from targets, including frequency-dependent materials, can be obtained
very efficiently.
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Chapter 8

8.1 INTRODUCTION

We saw in the previous chapter that one of the strengths of FDTD is that
results for a wide frequency band can be obtained by applying Fourier trans-
form techniques to transient FDTD results. The level of development of FDTD
currently places a limitation on this in that the constitutive parameters must be
specified as constants, i.e., ji, €, and 6 must be described by a single number.
While this is true for free space, good conductors, and ideal dielectrics, it is
only approximately true for most real materials. For some materials over a
narrow band of frequencies the approximation is excellent, while for other
materials over a wider band of frequencies it is not. For some materials, such
as plasm

4

FDTD equations we have presented thus far cannot be used at all at certain
frequencies as some of the terms become singular,

This is not to say that FDTD with constant constitutive parameters cannot
be used for dispersive materials. Even a material with a constant permittivity
and conductivity (or permeability and magnetic loss ) will be dispersive. To
see this consider the frequency domain (¢™J®! time convention) equation

VXH=°E+jw€€uE=jw€0[_° +£]E=j(ué£UE @1
0

o A ally, Fuins o o constanty i 5
vhere ¢ (the “A” symb. Cauy nuuuu‘yms a comipi€x constani) 18 a

ymbo!
complex relative permittivity that includes the combined effect of real ¢ and
€ values, which could be specified in FDTD calculations. Clearly there is a
frequency dependence and the media would be dispersive; i.c., in it different
frequency components of the electromagnetic field would travel at different
speeds.

FDTD as it has been developed thus far can model propagation in dispersive
media. However, the frequency dependence of the media must be described by
constant real values of conductivity and permittivity as in (8.1). However,
many materials have permittivity (or permeability) with different frequency
dependence than this, and the remainder of this chapter is concerned with
extensions of FDTD that allow accurate wide frequency bandwidth computa-
tion of transient eleciromagnetic fields in these materials. For some materials
the frequency-dependent material parameters have been determined analyti-
cally, while for others they may be determined from measured data. While our
discussion will be concentrated on dielectric materials, magnetic materials can
be treated using the same approach.

123
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Making FDTD calculations for frequency-dependent media occupies more
computer time and storage than with constant constitutive parameters, and if
results at a single frequency or over a narrow frequency band are all that are
needed, then constant parameters should be used. However, if the frequency
dependence of the material may affect the results over the band of frequencies
of interest, then using frequency-dependent FDTD, which requires a recursive
convolution, will in most situations be more efficient than making a sequence
of separate FDTD calculations and changing the constant constitutive param-
eter values for each frequency range of interest.

A general discussion of frequency dependent media is outside the scope of
this book, and the interested reader is referred to texts concerned with the
subject, such as those in References 1 and 2, for a more extensive treatment.

We will begin with the simplest case, that of a material whose complex
permittivity is described by an equation with one first order pole. Such mate-
rials are often called Debye materials and the equation that describes their
permittivity is the Debye equation. For these materials the frequency depen-
dence of the complex relative permittivity is described by

E(w)=¢-je" = =g, +x(0) (8.2)

1+3(m

where g, is the static permittivity at zero frequency, €, is the infinite frequency
permittivity, i, is ihe relaxation time, and ¥{®) is the frequency domain
susceptibility. An extremely common representative material of this type is
water, with typical parameters (they change with temperature and pressure) €
=81, &, = 1.8, and t, = 9.4 x 10-2. The corresponding complex relative
permittivity as a function of frequency in shown in Figure 8-1. Clearly the
permittivity of water over this frequency range is not well approximated by a
single constant value.

With this motivation, let us consider how we can extend FDTD to this
situation. At least two different approaches can be applied. In one, the relation-
ship between D and E is expressed in the time domain as a differential equation.
This equation is then approximated as a difference equation and updated at
each time step along with the E and H fields. This appmach is considered in
a later section of this chapter. For ihe reasons given in that scction the apprsach
we prefer is to express the relationship between D and E in the time domain

with a convolution integral

D (1) = e.eE(1) + 0 E(t - AYg(A)dA 83)
0
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FIGURE 8-1. Complex relative permittivity of water in the frequency domain.

where y(t) the time domain susceptibility, is the Fourier transform of (), and
zero fields are assumed for negative time. In previous chapters the assumption
has been that x(t) (and, of course X(®)) is zero, and (8.3) then reduces to the
familiar D = £g, E, where € is equivalent to €.

Now we consnder how we mlghl include the full effects of (8.3) in our
FDTD CaI" A T gimnlife We W 1 mmwanily

lculations. To simplify this we will temporaril

but later in the chapter our results are ex tended to a scattered field ormula-
tion.

We first take the continuous time expression of (8.3) and discretize it,
obtaining, with t = nAt as usual,

y work in total

nAt
D (t)=D (nAt)=D" =¢_g,E" + ¢, | E(nAt - AJy(A)dA (8.4)
0

:ha: all field ¢

is equlvalent

N n-1 (m+1)At
D" =e.gE"+gy T E"™ [ y(A)dA 8.5)
m=0 mA
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The value of D at the next time step is

n . (m+1)At
D" =g g, E™ 4+, TE™T™ [ x(A)MA (8.6)
m=0 mAt

We now proceed to use (8.5) and (8.6) to eliminate D from the dispersive
FDTD equations. To simplify the algebra involved we consider only a 1-D
case, but the extension to 3-D is straightforward. For this 1-D case we include
only the Dy, E,, and H, field components and assume propagation in tbe +x
directions. Then with x = i Ax we have from the Maxwell curl-H equation

Ly _ oo nd(ip L) S HT (- L
Dy"()-Dy(i) __H; (‘+2)A H 2)—cEg"l(i) @7
At X

The conductivity 6 has been included for generality in modeling materials
which, unlike (idealized) water, have a conduction current at zero frequency.
We need to eliminate the D, terms from (8.7) in order to be able to solve for
E,~!. Using (8.5) and (8.6) we find that

DI (i) - DA (i) = goe.. [} (i) - E3 ()]
+ m 8.8
+ €0E;HXO+€O 2 En m(l)( m I)_x ) (8.8)
where
(m+1)At
"= x(A)dA (8.9
mAt

and where it is assumed that the constitutive parameter values correspond to the
material affecting the electric field at spatial location x = i Ax.
To simplify obtaining the update equation for E we regroup (8.8) as

Dy*'(i)- Dy (i) = (eosm +£0x"J E;*'(i)

act s0 1Ny
-£o€ Ey(i)—€¢ T E;"“(i)(x'“ _an) (8.10)
m=0
and also define
Axm ___xm _xmﬂ (8.11)
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Now substituting (8.10) and (8.11) into (8.7) and solving for E,"*! we obtain

. €. ngs
E‘; I(}}: oAt Ey(‘)
e +e_+%°
1 T pnemiy Ay m
+ & 2 EjM(ay (8.12)

e £, +y" ™0
Al n+df netf
- e EW?[HI ‘(1+%)—H, ’(l—%)J/(enAx)
0 FEL Y

The FDTD update equation for the magnetic field is unchanged from that

nnrmnllv used

HQ‘%(H—'):H" Hi+d)

-2 e300 -7 0] (8.13)

because we are considering only frequency-dependent dielectric materials. For
frequency-dependent magnetic materials a similar derivation would be applied
to the curl E Maxwell equation to obtain the corresponding update equation for
magnetic fields.

We now proceed with the next step, which is to determine x(t) for the Debye
material whose frequency domain susceptibility y(®) was given in (8.2). From
afundamental Fourier transform pair given in Reference 3, this is readily found

to be

e " U(t) (8.14)

This susceptibility function is plotted in Figure 8-2, which describes the
response of water to an impulsive electric field, impulsive in the sense of a
Dirac delta function of time being substituted for E in (8.3). The corresponding
electric flux density D instantly rises to its maximum value, then decays

ally to zero, as described by (8.14).

Another point to be made in connection with (8.14) is that the impulse
response is causal, i.e., Y(t) is zero for negative time so that the material does
not respond to the impulse before it occurs. This is a fundamental constraint
on the frequency domain susceptibility function y(w), that it must have a
causal Fourier transform. This constraint is equivalent to the more commonly
encountered Kramers-Kronig relationship between %(t) and x(®w),? and cer-
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FIGURE 8-2. Time domain susceptibility function for water.

tainly more intuitive. Even Richard Feynman admitted that he did not com-

pletely understand the Cauchy theorem.
Having found x(t) we can proceed to evaluate the constants needed to

update (8.12) at each time step. Applying (8.9) to (8.14) we obtain

_mAt A
"=, —e)e ™ [1-e78] (8.15)
and (8.11) produces
mAL -4 2
= (e e )e® [1-e78) 8.16)

If we now proceed to update (8.12) using (8.15) and (8.16) we notice that in
order to evaluate the convolution summation in (8.12) directly we must save
all the past values of the electric field, at least far enough back in time to
correspond to the time required for y to decay to a small enough value so that
the contributions from later times are small enough to neglect. In addition to
the computer storage necessary, the computations required to evaluate the
summation must be made at each time step in each FDTD cell. Evaluating the
summation in (8.12) directly means that only a relatively small number of
FDTD cells can be included in a computation for frequency-dependent mate-
rials as the computer time required to update these electric fields will be
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relatively large. Indeed, it might be faster to use FDTD with a sinusoidal time
excitation, and run many computations over the frequency band of interest,
changing the consiitutive parameters correspondingly with frequency.
However, the exponential time dependence of y(t) will allow us to avoid this
direct evaluation. We can replace it with a recursive evaluation resulting in a
significant savings of both computer memory and calculation time.*> To dem-
onstrate this we will define an accumulation variable ¥" in place of the

summation as

n-1
Wi(i)= ¥ E;TM(i)ax" 8.17)

m=0

where ‘" is a single real variable. To show how this can be updated recur-

sively, we consider the first few time steps. For n = | we find that

0
y'= ZOEL "(i)ax™ = Eyay’ (8.18)
e

and forn =2
1
Vs 3 BT AT =B + By (8.19)

From (8.16) we easily obtain the relationship
A, M1 —A L m 9 A
Ay =e w Ay (8.20)
which is due to the special nature of the exponential function that shifting it in

time corresponds to multiplying it by a constant proportional to the time shift.
Using (8.20) and (8.18), (8.19) can be modified to

y? =E§Ax°+Elye’t%‘ Ax°=E§Ax°+e‘%\p' 321)

from which it follows that
v =By ety (8.22)

This result allows us to evaluate the summation in (8.12) very efficiently.
Instead of storing perhaps thousands of electric field values at each field
component location, we need store only the single variable . Instead of
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multiplying and adding all those potentialty thousands of terms in the summa-
tion at each time step only the simple update equation of (8.22) need be
computed.

To demonstrate FDTD calculations using this method consider the 1-D
problem of a pulsed plane wave traveling in vacuum normally incident on a
planar vacuum-water interface. For this demonstration a 1-D FDTD space with
1000 cells is used, with the interface located at cell 500. Each cell has a Ax
length of 37.5 um, and the time step is taken at the Courant limit as At = Ax/
¢ = 0.125 ps. The excitation is a Gaussian pulse plane wave. The pulse initially
has a spatial width of 256 cells between the 0.001 amplitude truncation points.
Convenient equations for initial values of the fields at the first time step for
exciting this Gaussian pulse so that it propagates only in the positive x direc-
tion, where x =i Ax, are

E {(i)=1000e (}‘I’:r: Y \2\ o A
Gk])‘* lllU\’CRpk\:\\l lC}“p} J (5 Lj)
e, 2
He(i)=1000\};~° exp(é((i%—ic-%)/ip) ) (8.24)
0

for i —i,<i<i +i, and zero otherwise, with 1000 the arbitrarily chosen amplitude
of the peak electric field, { = In(0.001) and i,=128. The frequency spectrum of
the pulse is shown in Figure 8-3.

A first order Mur® absorbing boundary is located at cell 1, while the 500-
cell region containing the dispersive medium provided an adequate time delay
so that pulses reflecting from the boundary at cell 1000 did not return to the
interface before the transients dissipated.

Spatial plots of electric field vs. position for the pulse as it reflects from the
interface and propagates in the water are shown in Figures 8-4 to 8-6 after
increasing numbers of time steps.

For comparison the same calculation can be done with FDTD, but using
constant values of permittivity and conductivity. If we, for example, decide to
use the constitutive parameters at 20 GHz, then we find from (8.2) that £’ =
34.86 and €” = 39.03. We easily obtain the conductivity G as G = w €, £’ =
43.43 S/m. The complex permittivity of a material with these values of € and
G is shown in Figure 8-7, which on comparison with Figure 8-1 is clearly not
a very good approximation. The FDTD calculation for the pulse propagation
example using these constant values of € and G after 600 time steps is shown
in Figure 8-8. Comparing with Figure 8-6, note the long tail on the reflected
pulse due to the nonzero conductivity at zero frequency, and the relatively low
amplitude of the pulse propagating through the water.

The accuracy of the recursive convolution method is indicated by compu:t-
ing the reflection coefficient vs. frequency from the transient fields. The FD1D
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FIGURE 8-3. Frequency spectrum of the incident Gaussian pulse.

computations were continued until the transients at the vacuum-medium inter-
face were dissipated. This required approximately 600 time steps for the
recursive convolution method, but 4000 time steps with the usual constant
value FDTD method due to the incorrect tail on the reflected pulse. Computa-

tion of the reflection coefficient from the trancient ETYTTY oo dec oo b0
MUVALIVAVERY VN e JdaliSiCiit i1 L TESUILS ImvVOoLves

t_a}(jng the Fourier transform of the reflected field vs. time in the vacuum at cell
SUQ at the interface and dividing by the Fourier transform of the incident pulse
as it passes through that cell. The reflected field is obtained by subtracting the
incident field (with the material region replaced with vacuum) from the total
field (total fields are shown in Figures 8-4 to 8-6) in cell 500 at each time step.
The resulting reflection coefficient magnitude is shown in Figure 8-9, along
with the exact solution obtained from transmission line methods. The recursive
convolution results show excellent agreement with the exact solution, while the
constant parameter FDTD results are in error, except at 20 GHz where the
constant values are correct.

o2 ng
0.0 I'IRD

In this section we will deal with a slightly more complicated material with
complex permittivity described by the Drude dispersion relation!?

2
Sleveta b
g(w)=1+ m(jvn — u))

(8.25)
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FIGURE 8-4. Electric field vs. position for the Gaussian pulse plane wave incident on a vacuum-
water interface after one FDTD time step.
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FIGURE 8-5. Electric field vs. position for the Gaussian pulse plane wave incident on a vacuum-
water interface after 200 FDTD time steps.
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FIGURE 8-6. Electric field vs. position for the Gaussian pulse plane wave incident on a vacuum-
water interface after 600 FDTD time steps.
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FIGURE 8-8. Electric field vs. position for the Gaussian pulse plane wave incident on a vacuum-
“water” interface after 600 time steps computed using nonconvolved FDTD.
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FIGURE 8-9, Reflection coefficient magnitude for the vacuum-water interface computed using
convolved and nonconvolved FDTD compared to the exact solution.
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where w, is the radian plasma frequency and v, is the collision frequency. 1f
we do not include a conductivity term, i.e, we assume © = 0, then the resulting

crpmiililies £

suscepliviiity function

(8.26)

has two poles, one at ® = 0 and the other at ® = jv.. The Fourier transform of
this susceptibility function is not causal, and the Kramers-Kronig relation for
this case must be modified to account for this.!? In Reference 5 we dealt with
this situation by using the time domain susceptibility function

2

(1)
x()="_r-eTu ®.27)

c

which has a Fourier transform equal to y(®) of (8.26) except at w = 0, where
it differs by m 0,2 8(w)/v., where 8(w) is the Dirac delta function. Rather than
use this approach, which involves reevaluating several of the equations in the
preceding section, it is simpler to use the conductivity term retained in (8.12)
to simplify the susceptibility function. We can expand the complex permittivity
function in (8.25) as

o ) )
e(@)=l4— =l (8.28)
wljv, - o) L by jw
Combining (8.1) and (8.2) we have the relationship
g(w)=¢ +x(m)+—0—
- joe, (8.29)
Comparing (8.28) and (8.29) there will be a correspondence if
e_=1 (8.30)
2
fo13)
x (@)=~ (8.31)
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and

o

&l

c= 80 T (8.32)

Having made these assignments, if we compare (8.31) to (8.2) it is evident that
we can use the Debye results of the preceding section for Drude materials if we
let

(s —sm)z— -P (8.33)

and

_
o
(5]
b

P

and include in our FDTD calculations the conductivity of (8.32). As we should
expect, the FDTD update equation obtained in this way corresponds exactly to
that obtained with a zero conductivity and the susceptibility function of (8.27),
as shown in Reference 5.

Thus, we see that for our purposes a Drude dispersive material is merely
a Debye material with a nonzero conductivity. However, the frequency
dependence of the resuiting complex permittivity is quite different than for
a Debye material because the sign of the exponential susceptibility term in
(8.31) is negative. To illustrate this, consider the example of an isotropic cold
piasma. Our example plasina has a plasma frequency of 28.7 GHz = (w,/2m)
and a collision frequency v, of 2.0 x 10*°. The complex permittivity for this
plasma, including the effects of the conductivity, is shown in Figure 8-10.
The time domain susceptibility, the Fourier transform of (8.31), is shown in
Figure 8-11.

From Figure 8-10 we see that the real part of the complex permittivity
changes sign near the plasma frequency. Below this frequency, where the real
part of the permittivity is negative, the plasma behaves somewhat like a
waveguide below cutoff in that electromagnetic waves do not propagate.
Above the plasma frequency electromagnetic waves propagate through the
plasma, although with some loss, which decreases with increasing frequency
as the plasma behaves more like free space, its high frequency limit. While
FDTD with constant constitutive parameters can be applicd to Debye media at
any single frequency, for Drude materials there is some frequency at which the
negative real part of the permittivity will cause one of the FDTD multiplying
constants to be singular, and at this frequency normal FDTD cannot be used.
With the recursive convolution term added, however, FDTD is applicable over
the entire frequency range of the Drude permittivity variation, as demonstrated

next.
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FIGURE 8-10. Complex relative permittivity of plasma in the frequency domain.

This demonstration will be similar to that given for water in the previous
section, except that rather than calculate reflection from a half-space, we will
calculate both reflection and transmission for a plasma “slab” 1.5-cm thick.
The plasma parameters are as given above. The FDTD cells have Ax = 75 um.
The i-D probiem space consists of 800 celis with the piasma in ceiis 300
through 500 and free space in the remaining cells. A first order Mur absorbing
boundary is used on both ends of the problem space to absorb the reflected and
transmitted fields. The FDTD time step is taken at half the Courant limit as At
= Ax/2c = (.125 ps, as calculations with At at the Courant limit tended to be
unstable for this material.

Because for this example there is a nonzero conductivity, an incident
Gaussian pulse will excite currents in the plasma slab of extremely low
frequency that take exceedingly long times to dissipate, much like the long
“tail” on the reflected pulse for the nonconvolved “water” shown in Figure 8-
8. This extremely low frequency energy also decreases the accuracy of the
resulting FDTD calculations at low frequencies, especially for the transmitted
fields as they have very low amplitudes at low frequencies. To avoid this
problem we will use a Gaussian derivative pulse instead of a Gaussian, because
it has no energy content at zero frequency. Equations for the initial values of
the electric and magnetic fields in the computation space at time t = 0 for a
Gaussian pulse ((8.23), (8.24)) can be modified for the Gaussian derivative
pulse using
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FIGURE 8-11. Time domain susceptibility function for plasma.

Egp(i) = Eg (i) 2(i-ic)/1; (8.35)

Hop (i) = Ho (i) 26(i+ 4 - i. —232) /15 (8.36)

where the GD subscript refers to Gaussian derivative and the G subscript to the
Gaussian pulse E and H fields given in (8.23) and (8.24). For this example the
Gaussian derivative pulse has a half-width i,= 56 cells. The spectrum of the
corresponding Gaussian derivative pulse is shown in Figure 8-12. The incident
Gaussian derivative pulse at the first time step is shown in Figure 8-13, and the
electric fields in the FDTD computation space after 600 and 1000 time steps
are shown in Figures 8-14 and 8-15. The plasma is obviously more highly
dispersive than water, with the transmitted and reflected pulses radically dif-
ferent in shape than the incident pulse.

In order to demonstrate the accuracy of recursive convolution FDTD when
applied to this highly dispersive media, the reflection and transmission coef-
ficients for the plasma slab will be computed in the frequency domain by taking
Fourier transforms of the FDTD time domain results, as was done for water in
the previous section, and compared to the exact frequency domain solution.
Due to pulse spreading, 9600 time steps were calculated in order to allow the
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transient response to settle to zero. This corresponds approximately to the full
time scale of the susceptibility for the plasma in Figure 8-11. The reflection
coefficient magnitude and phase are shown in Figures 8-16 and 8-17. The
reflection coefficient results show quite accurate agreement with the exact
solution over a dynamic range of over 30 dB, going smoothly through the
frequency band where the plasma changes from nonpropagating to propagating
and the real part of the permittivity changes sign. The transmission line effects
evidenced by the lobing structure above the plasma frequency are also quite
accurately computed from the transient FDTD results.

The transmission coefficient results, shown in Figures 8-18 and 8-19, are
accurate over a >70-dB dynamic range, with the reversing slope of the phase
of the transmission coefficient at low frequencies computed accurately.

8.4 SECOND ORDER DISPERSIVE MATERIALS

Up to this point the complex frequency domain permittivity has been
described by either a first order pole or a first order pole plus a conductivity
term that is equivalent to a an additional first order pole at ® = 0. While this
is adequate to model (at least approximately) a wide range of materials, some
materials require one or more second order poles to accurately describe their
complex permittivity. In this section we will extend the previous recursive
convolution approach to a single second order pole, and in the following
section to multiple poles with a demonstration given for a material with two
second order poles. This generality should enable our FDTD calculations to
accurately model any frequency-dependent material. The simplest second or-
der pole to consider is the Lorentz form and we will begin with this.

The compiex permittivity for a frequency dependent material with one
second order Lorentz pole can be described as’

(1)2

e(w)=¢_+(e € )-5-—F——
(©)=e.. (‘ "")m§+2jm8p—w2 (®37)

where @, is the resonant frequency and §, the damping coefficient. We obtain
the corresponding time domain susceptibility function ¥,(t) by considering the
Fourier transform pair?®

X (0= Ype“"v‘ sin(Bpt)U(t) =3 3 (8.38)

Comparing these equations we see that (8.38) will provide the correct expres-
sion for x,(t) provided that
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FIGURE 8-12. Frequency spectrum of the incident Gaussian derivative pulse.
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FIGURE 8-13. Electric field vs. position for the Gaussian derivative pulse plane wave incident
on the plasma slab after 1 FDTD time step.
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FIGURE 8-14. Electric field vs. position for the Gaussian derivative pulse plane wave incident
on the plasma slab after 600 FDTD time steps.

Plasma Slab

N 1\,
Y,

Electric Field (V/m)

vacuum

0 . L
0 100 200 300 400 500 600 700 800

Position (Cell Number)

piasma vacuum
.

s n )

FIGURE 8-15. Electric field vs. position for the Gaussian derivative pulse plane wave incident
on the plasma slab after 1000 FDTD time steps.
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FIGURE 8-16. Magnitude of the reflection coefficient for the plasma slab computed using
convolved FDTD and compared with the exact result
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FIGURE 8-18. Magnitude of the transmission coefficient for the plasma slab computed using
convolved FDTD and compared to the exact result.
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a, =8,
B, = Jnl -8 (8.39)
2
_ wle, -¢,)

The time dependence of y,(t) in (8.38) is not in a form for which the corre-
sponding discrete convolution can be updated recursively. However, if we
define a complex time-domain susceptibility

)
N
2

=

- -a,+ B T
(1) = =ity Pl ()

so that
1,(0) = Rel, (7 ®.41)

where the “A” denotes complex quantities and Re is the real operator, a
recursive convolution can be implemented. Applying (8.9) and (8.11) to (8.40)
readily produces

—iv . Lo . Lo
5= o el ”Bv’mA‘-l -l ”ﬁv)m_ (8.42)
p Tp
and
Am :Ly.p_c(fupfmp)mm{l_c(f(xpﬂ[}p)mr ®43
p o, B, .
with the important feature of (8.43) being the relationship
AR = el it pge (8.44)

which allows the recursive evaluation of the convolution summation. If we
now define

L
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n-1 .
V= 1 ETAr =R (8.45)

m=

then the compiex accumuiation variabie ‘I’; can be updated recursively using
the same approach as described previously for the real accumulator variable for
first order poles using

§o = EAg? + el ol (8.46)

Finally, we obtain the quantities needed to update the electric field in (8.13) by
taking the real parts of the complex quantities with

1" =Reli?] (847)

and

;i] By "Ax™ =Re[i1] 848)

=0

with the summation of (8.48) updated recursively using (8.46).

We now see that a second order pole yields a time domain susceptibility, the
convolution of which with the electric fields can be evaluated recursively
provided that the recursive accumulation is complex. Other than this complex
arithmetic, a susceptibility function with a second order pole is no more
difficult to evaluate recursively than with a first order pole.

While the Lorentz second order pole has a Fourier transform given by
(8.38), other more complicated second order poles which describe materials
such as magnetized plasmas and ferrites have Fourier transforms that also
involve the Fourier transform pair

(o +jo)
2 (849

15 (1) = Epelcos(B,t) U (1) e R

in addition to (8.38). In combination these two Fourier transform pairs can be
applied to yield a complex time domain susceptibility function for more
complicated permeabilities that have the form
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Xp(t) = e*urr[};pcos(Bptﬁyp sin(Bpl)] U (1)
(8.50)
Jip

“Rel(E v \e(““v”ﬁv)‘ﬂu (t)
\p 7'PJ /]

The only extension from the above is that —jy, in (8.40) is replaced by (&E,—jyp).
Some examples of FDTD calculations for materials with more compl'lcaled
second order dispersion are included in Chapter 15, which also deals with the
anisotropy of these materials. .
Rather than give an example result for FDTD calculations for a material
with a single second order Lorentz pole we will first extend our results to
multiple poles. then give some results for a material with two second order

poles.

8.5 MULTIPLE POLES

o ~

While most materials have a complex permittivity whose frequency depen-
dence can be described with a single first or second order pole over '(he
frequency band of interest, some materials, artificial dielectrics, and optical
materials, for example, have more complicated frequency behavior. For' these
materials more than one pole may be needed in the permittivity functlon.to
describe their behavior. Because we are dealing with linear materials, combin-
ing the effects of each pole is a simple matter of adding their separate eftects.
In this section we extend our previous results to multiple second order Lorentz
poles and give an example for a material with two second order poles. Other
combinations of poles can be considered in a similar manner. .

For this exampie suppose that P second order Lorentz poles describe the
complex permittivity as

(8.51)

P G0,
e =e. + (5 _8*)E o) +2j0d, - o’

with the condition that

G, =1

D

M=

1

£
i

where now @, is the resonant frequency for the pth pole and &, is the damping
coefficient for the pth pole. Clearly, we could include other types of first or
second order poles in the summation if we wished. The gxtensions to the results
given in the previous section necessary to include multiple poles in the FDTP
calculations are quite straightforward. Equations (8.39) (hrough (8.46) still
apply, keeping in mind that now the subscript p can take on integer values from

i uﬂ
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TABLE 8-1
Parameters for the Two Lorentz Poles

e =30 g.=15
®, = 2x- 20 x 10° w, = 2m- 50 x 10
8, = 0.1ey 8, = 0.1,

G, =04 G,=06

1 to P so that these equations apply to each pole separately. Equations (8.47)
and (8.48) are modified as

.
=Y Relis) (8.52)
and

n-i p
Zo Ermay =¥ Re[\y;} (8.53)

p=l

with each \iI: term in the summation over p in (8.53) updated recursively
using (8.46).

The demonstration will again involve calculation of the transient fields for
a pulsed plane wave normally incident on the boundary between vacuum and
the dispersive medium, but for this example the medium is described by two
second order Lorentz poles. Referring to (8.51) with P = 2, the constants which
determine the complex permittivity for the demonstration medium are given in
Table 8-1. The conductivity & is taken as zero. The frequency domain complex
relative permittivity for this medium is shown in Figure 8-20. The correspond-
ing time domain susceptibility from (8.38), with the effects of both poles
included as y(t) = x,()+),(t), is shown in Figure 8-21.

For the 1-D FDTD calculation 1500 spatial cells are used, with the vacuum-
medium boundary at cell 500. A first order Mur® absorbing boundary is again
located at cell 1, while the 1000-cell region containing the dispersive medium
provided adequate time delay so that pulses reflecting from the boundary at cell
1500 did not return to the interface before the transients dissipated. The FDTD
parameters are the same as for the water example in Section 8.2, with Ax =37.5
Wm and At = 0.125 ps = Ax/c, where c is the speed of light in vacuum.

The excitation is a Gaussian puise piane wave. The puise is also the same
used for the water example, and its spectrum is shown in Figure 8-3.

Spatial plots of electric field vs. position for the pulse as it reflects from the
interface and propagates in the dispersive medium are shown in Figures 8-22
10 8-25 after increasing numbers of time steps. The extremely dispersive nature
of the medium is clearly indicated.

The accuracy of the FDTD results are again shown by computing the
reflection coefficient vs. frequency from the transient fields. The FDTD com-
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FIGURE 8-20. Complex relative permittivity of two Lorentz pole medium in the frequency
domain.
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FIGURE 8-21. Time domain susceptibility function for two Lorentz pole medium.
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FIGURE 8-22. Electric field vs. position for the Gaussian pulse plane wave incident on the two
Lorentz pole medium after one FDTD time step.
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FIGURE 8-23. Electric field vs. position for the Gaussian pulse plane wave incident on the two
Lorentz pole medium after 300 FDTD time steps.
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FIGURE 8-24. Electric field vs. position for the Gaussian pulse plane wave incident on the two
Lorentz pole medium after 800 FDTD time steps.
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FIGURE 8-25. Electric field vs. position for the Gaussian pulse plane wave incident on the two
Lorentz pole medium after 1300 FDTD time steps.
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FIGURE 8-26. Magnitude of the reflection coefficient for the two Lorentz pole medium com-
puted using convolved FDTD and compared to the exact result.

putations were continued until the transients at the vacuum-medium interface
were dissipated. This required approximately 2000 time steps or 250 ps, which
when compared to Figure 8-21 corresponds reasonably well with the duration

accomplished in the same manner as for the water example, The resulting

reflection coefficient magnitude and phase are shown in Figures 8-26 and 8-
27 and display excellent agreement with the exact solution.

8.6 DIFFERENTIAL METHOD

The previous sections of this chapter presented the recursive convolution
approach for efficiently including frequency-dependent materials in FDTD
calculations. However, an alternative method exists that expresses the relation-
ship between D and E in these materials with a differential equation rather than
a convolution integral.® This section outlines the differential method and
contrasts it with the recursive convolution method.

nla a fra
Let us use for an example a fre

cy-dependent material with a singie
second order Lorentz pole. Then, from (8.37) we can express the relationship
between D and E in the frequency domain as
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FIGURE 8-27. Phase of the reflection coefficient for the two Lorentz pole medium computed

using convolved FDTD and compared to the exact resuit.

2
D —
e(w)= T~ e_+ (es - ew) s 2],0)8? e (8.54)
14

rm ihe suscep! function for use in a convolu-
Rather than Fourier transform the susceptibility f ion for u - .
he time domain as a differential

tion integral we transform this relatlonshlp !
ime derivative and —0?= (j©)* as

9
a second order time derivative. This yields the differential equation

equation, recognizing j® as equivalent to a ti

2
D ¥FD_ OE  _ O°E §.55)
m§D+2893+—at—z-mpesE+28pe& > +€, Fa (

This differential equation can be approximated as a finite difference equation

in E and D°

E™ =[(w}Ad + 25,4t +2)D"" 4D

L+\ (mf,Atz -28,At+ 2)D“‘l +4¢_E" 356
- (mf’Atzes - 23 Ate + Zew)E“"]

/(mgmzes +28 Ate_ + 2€w)

Y]
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and is updated at each time step in addition to (8.13) and (8.7) (with zero
conductivity to eliminate the dependence of D™ on E™! in (8.7)) and solved
for D™!. Thus, at each time step (8.56) would be updated, and this result used
to update

n+l a-i
Hz 1[i+%‘)=Hz z(l+%)

A (8.57)
t af: nys
_TX[Ey(x +1)- Ey(l)]
with the resulting H field used to find the next time value of D in
B N A ) S YL
Dy lu):Uyu)——xlnz 2(1+7) H," (1 J (8.58)

If we compare the calculations required to update (8.56) to those for (8.46),
the recursive convolution update appears to be relatively simple and to require
storage of fewer multiplicative constants, even though it requires complex
arithmetic. Furthermore, the recursive convolution approach requires less com-
puter storage for previous values of the fields. To apply the differential equa-
tion approach, in order to evaluate (8.56) for a material with order-M disper-
sion, M previous values of D, and M-1, additional previous values of E must
be stored® relative to nondispersive FDTD calculations. Considering a fourth

order dispersion, corresponding to the example given previously with two
second order Lorentz poles, the differer

| method would require storage of
seven additional real vanables, while the recursive convolution approach re-
quired storage of two complex variables. These two complex variables corre-
spond to four real variables in computer storage; so that there is very nearly a
2:1 savings in storage by using the recursive convolution method for this case.
As the order of the dispersion increases this ratio approaches 2:1, with the
differential method in general requiring 2M-1 real backstore variables while
the recursive convolution method requires M/2 complex backstore variables,
the equivalent of M real variables.

The explanation for this difference between the two approaches is that the
differential equation approach requires finding the flux density D before find-
ing E, while the recursive convolution method does not. Thus, the differential
equation method yields additional information (the value of D at each time
step), but at the expense of additional calculation and storage. This additional
information regarding D may be useful in some situations, for example, in
dealing with nonlinear materials, and in such situations the differential equa-
tion approach may be preferable, It may also be that due to the greater number
of storage locations used (and therefore increased information retained) the
differential equation approach may be more accurate if the same number of
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cells are used. The recursive approach appears simpler to implement and
requires less additional computer storage per FDTD cell.

8.7 SCATTERED FIELD FORMULATION

In the preceding sections of this chapter the recursive convolution approach
to including frequency-dependent materials in FDTD has been presented. l_zor
simplicity these derivations and simple 1-D examples were calculated using
total fields. As we have discussed in previous chapters, for many applications
a scattered field FDTD calculation is preferred. Even in a scattered field code,
one option is to use total fields in cells containing dispersive materials. This
works well, but seems to be slightly less accurate in computing scattering from
3-D targets. It, however, has the advantage of simplicity. ‘

This section derives the scattered field form of the recursive convolution
method. We follow the approach in Chapter 2, but adapt it to a reiationship
between D and E that involves a convolution. Thus, expressing this relation-

oetween L ang o nat iy €8 3 ca

ship as in (8.3), (2.16) becomes

B(Emc + E:cat)

V x (Hinc + Hscat) - O.(Einc + Esca!)+ £..€0 Py

(8.59)
+€o %[(Einc +E ) % X([)]
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VxH =g gy —— +OE*"

+ €, %[E““‘ * x(t)]

ot
+€g %[E““' * x(t)]

+ (e —1)gg0 +oE™ (8.60)

If we apply the same process to this equation as was done in Section 8.2, the
result will be an equation equivalent to (8.12), but in updating the scattered
component of the electric field instead of the total we obtain
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Esual.nﬂ(i): €. _Escal,n(i)
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Lre, +x" 7
1 ! ESCal, n-my. m
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(8.61)

At a ~inc, n .
o [ ) * (1)
(S +en+y”) ot !

The recursive evaluation of the summation of the scattered field with the
susceptibility function factor on the right side of (8.61) is performed as dis-
cussed previously in this chapter for total fields with no change required. Most
of the remaining terms are evaluated in a straightforward manner. However,
the last term in (8.61), the derivative of the convolution of the incident field
with the susceptibility function, requires some additional effort. We would like
to evaluate this in closed form, both to reduce computer time and increase

accuracy. While this can be done for a Gaussian pulse, it is simpler to accom-
plish if we consider a different form of incident pulse, the smooth cosine pulse.
We now digress from our implementation of the scattered field form of
recursive convolution FDTD to consider this pulse.

The incident field as specified using a smooth cosine pulse is given by

i 10 3
E™(1)= T 3 C,cos{q,T) 0<T<T=0
a=! (8.62)
otherwise

where C,=-15/32, C,=6/32, C;=-1/32, and o, = 2n/T, where T is the length
of the pulse and 7 is the delayed time at the eleciric field focation in question
as given in (3.6). Compare this pulse to the Gaussian pulse described in Section
3.3. For consistency in parameter definition let the period T of the smooth
cosine pulse be defined in the same way as the length of the truncated Gaussian

pulse, i.e., T = 2BAt. A Gaussian pulse with B = 32 and o determined as in
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FIGURE 8-28. Smooth cosine pulse used in the evaluation of the scattered field form of the
recursive convolution FDTD compared to Gaussian puise.

Section 3.3 for a time step of At =0.125 ps is shown in Figure 8-28. The smooth
cosine pulse shown in the figure has a period T corresponding to B =22. This
value of P was determined such that the Fourier transform spectra of the two
doas had the same amplitude at zero frequency. The spectra of the two pulses

puiscs naG n¢ same AMpIiuee &

are shown in Figure 8-29 with the same normalization. It is clear that the
smooth cosine pulse does not have as wide a continuous frequency band as the
Gaussian for a given pulse duration, and in most situations the Gaussian pulse
is preferred. However, the smooth cosine pulse equation is more readily
convolved analytically with the susceptibility function and we utilize it here for
this purpose.

To further simplify the following derivation let us consider a general sus-

ceptibility function
1) = Ape‘%‘U(z) (8.63)

vhere A, and a, may be complex to accommodate second order poles. If this
is the case then the real part of the following result is taken. For multiple poles
a summation over the p index is undersiood.

We now proceed to evaluate

<

a Einc, n+l — a tEinc A AYdA
e e x] = 5 (B - AN ®:64)

s
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FIGURE 8-29. Spectra of the smooth cosine and Gaussian pulses of Figure 8-28

Substituting for the incident field from (8.6 ibili i
Do (5 6o o the e (8.62) and for the susceptibility function

P . 3 [ T 10 b
Y | ginc, n+1
o [Ey *x(1) =$[Apf§e“‘pAdAJ
0
R (8.65)
+ a[glgAqu cos(q(ns(‘l: —A)e"p’\dA)}

In evalualmg (865) W€ must separ O n
t ate our results into three cases depending on
t pe g Ol

-

d inc, n
E[Ey " ex(]=0 (8.66)
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o For0<Tt<T:

*1{0)]= Apite™"

A,Cq o] 67

5 [(q(ns)Z cos(qe,T) — 2,40, sin(qu,T) +age

Finally, because the lower limits in the integrals in (8.65) change from 0 to
17— T due to the finite duration of the incident pulse, and because the sine and
cosine terms become either 1 or 0 when T =T, we obtain for T < T:

_a_{Einc,nﬂ AT A e tt[1 — ol E)— + —-‘E:’—A 1
atl y \Y) P L L32 a}z) +(qws)AJ

M

(R.68)

o
I

Again, a reminder that the real part of (8.67) and (8.68) is to be taken if the
susceptibility function is of the complex form used to describe a second order
pole, and a summation over p is understood for multiple poles.

A brief comment on the numerical evaluation of (8.68) should be made.
Depending on the duration of the pulse and the corresponding value of the
pulse period T, the (real part of the) exponential factor a,T may become so
large that computing results in a numerical overflow. If this is the case then the
approximation € *7'{1— T = ™ (D) ghould be used in the evaluation of
(8.68). Because T < T this term will never cause a numerical overflow, although
it will approach zero rapidly as T increases. The physical explanation for this
is that for large values of the a,T exponent the material is responding quickly
relative to the FDTD computation time scale. A large value of the a,T exponent
(large enough to numerically overflow) is an indication that the dispersive
convolution computation may not be required at all (or at least not for that
particular pole in materials with multiple poles), because the material can be
accurately modeled using constant values of € and G. In other words, on the
time scale of the FDTD computations the susceptibility function is behaving
like a Dirac delta function and the convolution integral reduces to a multipli-
cation of the electric field and a constant amplitude.

To make this point ciearer, suppose that for the waier example considered
in Section 8.2 the time scale of the computation is changed such that both Ax
and At are multiplied by 1000, with the period T of the incident pulse
correspondingly 1000 times longer. Then the a,T exponent would become

1000 times larger, probably resulting in an overflow in computing e?eT.
However, in this calculation the upper frequency limit of the FDTD results
has now become 80 MHz rather that 80 GHz, and on this frequency scale the

.

i

i
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FIGURE 8-30. Derivative of the convolution of the smooth cosine incident pulse of Figure 8-

28 with the exponential susceptibility functi {
v y function. Closed form result for use i field f
of dispersive convolution FDTD. e mseatired held form

dispersive nature of water need not be considered, as the zero frequency
values of permittivity and conductivity will yield accurate results without the

necessity of evaluating the recursive co i int i i
nvolution. The poi
P point is that if the

fact 1es so large as to cause computational difficulties, this
mdlcates Fhat the recursive convolution may not need to be evaluated ;t all

‘ Returning to our scattered field implementation, let us illustrate the results.
of (8.66) to (8.68) by an example calculation. In this example the derivative of
the convolution of the smooth cosine incident pulse shown in Figure 8-28 is
compgted for a susceptibility function with A,=85x102and a=0.50 x 102
as defined in (8.63). The convolution derivative result is plolletl; in .Figure 8-
30 along with the susceptibility function, and shows the pulse distortion and
memory effect of the convolution process.

' As a further illustration of a scattered field computation, the original recur-
sive convoluti(?n FDTD calculation for a pulsed plane wave incident on a
x:‘c':lu'n:;wozie: A::‘terfage is re‘peated using the scattered field form. In order to
nave the smooth cosine pulse approximate in amplitude and duration the
Gaussian pulse used for the previous calculation, the peak amplitude is set at
1000 V/m, and the pulse width [ parameter is set at 128. After one time stép
the scattered field is zero because the pulse has not yet begun to interact with
.the water. After 200 and 600 time steps the scattered electric field vs position
is as shown in Figures 8-31 and 8-32. Comparing to Figures 8-5 am.j 8-6, we
see that in addition to the total field reflected and transmitted pulses there i,s an
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FIGURE 8-31. Scattered electric field vs. position fora smooth cosine pulse piane wave incident
on a vacuum-water interface after 200 time steps computed using the scattered field form of
recursive convolution FDTD.

additional scattered field transmitted pulse of —1000 V/m amplitude that propa-
gates through the water at the speed of light in vacuum. This pulse exactly
(within numerical error) cancels the incident pulse as it should, so that the total
field results of the two different approaches will be identical, at least within the
numerical precision of the calculations.

The reflection coefficient calculations are simpler than for the total field
case, because the incident field at the vacuum-water interface is determined
analytically. Also, the reflected field is equal to the scattered field at the
interface, so that no subtraction of incident from total field is necessary. The
result for the reflection coefficient vs. frequency is identical to that shown in
Figure 8-9 and is not repeated.

Adding the additional terms to the FDTD update equation (8.61) clearly
increases the computational burden relative to computing in total field. How-
ever, (8.67) needs to be evaluated only for the duration of the incident pulse,
a relatively small number of time steps relative to the total number in a typical
problem. For example, for the pulse used in Figure 8-30 with P = 22 the period
T corresponds to 44 time steps, while a typical FDTD calculation may involve
several thousand time steps. Once ihe incident pulse has passed through any
given field point location, (8.68) is evaluated instead, and it only requires
calculation of a single exponential function, because the remainder of the
equation can be easily reduced to a single numerical constant. The other two
additional terms in (8.61) also need to be evaluated only during the duration
of the incident pulse. Therefore, the amount of additional computation is not

on il
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FIGURE 8-32. Scattered electric field vs. position for the smooth cosine pulse plane wave

incident on a vacuum-water interf: i
ace after 600 time steps using the i
recursive convolution FDTD., P # seatered feld form of

as large as it might appear at first icati

S . glance, and for many applications, espe-
cially .scatteflng' probl'ems, the advantages of the scattered field formulat:)q:n
outweigh lh1§ slight disadvantage, especially in typical situations where only
a small fraction of the FDTD cells are filled with dispersive materials. A 3-

D res.ult for .scaneri.ng from a sphere composed of frequency dependent
material obtained using this scattered field implementation is shown at the
end of Chapter 13. T
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Chapter 9
SURFACE IMPEDANCE
9.1 INTRODUCTION

Surface impedance boundary conditions are employed to eliminate the
internal volume of lossy dielectric objects from scattering calculations, In
applications of FDTD they can be very important because they also eliminate
the need to use small cells, made necessary by shorter wavelengths in
conducting media, throughout the solution volume. In this chapter two FDTD
implementations of the surface impedance boundary condition are presented.
One implementation neglects the frequency dependence of the surface im-
pedance boundary condition, while the other is a dispersive surface imped-
ance boundary condition that is applicable over a very large frequency
bandwidth and over a large range of conductivities. Vaiidations are shown in
one (1-D) and two dimensions (2-D). Extensions to three dimensions (3-D)
should be straightforward. To simplify the derivation we have considered
total fields, but the extension to scattered field formulation would involve a
straightforward application of the methods of Chapter 2. Because the total
fields can be obtained at any time during a scattered field FDTD computa-
tion, alternatively for field components involving surface impedance condi-
tions one could use total fields even if the remaining cells in the FDTD space
were computing scattered fields.

When FDTD is directly applied to analyze electromagnetic field (EMF)
interactions with lossy dielectric objects, both the fields external to the object
and those inside the object are calculated. However, for some applications only
the exterior fields are of interest. Because the wavelength inside these materials
is much smaller than the free space wavelength, accurately computing the
internal fields may require a much finer spatial grid within the object than
external to it. This greatly increases the computer resources required.

If the material has relatively high loss, the fields do not penetrate very far
into the material, and only the fields very close to the surface affect the external
response. In this situation the effects of the interior fields on the external fields
can be approximated by a surface impedance boundary condition (SIBC). This
boundary condition eliminates the need to calculate the fields internal to the
object. This reduces the number of cells in the FDTD solution space not only
by eliminating cells within the lossy dielectric, but also by allowing larger cells
t0 be used in the exterior region without the need to divide the FDTD space into
different regions with different cell sizes and time steps.

Of historical interest, surface impedance boundary conditions were first
proposed by Leontovich in the 1940s! and were rigorously developed by
Senior? in a 1960 paper. During the past 30 years, researchers have applied
surface impedance concepts in the frequency domain to numerous electromag-
netic scattering problems. Time domain surface impedance concepts received
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little attention until recently. Tesche? has investigated surface impedance con-
cepts in an integral equation time domain solution, but presented limited
computational time domain results. Based on the approach given by Tesche,
Riley and Turner* developed an FDTD surface impedance similar to that given
here but did not consider recursive evaluation of the required convolutions.
This makes their implementation of an FDTD SIBC relatively inefficient.
Maloney and Smith® have implemented an SIBC in the FDTD method, which
does include recursive evaluation of the convolution. However, their imple-
mentation has a minor disadvantage relative to that given here because the
exponential coefficients for their recursive evaluation method must be deter-
mined whenever the conductivity or loss tangent is changed. On the other hand,
their implementation does not require that the displacement current is negli-
gible. With the method given here, based on that in Reference 6, the exponen-
tial coefficients do not change with changes in permittivity or conductivity.
These coefficients are included in this chapter.

In this chapter we use the term “impedance” in relation to the boundary
condition, even though when applied in the time domain it is not really an
impedance. However, the term “surface impedance” is so widely used that we
do apply it in the time domain knowing that confusion is unlikely.

As stated, the motivation for implementing an SIBC in the FDTD method
is to reduce the computational resource requirements for modeling highly
conducting lossy dielectric objects. In the following discussion we estimate the
potential reduction. As FDTD is normally applied to penetrable objects, a small
enough cell size must be chosen to resolve the field inside the object at the
maximum frequency of interest. Thus, the cell size dimensions are typically

o.1)

where ér is the complex relative permittivity of the material and A and A are
the wavelengths inside the material and in free space, respectively. The com-
plex permittivity for lossy dielectrics is

~ c
e=e+j~m 92

The complex relative permittivity is deter-

9.3)
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If the. ma}tenal is a good conductor over all frequencies of interest, then the
constitutive parameters satisfy the condition

—>>1
> 9.4
we ©. )

Therefore, € can be approximated as

s ©95)

and we see that under these conditions ér is proportional to G.

if Wwe assume that except for the region containing ihe lossy dieleciric
material only free space and perhaps perfect conductor exist, then applying the
SIBC would allow us to determine the cell dimensions based on the free s;)ace
wavelength so that

A; A

Xsise = Asipe = A2gpe =hy /10 (9.6)
Thus, by comparing (9.1) aan.6) we see that the cell dimension would be
increased in proportion to \j]érl by applying the SIBC. This would allow
fewer, larger cells in the FDTD computations, thereby decreasing the memory
requirement by a factor of

where d is the dimension of the FDTD computations (9.1, 9.2, or 9.3).
Th'ere W(?Llld also be considerable savings in computation time. Since the
cell dimensions are larger the time step can be made larger. If we assume

. . . Ax
lcl:cl:u}atlt)n attlie ,,AC.(,)urfi,m MleTm' :hen At =E so that the time step size is

eased in proportion to € |. If we further assume that the time iength of the
response will be the same whether the SIBC is applied, then the total number
of time steps will be reduced in proportion to the increase in At. Since the total
computational time necessary is approximately proportional to the total num-
ber Qf FDTD cells times the total number of time steps (see discussion in
Section 3.8), an estimate of the computational savings factor S by which the
computation time is reduced is
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/ﬁ( \ \.dH
Wl

)

This estimate neglects the increased time which may be necessary to compute
the fields in the cells in which the SIBC is applied, but there would be relatively
few of these cells, and in compensation all cells interior to the conducting
region need not be updated at all.

The assumptions involved in obtaining the estimate in (9.7) may not always
be met, but (9.7) gives a rough indication of the computation time savings
which may be possible by the application of SIBC.

From this discussion we see that the potential for savings increases with
increasing ©. However, as 0 becomes larger ihe response of the material
approaches that of a perfect conductor, so that for extremely large values of G
applying the perfect conductor boundary condition may give acceptable re-
sults. Thus, the applicability range of SIBC is for conductivities that are large
enough so that over the frequency range of interest (9.4) is satisfied, but small
enough so that the response of the material differs significantly from that of a
perfect conductor.

Having presented the reasons for applying SIBC and an estimate of the
potential computational savings, we now proceed to develop the constant and
dispersive implementations in FDTD.

9.2 CONSTANT PARAMETER MATERIALS

To implement an SIBC in the FDTD method for materials whose consti-
tutive parameters do not vary with frequency we consider the planar air-lossy
dielectric interface as shown in Figure 9-1. The conducting material has
permittivity €, permeability W, and conductivity 6. We assume that the
thickness of the material is large compared to the skin depth. We will also
assume that the material is linear and isotropic. Figure 9-1 also shows the 1-
D FDTD grid with field locations relative to the material interface which will
be used.

The first order (or Leontovich) impedance boundary condition relates tan-
gential total field components and is given in the frequency domain as'

E (0)= Zs(m)Hy(m) 9.8)

where Z,(®) is the surface impedance of the conductor. The frequency domain
surface impedance for good conductors is

bl
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FIGURE 9-1. Geometry for illustrating develoj i
pment of SIBC sho - i
planar free space-conductor interface. vine 1D FDTD grd and

Z (0)=(1 +j)\/% = ,fj%” (9.9)

Using (9.9), (9.8) can be rewritten as

E (0)=(R,(@)+ sz(m))Hy(m) 9.10)

whcr‘c. R; is the surface resistance and X, is the surface reactance. Consider
rewriting (9.10) as

E,(0) = (R,(®) + joL,(@))H, () 9.11)

with the resistance and inductance defined by

R,(m)=\%

L.(0)= %(3 ©.12)
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To remove the frequency dependence of the surface resistance and inductance,
these quantities are evaluated at a particular frequency and are subsequently
treated as constants. Equation (9.11) then becomes

E (0)=(R, +joL, )H, (o) ©9.13)

This is the required frequency domain constant SIBC. To incorporate this
boundary condition into the FDTD algorithm, the time domain equivalent of
(9.13) must be obtained. Performing an inverse Fourier transform operation on
(9.13) results in

E ()=RH/(1)+ Ls%[Hy(t)] 9.14)

This equation defines the time domain constant surface impedance boundary
condition.
To impiemeni this constant su
space and time are quantized as usual by
2= (kAz) = (k)
t = (nAt) = (n)

nce boundary condition in FDTD,

o tmneda
Gance ooundcar Y

ace mpe

(9.15)

The Faraday-Maxwell law is then used to obtain the H, component in the free
space cell next to the impedance boundary. The impedance boundary condition
is formulated on the assumption that the electric and magnetic fields are
colocated in space and time. However, on our FDTD grid this is not true. We
will neglect the magnetic field spatial offset of one half cell in front of the

impedance boundary and show in validation comparisons given later in the
chapter that this introduces an error which is proportional to this spatial offset,
but that reasonably accurate results nevertheless can be obtained.

Applying the usual finite difference approximation to the Faraday-Maxwell

curl equation for the field geometry given in Figure 9-1 yields

AHy(k+1/2
_(uOAxAZ)[_Y_(.A_:-_/_)

Note that E,*(k+1) of (9.16) is the electric field component at the impedance
boundary. Quantizing space and time in (9.14), neglecting the one half cell
spatial offset, and using the result to eliminate E"(k+1) in (9.16) gives

:\:E:(k+l)Ax—E:(k)Ax 9.16)

H(k +1
_(MAZ)[MJ:RSH;(kn/z)
At
AH(k+1/2 9.17)
L{'——y(—A;i_)j\-E;(k) (

o R

i
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The finite difference time derivatives involving H, will naturally use the one
half time step offsets between E and H fields. However, the H"(k+1/2) term
muitipiying R, in (9.17) is time indexed at time step n. in order to apply (9.17)
to the usual FDTD fields with time offsets between E and H this term is
approximated as

Hy(k+1/2) =~ [HI(k +1/2) + HY (k +1/2)] (9.18)

N | —

_ Using (9.18), and explicitly approximating the finite difference time deriva-
tives on the magnetic fields in (9.17) gives

~(moAz+ L)(HI A (k +1/2) = HY % (k +1/2))

CRAL o iy
=5 (Hy™(k+1/2)-H] ’V‘(K+1/2))—A[Ef(k) (9.19)

Solving for H,"'(k+1/2) in (9.19) yields

H;w(kﬂ,z):[w

HD
UoAZ+ L, +RSA1/2] y Hkr1/2)

(9.20)

_—At__E"(k)
MoAz+ L, +R.AY2 "

. Tbis equation implements the constant surface impedance boundary condi-
tion in the FDTD method. It will provide reasonably accurate results for a
narrow band of frequencies centered around the frequency for which R, and L.
are determined. In the next section an FDTD surface impedance implesmema-S
tion valid for a much wider band of frequencies is given.

9.3 FREQUENCY-DEPENDENT MATERIALS

To derive a similar relation to (9.20) for materials whose constitutive
parzfmet?rs vary with frequency which is valid over a wide frequency band, we
begin with the same set of underlying assumptions as for the constant surface

imnedance. The primary ex ion i
impedance. The nrimary exception is that the surface impeda i
P p y exception is that the surface impedance will not

ha
approximated by its value at a particular frequency. The frequency dependen:;
of the: surface impedance is inverse Fourier transformed to equivalent time
domain form for convolution with the electric field. The SIBC is then imple-
mented in the FDTD method with the required convolution evaluated using the

recursive technique presented in Chapter 8.
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The first order impedance boundary condition remains unchanged and is
given by (9.8). In a similar fashion as Tesche,? (9.8) is rewritten as

Z (0
B (w)=jw{ o )}Hy(w) ©21)
X Jm
Defining
z
Z(0)=- ﬂ (9.22)
jo

r
Z(w)= (9.23)

Substituting (9.23) into (9.21), a modified SIBC is obtained as
E, (@)= Z(o]joH, ()] 0.2

The time domain equivalent of (9.24) is obtained via an inverse Fourier
transform operation as

o 9
E, (= Z{()* [g[Hy(t)ﬂ 9.25)
where the “*” denotes convolution,
E ()= 7"[1?‘(0))]

Hy(t):f'I[Hy(m)] (9.26)

2= 5"[Z;()]

and the 7! denotes the inverse Fourier transform operation. Note in (9.25) that
as G—oo, the boundary condition becomes E,(t) = 0 as required for a perfect

3
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conductor. To determine Z/'(t), the Laplace transform variable s=jo is used in
(9.23) to obtain

, w1
z5)= % — ©.27)
VO Vs
Using the Laplace transform pair
AL ,
Nea (9.28)

where L' the denotes the inverse Laplace transform operation, Z,'(t) is then
determined to be
u
’ [ 7
z,()=7"[Z)]=

V7

, t>0

)

<t
(e14

3 t<0

=)

This is the required time domain surface impedance function.

In order to implement (9.25) using the results of (9.29) in FDTD, we first
consider discrete implementation of the convolution of a time derivative.
Explicitly writing (9.25) we have

t
d
E.(0= (\/..'i.[:u._-\ HY(I_T)]dT
4 VROt (-1 i
t
n 1 P (9.30)
= =1 2 -ZH (-
no_[ 1:[ ot st T)}dt

The convolution expression in (9.30) must be discretized since H, is only
known at discrete intervals. To aid in this we note that with T = aAt,

(m+1)At dt —m+1 qey
,,ﬁ:\/Ag J‘ ——
mae VT m VO

acciimiing I et

Using this result and assuming H, is constant over a At time interval, (3.30)
becomes in finite difference form

»

Ex(k+1)=
\/@E‘z(}(m){ﬂz'm*%(muz)—H;"“‘”(k“”) 031

TG m=0 At
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where

d )

=2 (9.32)
[od

m+l
Zo(m): i N

Being able to define the discrete impulse response function Z, in(?ependently
of the size of At simplifies the recursive evaluation of the convolution summa-
tion as shown in the next section.

We now convert (9.16) to explicit finite differences and substitute 9.3 to
eliminate the E,7(k+1) electric field component at the surface of the conductor

to obtain

HI A (k+1/2)-H A (k+1/2)
—MoAZ . =
At
TArnl  [HV™ik+1/2)-H " Hk+1/2)| o 933
(== TZo(m)| — : - -EX(K)
VT[U m=0 L At

We can now solve for H ™!/ obtaining

HI(k+1/2)-H} i (k +1/2)

I "ilzo(m)[}{;““”%(k +1/2)-HIT™ (K +1/2)]

1+2Z,Z4(0) m=0 038
At n
+——————En(k)
(moAz)(1+ Z,Z4(0))
where
1 At
z,=—— [F= (9.35)

' pyaz\ mo

Equation (9.34) is suitable for computer implementation and includes the
full convolution with all past magnetic field components. We note that. as
G300, Z,—30, (9.34) becomes equivalent to the usual FDTD update equation
for H,(k+1/2) with E,(k+1) = 0 at the surface of the perfect_conductor.

Dizect calculation of this full convolution would be impractical for large 3-
D problems, adding considerable computation burden in both storage of past
H lfield values and computation of the summation at each time step. The
development of an efficient recursive implementation of (9.34) is the subject
of the following section.

9.4 RECURSIVE EVALUATION

In Chapter 8 an approach to evaluate discrete convolutions recursively was
presented. The method requires that the time domain susceptibility function be

4
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exponentially damped. This recursive evaluation removes the need for the
complete time history of field components to be stored and for the complete
summation to be evaluated at each time step, resuiting in a tremendous com-
putational savings. Because Zy(m) does not depend on the conductivity and
permittivity of the material or on the value of At, the exponential coefficients
can be used in the application of the SIBC for all materials so long as the
constraint of (9.4) for general application of surface impedances is satisfied.

If Z,(m) can be approximated by a series of exponentials, then the SIBC can
be efficiently evaluated using recursion. Figure 9-2 shows Z(m) vs. m, and it
is of a form such that an accurate approximation by a series of exponentials
appears feasible. We thus intend to approximate Zy(m) as a summation of
exponential functions

N
Zy(m)~ Tae™ (9.36)

i=i

where N is the number of terms in the approximation.

In order to determine the coefficients of the terms in the approximation we
will apply Prony’s method,” as is done in Reference 5. When this is done the
resulting coefficients are given in Table 9-1. These coefficients can be used for
any values of permeability and conductivity provided that the fundamental
constraint of applicability of surface impedance (9.4) is satisfied.

Figure 9-2 also shows the Prony approximation to Zy(m) with N = 10 using
the coefficients in Table 9-1. Other numbers of terms were considered, but N
= 10 provides an accurate approximation with a reasonable number of terms.
Thus, using (9.37) with N = 10 in equation (9.34) gives

HY Ak +1/2)=H2 %(k +1/2)
_ Z, 10 n-1 ma, [yo-m+ 2= H™™%(k +1 2
1+z,zo(0)i=1m§f"° [ y Ak +1/2)=HTT T (R + 1 )]
At

' (MoAz)(1+2,Z4(0))

9.37)
E ()

where (9.37) is now a form suitable for recursive evaluation.
Following the same procedure as in Chapter 8, we define the accumulator
function ¥ for the ith exponential term as

n ! m n~m+Y% n-m-}
LP:‘ =mz=laie &l.[Hy +/__Hy /2] ©9.38)

Now consider the first several terms. Because the summation starts at m =
1 and goes ouly to n — 1 we find that \y? = \yll =0. Now for n =2 we find
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Exact
+ Prony approx.

log { Zo(m)}
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FIGURE 9-2. FDTD dispersive SIBC discrete time domain surface impedance function Z (m)
vs. m and 10-term Prony approximation.

TABLE 9-1
Prony Coefficients for Ten-Term Exponential Series Approximation to
the Discrete Impulse Response Function Zg (m)

i L] o

1 0.79098180D-01 0.11484427D-02

2 0.11543423D+00 -0.13818329D-01

3 0.13435380D+00 0.54037596D-01

4 0.21870422D+00 ~0.14216494D+00

5 0.98229667D-01 -0.30128437D+00

6 0.51360484D+00 ~0.56142185D+00

7 -0.20962898D+00 ~0.97117126D+00

8 0.11974447D401 -0.16338433D+01

9 0.11225491D-01 -0.28951329D+01

10 ~0.74425255D+00 ~0.50410969D-+01
w? =a e fu? _pukl (9.392)
¥ =ae (HP -HE TR

and forn =3

v} =ae® [HY ~ 1] vae™ [H) - 1Y

(9.39b)
=a;e™ [H;{? - H;A]-ke“‘ w?
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so that in general

v =ae® [H?—J/Q _ H;"%]+ Syt (9.40)

Substituting (9.38) into (9.37) we obtain

HY Ak +1/2) = HI #(k+1/2)

Z) E T(k+1/2)
1+ ZIZO(O) i:]\Vl

At .

s+ zzy)

(9.41)

where (9.40) is used to evaluate the ¥, accumulators at each time step before
(9.41) is evaluated. Note that only one additional past value of magnetic field
is required for this. For consistency in the numerical evaluation of the Z, (m)
function at m = 0 it is approximated as

Z,(0)=Xa, 9.42)

9.5 DEMONSTRATIONS

{ the application and accuracy of ithe consiant and
dispersive FDTD SIBCs will be given. The first is a 1-D demonstration of
calculating plane wave reflection for normal incidence on a conducting half
space. The second involves calculating the scattering width from a 2-D con-
ducting cylinder.

In order to make the 1-D calculations, (9.20), (9.40), and (9.41) were
implemented in a 1-D total field FDTD code for the geometry shown in Figure
9-1. The problem space size is 301 cells, the impedance boundary is located at
cell 300, and the electric field is sampled at cell 299. The maximum frequency
of interest for each problem was 10 GHz. The incident electric field is a
Gaussian pulse with maximum amplitude of 1000 V/m and has a total temporal
Wwidth of 256 time steps. The incident pulse contains significant energy to 12
Gllz. Two computaiions were made, with 6 = 2.0 S/m and & = 20.0 S/m. The
loss tangents at 10 GHz are 3.599 and 35.99, respectively. The permittivity and
permeability for the lossy dielectric were those of free space. The cell size and
time step were 750 wm (40 cells per free space wavelength at 10 GHz) and 2.5
Ps, respectively. The surface impedance for the FDTD constant SIBC was
evaluated at 5 GHz, so that at this frequency we would expect the two methods

mAanatratinne o~
Two demonstrations o
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to agree. For each FDTD computation, a reflection coefficient vs. frequency
was obtained by first dividing the Fourier transform of the reflected field by the

trancform af tha incidant fia A o innidan o s i
transform of the incident field at cell 299. The incident field was obtained by

running the FDTD code with free space only and recording the electric field at
cell 299. The reflected field is then obtained by subtracting the time domain
incident field from time domain total field.

The results are compared with the analytic surface impedance reflection
coefficient computed from

Z,(0)-n,|

Ri= 1ZS(m)+n0}

(9.43)

where Z () is given by (9.8) and 1, is the free space wave impedance. The
phase of the FDTD reflection coefficient was corrected to account for the round
trip phase shift of one cell since the FDTD reflection coefficient is computed
from electric fields recorded one cell in front of the impedance boundary.

The high conductivity surface impedance of (9.8) is an approximation to the
general surface impedance for lossy dielectrics given by

-
Z ()= Jﬁj% (9.44)

with no restriction on the conductivity in (9.44). However, for a surface
impedance to be applied in general it must be much greater than the impedance
of free space (so that the wave vector inside the material is approximately
normal to the surface independent of the direction of the wave vector outside
the material), and further, the material must be lossy enough so that all energy
entering it remains inside. Thus, the restriction in (9.4) is usually satisfied in
practical applications of surface impedance. The advantage of using (9.8) over
(9.44) for the FDTD SIBC implementation is that the resulting time domain
impulse response is independent of the conductivity. The exponential approxi-
mation needs to be performed only once the conductivity is not changed each
time; the Prony coefficients of Table 9-1 can be used in all applications of this
SIBC.

coefficient magnitude and phase results vs. the analytic SIBC results for ¢ =
2.0 S/m. Notice the agreement between the dispersive and exact solution is
excellent, and the maximum error is about 0.01 at 10 GHz in Figure 9-3. The
constant SIBC agrees at 5 GHz as expected.

Figures 9-5 and 9-6 show the FDTD constant and recursive SIBC reflection
coefficient magnitude and phase results vs. the analytic SIBC results for o =
20.0 S/m. The dispersive SIBC shows excellent agreement with the exact
solution.

9-3 and 9-4 show the FDTD constant and recursive SIBC reflection

4
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FIGURE 9-3. Refl coefficient de vs. frequency for normal incidence plane wave
calculated for ¢ = 2.0 $/m using FDTD constant and dispersive SIBC compared to exact solution.
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FIGURE 9-4. Reflection coefficient phase vs. frequency for normal incidence plane wave calcu-
lated for 6 = 2.0 S/m using FDTD constant and dispersive SIBC compared to exact solution.
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FIGURE 9-5. Reflection coefficient itude vs. frequency for normal incidence plane wave

calculated for ¢ = 20.0 S/m using FDTD constant and dispersive SIBC compared to exact solution.
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FIGURE 9-6. Reflection coefficient phase vs. frequency for normal incidence plane wave calcu-
lated for ¢ = 20.0 S/m using FDTD constant and dispersive SIBC compared to exact solution.
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Note that as the conductivity increases the accuracy of the SIBC improves.
For these conductivities of 2 and 20 S/m, the demonstration cell size corre-
sponds 10 26 and 9 cells per wavelength inside the conducting material at 10
GHz, respectively. Thus, the cell size is not reduced from that which would be
required if the entire space were gridded with cells small enough to resolve the
fields inside the conductor. These conductivities were chosen to illustrate the
accuracy which can be obtained at the lower limit of the high conductivity
approximation necessary for application of the SIBC. For higher conductivities
with a fixed cell size the accuracy improves as the cell size becomes a larger
fraction of the wavelength inside the conductor.

Because cell size is a factor in applying the SIBC, let us consider this
further. The FDTD SIBC implementation is an approximation, therefore, some
amount of divergence between the SIBC curves and the analytic solution is to
be expected. To observe this, the same 1-D test problems as above (using the

and four times the original cell size, and with the time step size proportionately
reduced. This is equivalent to having 20 and 10 cells per A, in the free space
region, respectively, and a corresponding doubling of the time step size with
each cell size change. Figures 9-7 and 9-8 show the FDTD dispersive SIBC
reflection coefficient magnitude and phase results vs. the exact solution for ¢
= 2.0 S/m using the original cell size and the larger cell sizes. Notice that for
each doubling in cell size and time step, the error between the SIBC result and
the exact solution approximately doubled. In other tests of the SIBC the cell
size was kept constant while the time step size At was reduced. In these tests
the error did not change appreciably with reduction in At, indicating that the
error in the SIBC implementation is proportional to Az over the range of cell
sizes examined here. This is probably due to the assumption that E and H fields
at the surface are colocated, while in fact they are spatially separated by one
half cell. The constant SIBC exhibited similar behavior at the 5 GHz tie point
for larger cell sizes, confirming that this error is due to the spatial offset
between E and H at the surface rather than to errors in the dispersive SIBC
recursive convolution implementation.

While the 1-D demonstration illustrates the improvement in wide band-
width accuracy than can be obtained from the dispersive SIBC relative to the
constant implementation, it is limited to normal incidence. In the next demon-
stration oblique incidence is considered in a fully 2-D calculation of the
scattering width vs. frequency for an infinitely long square cylinder for two
incidence angles, ¢ = 0.0° and ¢ = 30.0°. These calculations were made using
a 2-D TM scattered fieid FDTD code as described in Chapter 2. In order to
apply the SIBC the total field was determined at each time step at each SIBC
field location, the SIBC applied, and the result reconverted to scattered field.
Because only a relatively small number of cells are actually at the surface of
the cylinder this approach was not really that inefficient. The cylinder was
0.099 m? and had parameters € = €, Il = 1), and ¢ = 20.0 S/m.

To illustrate the advantages of the SIBC, the cylinder was modeled in two
ways. The first was a normal FDTD computation with a fine grid size of 14
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FIGURE 9-7. Reflection coefficient magnitude vs. frequency for normal incidcnc? plane wave
calculated for & = 2.0 S/m using FDTD dispersive SIBC with original and larger cell size compared

to exact solution.
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cells per A (at 10 GHz) inside the conducting cylinder, and the second was a
SIBC computation with a grid size of 10 cells per A in free space (at 10 GHz).

Tignre Q.0 chawa tha I fiald aamnonante and tha cvlindar dimengiagne (in
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cells) for the FDTD and SIBC computations. For the full FDTD computation,
the cylinder was modeled using 198 cells in the x and y directions, the cell size
was 500 um, and the time step was 1.67 ps. For the SIBC computation, the
cylinder was modeled using 32 cells in the x and y directions, the cell size was
0.003 m, and the time step was 10 ps. The SIBC cell size corresponds to only
about two cells per wavelength in the conducting material at 10 GHz. For both
computations, there is a 100-cell border between the cylinder and the secnd
order Mur absorbing boundary. Thus, the total number of cells in the SIBC
calculation is only 34% of that for the full FDTD calculation. The total number
of time steps for each calculation was 1024, and an incident Gaussian pulse
with total pulse width of 64 time steps was chosen. The near zone scattered
fields were transformed to far zonc fields by the 2-D near zone to far zone
transformation described in Chapter 7.

Figures 9-10 and 9-11 compare the scattering width magnitude vs. fre-
quency results of the full FDTD computation and the SIBC computation for ¢
=0° and ¢ = 30°. The agreement between the two methods is quite reasonable
over the entire frequency bandwidth, especially considering the much larger
cells and time step size used in the SIBC calculations. The computation time
using the SIBC was approximately 30% of the full FDTD calculation, which
is very nearly equal to the reduction in the total number of cells.

To summarize, in this chapter we have presented both constant and disper-
sive surface impedance boundary conditions valid for good conductors. The
corresponding time domain impedance boundary conditions have been de-

eiiad o d abiate sl Ao doonotantad b 1 TY aniieiiiael oo oF tha oo flaaelo
rivea ainda incir vaiiaity acimonsiraied oy 1-us Coinpuiaiion o1 inc rereciion

coefficient at an air-conductor interface over a wide frequency bandwidth.
While the constant SIBC is simpler, the accuracy advantage of the dispersive
SIBC implementation for wide bandwidth calculations was demonstrated.
The applicability of the SIBC to 2-D scattering problems was demonstrated
by scattering width computations for an infinite square cylinder. For both the
1- and 2-D cases, the dispersive FDTD results were shown to be in good
agreement with exact results over the entire bandwidth. Considerable com-
putational savings were illustrated in the wide bandwidth 2-D example. This
is due in part to a recursive updating scheme which permits efficient appli-
cation of a dispersive surface impedance boundary condition to practical
scattering problems.
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FIGURE 9-9. Two-dimensional geometry for scattering width computations frgm an infinitely
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SUBCELLULAR EXTENSIONS
10.1 INTRODUCTION

The computational cost of the FDTD technique scales directly with the
number of cells. Often the object being analyzed has important structural
features, thin wires, or narrow slots (for example) that are very small in at least
one dimension as compared to the main body of the scattering or coupling
object. Large cells that allow the main body to be accurately rendered are
inadequate when it comes to the “small” structure features. Reducing the cell
size throughout the FDTD computational space is one method for dealing with
this situation, but it is computationally expensive, and a method that may not
even be practical if computer resources are inadequate.

Two ways around this problem are discussed here. The first approach uses
large FDTD cells throughout the computation space, but approximates the
small geometry elements by modifying the equations for the large cells that
contain them. For example, a surface impedance like that considered in the
previous chapter, may be used to include material layers thinner than the FDTD
cells. Another variation involves special equations for calculating the fields in
the vicinity of wires thinner than the FDTD cell size. Effects of lumped circuit
elements which are contained within one FDTD cell may also be included by
modifying the field equations for that cell. Development of this approach often
involves application of Maxwell’s equations in integral rather than differential
form, but the finite difference equations can be obtained easily from the
integral form of Maxwell’s equations, and they are more easily modified to
include geometry variations within an FDTD cell.

The second approach is a replacement of the region about the structured
feature of interest with a finer grid, what has been referred to as the expansion
technique. This approach is effective in that a finer grid is only employed
where needed. The effort lies in combining in a physically reasonable way the
two geometries: the first or coarse model with the second or finer and spatially
smaller model. The discussion in Chapter 6 of human body modeling utilizes
this approach. In this chapter the expansion technique is presented from the
standpoint of modeling interior coupling through a relatively small aperture
into an aircraft,

10.2 INTEGRATION CONTOURS

In modeling structures that are small as compared to the FDTD cell size
(thin wires, for example), a useful approach is to apply the integral form of
Maxwell’s equations in the derivation of the FDTD equations rather than the

differential form. The integrations are carried out so as to include the sub-cell

1) GRiw wis
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FIGURE 10-1. Yee cell field locations relative to Hz(I,J,K).

geometry and field effects, and the corresponding FDTD update equation is
then obtained. In this section the fundamental approach is given, and in the next
section it is applied to a thin wire. The concept of applying integration contours
in FDTD was developed by Taflove and Umashankar in References 1 and 2.

To illustrate the approach consider an Hz component of magnetic field and
the encircling electric field components that are shown in Figure 10-1. The
usual Yee notation is used, and the field locations are separated by Ax, Ay, and
Az as usual. We now apply the Maxwell integral equation

)
-dl=) 5—”

i
EI
B

O =

to the fields in Figure 10-1, the integral contour being a square with sides
passing through the four electric field components. With the assumption that
the fields are uniform along each side of the contour, we obtain the result

[EX(I,J,K)—Ex(I,J,+1,K)]Ax+[Ey(I,+l.J,K)—Ey(I,J,K)]Ay

= u—% H,(1,1,K)AxAy (10.2)

If we now divide through by AxAy and rearrange terms slightly, the result is
the usual FDTD update equation

oH,(1,1,K)
2 ot
E,(LJLK)-E,(LI+1LK) | E,(1+1,,K)~E,(L1.K)
Ay Ax

(10.3)
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FIGURE 10-2. Yee cell field lacations relative to Ez (I, J, K).

where we recognize the two terms on the right-hand side as the finite difference
form of the curl operation, which is where our derivation began in Chapter 2.
If we apply the other Maxwell integral equation

_ 9. - — -
gH dl1 =—E§”E~ ds+[[oE- ds (10.4)

to the fields in Figure 10-2 in a similar fashion we obtain

N 1

jx+[l~i (L1.K)-H,(I-1,L,K)[ay

(H (LI -1L,K)~H, (L7,

K)
E L(LLK)AxAy + 0E, (I, K)AxAy (10.5)

which, as expected, reduces to the usual FDTD equation

EQEE%I—J’ELGEZ(I,J,K)

_H(LJ-1K)-H,(L1LK) . H,(L,J,K)-H (I-1,]K)
Ay Ax

The point of this exercise is to show that we can obtain the FDTD difference
equations by using either the differential or the integral forms of the Maxwell
equations applied to the field positions in the Yee cell.



188 The Finite Difference Time Domain Method for Electromagnetics

Wire \ EX(JK#1)

WK+

w‘
Ez(l,J,K)
Hy(1.J,K)

® Ez(1+1,J.K)

|
r
———-
z

FIGURE 10-3. Field locations and geometry for thin wire.

In the next section of this chapter this is exploited to modify the FDTD
update equations so as to include a subcellular thin wire.

10.3 THIN WIRES

In antenna and coupling applications a common geometry to be modeied is
a thin wire. Often these wires are much smaller in radius than other geometry
features, and it is desirable to avoid sizing the FDTD cells small enough to
accurately model the thin wire. On the other hand, approximating the wire as
being the same size as amuch larger FDTD cell may yield poor results, as both
antenna impedance and coupling are sensitive to the wire radius.

In this section we develop a simple approach to include, at least approxi-
mately, the effects of a wire with radius smaller than the FDTD cell dimensions
on the FDTD update equations for the adjacent magnetic fields. The approach
here follows that described by Umashankar and Taflove.! An alternative ap-
proach has been described by Holland and Simpson.?

The geometry is shown in Figure 10-3. A conducting circular wire of radius
t, is positioned to align with and center on the Ez(I,J,K) field component. The
wire is assumed to have a radius smaller than 0.5 Ax, and since Ax must be
considerably smaller than the wavelength for FDTD to be applied, therefore,
the wire radius also must be much smaller than a wavelength. This justifies the
assumption that the total normal electric and circumferential magnetic fields in

the vicinity of the wire have a 1/r dependence, where 1 is the radial distance
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from the center of the wire. In the following total fields are assumed, but the
approach can be extended to scattered fields if desired.

With the above assumptions, we approximate the spatial dependence of the
fields in the vicinity of the wire as

Ax
Hy(r,!,K): H}V(I,J,K)-; (10.7)
within the contour,
Ax
Ex(r,J,K)=Ex(I,J,K)-7—r (10.8)

Cor TNy = Ty =0l ol oo
contours, with Ez(1,J.K) =0 all along the

wire axis, and Ez(1+1,] K) ssumed to be uniform along the right contour.
lf we now apply the Maxwell Faraday's law equation (10.1) to the contour
passing through the four electric field locations we obtain

alnmy the upper and lower i

Ax
0+ [E (LLK+1)229r
E,(1+1J,K)Az - IE (LI, K)Ax /dr (10.9)

_-qua IH (IJK)gE
r

vth~ich after evaluating the integrals and approximating the time derivatives as
finite differences reduces to

H" (15, K) = H) (1), K)
At

+E[E;’(I,J,K)-E:(I,J,K+1)] (10.10)
24t .
+¥*/Ax»\az(l+ LJ.K)
qu]nl —l
N To 7

R(.:ferring to Figure 10-3, for each Ez(I,J,K) component at the center of a thin
wire, there are four associated H field components that must be computed at
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each time step using a form of (10.10). In addition to H™(L,J,K) of (10.10),
the H,™'2(I-1,J,K), H,""*(L,J,K), and H J2H2(1,]-1,K) components must also be
computcd using the appropriate variation of (10.10). The electric field values
are updated using the usual FDTD equations.

It is simple to implement this scheme after some consideration. Assigning
a special ID array code to each of the affected H field components could be
done, but this approach is cumbersome because flagging a particular H tield
location and vector direction, for example, identifying Hy"*‘ﬂ(I,J ,K) as one of
the affected H field values, does not provide the information necessary to
evaluate (10.10). This is because this H field component may be adjacent to a
wire centered on any of four electric field components, as can be seen from
Figure 10-3. Thus, the ID array information would not only have to flag the
particular H field components. but also include directional information as to
which of the four orthogonal adjacent electric tield components is centered
inside a wire.

A simpler approach is to prescribe a special ID array value to the electric
field locations at the center of a wire. These electric field locations are updated
using the usual FDTD equations. After the H fields are updated throughout the
FDTD space, all the FDTD cells are again checked to see which contain a wire,

e., the E field locations at wire centers are found. For each of these the four
orthogonal and adjacent H fields are updated using variations of (10.10) and
the results written over the values obtained using the free space FDTD equa-
tions. This requires one extra storage location for each affected H field value
to store the value of H at the previous time step, but since for most applications
this involves only a very small portion of the total number of cells this does not
create a serious impact on computer resources.

This approach is demonstrated in obtaining resuits for curreni fiowing in a
wire antenna with a nonlinear load and impedance of a thin wire monopole
connected to a conducting box; results are given in Chapters 11 and 14,
respectively.

10.4 LUMPED CIRCUIT ELEMENTS

Some applications of FDTD involve structures that contain lumped circuit
elements small enough to be contained in one FDTD cell. An example is wire
antennas, which may contain lumped circuit elements and sources in wire gaps.
Consider such an antenna operating at 3 GHz. If the FDTD cells are taken as
1/10 wavelength cubes, these are 1 cm on a side, easily large enough to contain
lumped circuit &l ts. The m commonly used computational method
applied to these antennas, the thin-wire method of moments, makes provision
for lumped circuit elements to be modeled in small gaps in the wire. In this
section we show that lumped resistors and capacitors in one FDTD cell can be
included very easily, with lumped inductors requiring somewhat more effort.
Results obtained for wire antennas with lumped elements in one FDTD cell are
given in Chapter 11 (for a circuit including a resistor, capacitor, and nonlinear
diodes) and Chapter 14.
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FIGURE 10-4. A section of a thin wire with a gap of length Az modeled using FDTD field
components.

A simple wire antenna geometry is shown in Figure 10-4. A line of electric
field components located along the wire axis, in this case Ez components, are
set to zero. If the wire radius is smaller than the FDTD cell cross-section the
method described in the previous section may be used to modify the compu-
tation of the adjacent magnetic fields. However, the magnetic fields adjacent
to the E,(IJ,K) field component used to model the gap in the wire will be
calculated using the normal free space FDTD equations.

The simplest situation is a voltage source in the gap. In this case

E™(1,J,K)= V,(t)/ Az (10.11)

where V(1) is the specified source voltage. The current supplied by the source
can be sampled by evaluating the line integral of the H fields encircling
E,(1,J,K) in the gap as was done in (10.4) and (10.5) previously. The Fourier
transforms of this voltage and current can be used to determine the antenna
impedance and input power, as illustrated in Chapter 14.

It is also quite simple to model a lumped load consisting of a resistor and
capacitor in parallel. To illustrate this we express (10.6) in a slightly different
way as
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e ELLK) | ok (11 .K)
t

d
_H,(1LI-1LK)-H, (LK)
Ay
H,(1J,K)-H,(I-1,J.K) (10.12)
Ax
=(V)(H)Z

This simplifies the following equations by using (VxH), to represent the finite
difference approximation to the curl operation. If the time derivative in (10.12)
is approximated as a finite difference we obtain

n+l n
E
(Van+|/2) :EFZT;—+ E"*l (10.13)

with the (IJ,K) location understood. As we have seen many times (10.13) is
readily solved for E,™! in terms of the previous time values of E” and H™'2,
with the curl H term computed using spatial finite differences as in (10.12).

Rather than repeat this process let us consider the physical meanings of the
terms. The curl H term gives the density of the total current (total in the sense
of including both conduction and displacement current) flowing in the region
surrounding the electric field component. The next term involving € and }he
time derivative of E is the dispiacement current density fiowing in this region
in the z direction, and the E™! term is the conduction current density in the
z direction. )

If we multiply (10.13) by Ax Ay and insert some appropriate Az factors we
easily obtain the result

n+l _gn
E_Axﬂ_A_Z@l.__E.Ll.'_O%AZF}Z‘“ (10.14)
YA

AxAy(VxH’”Uz }Z =e— v

The first term is the total current flowmg in the Ax Ay area surrounding the Ez

ad ac tha nananitanca
identified as the capacitance

field componeni. The term e{AxAy)/{Az) is readil
of an FDTD cell for a z component of electric field, and 6(AxAy)/(Az) is the
conductance. Furthermore, the product of Az and Ez is the voltage in the z
direction over the length of one FDTD cell. We can rewrite the above equation

in terms of lumped elements as
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cn+l _ pn

AxAy(VxH™) =Caz = "

(10.15)

where now the first term is the total current flowing through the Ax by Ay area
of the FDTD cell, C is the lumped “parallel plate” capacitance of the cell, and
G is the lumped conductance of the cell in parallel with the capacitance, with
Az E™! the voltage across the cell. In comparing (10.13) to (10.15), a lumped
capacitance C is equivalent to setting an appropriate value of the permittivity
e of the cell based on the cell dimensions, and similarly for a lumped resistance,
R =1/G and the conductivity G of the cell. Thus, a lumped load that is a parallel
combination of a capacitor and a conductance (resistance) can be modeled
simply by setting the cell values of € and & appropriately. Equations (10.13)
and (10.15) are interchangeable in terms of solving for E*!, However, one
warning is that the cell permittivity cannot be set too low. FDTD cannot in
general model materials with an epsilon that is too smaii {much iess ihan free
space) without becoming unstable unless extremely small time steps are used,
much smaller than required by the Courant limit. If the conductance G (con-
ductivity ©) is great enough so that the displacement current term involving C
can be neglected, this term may be dropped. Indeed, if (10.13) or (10.15) is
solved for E™! and G (or equivalently o) is allowed to go to infinity, the correct
result of E*!= 0 is obtained. However, making G (or o) small enough so that
the conduction current is of comparable magnitude with the displacement
current (through the cell filled with free space), but nevertheless neglecting this
displacement current term, will result in instabilities. A physical argument for
this is that the capacitance of an FDTD cell cannot be made lower than the
capacitance of the cell filled with free space by adding lumped elements in
paralle! with the cell capacitance.

While including a parallel combination of a capacitor and a resistor is
simply equivalent to setting the permittivity and conductivity of the cell
appropriately, an inductor requires modifying the stepping equations. A straight-
forward approach follows. Considering (10.15) again, if we add a lumped
inductor in parallel with the capacitor and resistor (conductance) the resulting
equation is

B2 - B
At

Az “*fm‘ dt (10.16)

AxAy(VxH"”/Z) =CAz

+GAzZEM! 4

3
0

where L is the value of the lumped inductance in parallel with the C and G
components. If we assume that Ez is constant over a time interval At, then the
integration becomes a summation
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n+l _npn
n+1/2) z 2 4 GAz En+l
Axy(VxH )Z Caz ~=— ;
(10.17)
¢%|rp"“ + v E"‘]
' Tz ~ 7

L '_ m=1 J

which can be solved for the E,”! in terms of the previous values of Ez and H.
The result is

___C___E"
Ga+C+ L
+ AxAyAt (VXHn+|/2)7

7 we
Asz At+C+

n+l __
E;" =

p—

(a)’ o om

TomsciBr)
L(GA1+C+—L—) m=1

Examining (10.18) we see that an auxiliary variable will be requirgd to sl'ore
the sum of the previous values of Ez. For an inductance L approaching 0, i.e.,
a short circuit, the correct result of Ez = 0 satisfies (10.18), but the last .tenn
will tend to be unstable, so that extremely small values of L should be avoided.
For an inductance L = oo, an open circuit, the inductance terms drop out of
(10.18) as they should. Once again it should be remembered that the value of
(1U.10) aS €y snouid. vnic agaiii it Snvuil v ivinw : °
C should not be made less than the capacitance of the FDTD cell in the electric
field component direction filled with free space. . o
With the basic approach illustrated above more complicated 01rcu1¥s' in-
cluding sources can be modeled, sometimes at t}-ae. expense c?f auxiliary
variables (and auxiliary difference equations if additional @pacxlors and/or
inductors are included in the circuit). However, this capability allows us tA0
include in the same FDTD calculation structures which are orders of magni-
tude different in geometrical structure (a coiled wire lumped el‘efnem induc-
tor in the gap of a wire antenna, for example) without requiring that the
FDTD cells be made small enough to model the structures (.)f the lufnped
elements. This extension is quite useful in antenna analysis, as will be

illustrated in Chapters i1 and i4.
10.5 EXPANSION TECHNIQUES

Electromagnetic penetration through an aperture that then cpuples to a wire
in the interior of an arbitrarily shaped conducting scal-terer is an ext'remely
complex problem. Generally, it cannot be solved analync.ally.“ Analytic solu-
tions have been found for some very restricted geometries;> however, these
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solutions are of limited value when applied to complex probiems such as the
response of internal aircraft cables when the aircraft is exposed to an external
transient ficld. Numerical solutions have aiso been sought with some success.
Typically,S a method of moments approach is used to find the external current
and charge distribution on a scatterer with an aperture that is assumed to be
open, and from the current and charge distributions, equivalent magnetic and
electric dipoles can be obtained from Bethe hole theory. They represent the
aperture excitation, which in turn drives the interior cavity where a wire may
or may not be present. An evaluation of this type of numerical approach’ has
found that agreement between theory and experiment can range from good to
poor. As might be expected, Bethe hole theory does not work well for large
apertures.

An alternate numerical approach, well suited to complex systems such as
aircraft, is to use FDTD with some simple modifications. Since FDTD recog-
nizes only the presence of ihe scatterer and does not distinguish between
interior and exterior regions, all that is needed is a sufficiently small cell size
so that the aperture, interior structure, and cavity geometry can be modeled
with reasonable accuracy. Computer resource limitations typically restrict the
FDTD technique to relatively coarse cells, so that an accurate interior response
prediction of a complex geometry cannot be made with a single FDTD run.
This limitation is circumvented by an alternate numerical approach, which is
called the expansion technique.

The FDTD code used in Chapter 4 to model the aircraft®® divides the
problem space into a 28 x 28 x 28 mesh of cells. In order to keep the outer
boundary far away to allow proper operation of the outer radiation boundary
condition, only 20 cells were allocated to the aircraft model, even with the use
of expanding mesh. For the aircraft iength of 20 m this translates into a cell size
1 m in length and width, and 0.5 m in the other dimension. This size is well
suited to external response predictions, but is much too coarse for modeling
apertures and a realistic aircraft interior.

The expansion technique allows realistic interior response predictions to be
made. The technique consists of making an initial computer run with a model
of the entire aircraft. The electric fields, scattered from the aircraft and tangen-
tial to a sub-boundary, are stored on disk from this calculation (Figure 10-5).
The portion of the aircraft inside the sub-boundary is then subdivided into
smaller cells (typically fourfold or more) and the sub-boundary becomes the
outer boundary for a second calculation. The same incident field used for the
first calculation illuminates the subdivided portion of the aircraft on the second
caicuiation (Figure 10-6). The same tangential E-field response as seen on the
sub-boundary for the first run is imposed on the outer boundary of the second
run. This operation is accomplished by reading the data back from the disk
every 25 time steps. Because a finer grid is used on the second run, a finer time
step in intermediate spatial and time points must be found by interpolation. The
outer boundary then responds on the second run with a response nearly iden-
tical to the first-run response. This response is limited by the original cell size,
i.e., the fields reaching the sub-boundary on the first run accurately model the
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FIGURE 10-6. Second expanded run.

scattered fields up to a frequency limit f,, set by f,, = VA (A, = 4 x cell
size of the first run.

The result of this procedure is that on the second run, the missing portion
of the aircraft still appears to be present, at least at low frequencies. Natural
modes excited on the aircraft are preserved up to the frequency limit f,,,. Those
modes above f,,, are not matched at the boundary on the second run. However,
they are modes that are strongly damped.'® Hence, the response at the aperture
above f,, is primarily determined by the local fields incident on the aperture.
So long as the aperture is at ieast a few diameters away from the outer boundary
and so long as the aperture is small compared to the enclosed portion of the
aircraft, error is minimized above f,,. Thus, apertures can be placed on the
expanded portion of the aircraft for the second run and they will be excited by
current and charge distributions associated with the excitation of the entire
aircraft up to and usually well beyond f,,,,. The apertures so excited, in turn,
couple energy into the interior of the aircraft, which because of the expansion,
can be reasonably detailed.
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FIGURE 10-7. Different expansion geometries with typical exterior response predictions that
demonstrate the stability of the expansion technique.

The expansion technique effectiveness is demonstrated on a simple cylin-
der geometry rather than a complex geometry, such as an aircraft. This allows
examination of the technique using a well-understood geometry in terms of
exierior response. A cylinder responds in much the same way as an aircrafi
fuselage when both are approximately the same size and both are excited by
a transient wave with its electric field parallel to the major axis of the body.
For convenience, a plane wave with double-exponential time dependence
was used to illuminate the cylinder from above.

Stability of the technique is first examined using the exterior response of a
cylinder. Solutions obtained in the second step should give answers nearly
identical to the first run if the scattering geometry was unchanged, except
for the finer gridding to more accurately model the scattering geometry.
Starting with a 15 cell-long rectangular block model of the cylinder in a
28 x 28 x 28 cell space in the first run, and going to a four-times-finer
gridded rectangular block on the second run (or alternately, going to a nearly
circular cross seciion) the expansion technique yieids resuits (Figure 10-7)
consistent with the geometries involved and confirms the stability of
the technique.

A very simple interior geometry is then considered for the expanded
portion of the cylinder (Figure 10-8). This rectangular-cross section region
contained an interior wire terminated in 50-Q resistors at internal bulkheads.
Coupling to the ovtside was via a large (3 x 6 cell) asymmetrically located
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FIGURE 10-9. Sample of predicted results.

aperture. Smaller apertures and multiple apertures were also considered,
along with different terminations, namely 0, 50, and e Q. A sample of the
predicted results (Figure 10-9) for the first geometry examined (single, large
aperture, and 50-Q termination) reveals three prominent features in the fre-
quency response seen in varying degrees in most of the predictions for the
different geometries:

1. A low frequency response peak around the exterior fundamental reso-
nance frequency (~10 MHz)

2. A mid-frequency response peak corresponding to the half-wavelength
excitation of the interior cable that varies with the cable length and is
more damped for the 50-Q termination than for the 0- and oo-Q termina-
tions

3. A high-frequency response peak at 65 MHz, presumably the second
harmonic excitation of the interior cable

The transform was obtained using Prony’s method!! to find the poles and
residues characterizing the data and, from them, the transform. This expedient
was used because of the extreme truncation of the data record. The value of N,
the number of poles sought, was varied from N = 16 to 36. The value of N
selected for this analysis, N = 24, was the one that returned the lowest energy
content when fitting the data. The energy content was determined using Equa-
tion 2 of Reference 11. The predictions were sampled at a rate of 75 MHz, so
that a reasonable characterization of the poles below ~0.7 x 75 MHz could be
expected.'?
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FIGURE 10-10. Aircraft model in a 50*-cell space with sub-boundary indicated.

10.6 CODE REQUIREMENTS, LIMITATIONS,
AND UTILITY

The technique has the following requirements:

1. Internal partitioning, such as bulkheads in the scatterer.

2. That the high-frequency noise picked up from the linear interpolation on
the sub-boundary be filtered out. This step is most important for the
interior response. The approach used for the cylinder was to apply
Prony’s method!! to the data, and then remove the poles above 100 MHz.

The code is limited as follows:

1. Toafrequency range of up to f,,.” = c/(4 x cell size of the second run).
The exact value depends on how close to the sub-boundary the response
is being sought. For interior responses with apertures away from the sub-
boundary, the higher frequency limit may be approached.

2. By some slight waveform distortion between first and second runs, even
when using the identical geometries for both runs. This is caused by
dispersion effects that depend on cell size vs. wavelength. It is a slight
effect for the expansion factors considered here.

difference solutions of the Maxwell equations, allowing interesting interior
coupling problems to be addressed, thereby establishing its utility. An example
of this utility is seen in Figures 10-10 and 10-11, in which an aircraft is first
modeled in an —50°-cell space, and then the cockpit area is expanded, allowing
significant interior modeling detail.

The expansion technique economically increases the resolution of finite-
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FIGURE 10-11. Expanded run showing cockpit area detail.
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NONLINEAR LOADS AND MATERIALS

This chapter discusses the application of FDTD to problems that involve
nonlinear circuit elements or materials. Dealing with nonlinearities is compara-
tively easy in the time domain as opposed to frequency domain calculations.
Frequency domain approaches often involve iteration processes that them-
selves may involve transformation back and forth between frequency and time
domains. Working directly in the time domain is often much simpler, because
the parameters of the device or material may be modified as a function of the
field strength in the FDTD cell as the computation progresses. I most situa-
tions this is not without some added computational effort, as the time step size
often must be set much lower than normally required in order to avoid insta-
bilities in the FDTD calculations.

In this chapter two approaches for dealing with nonlinear materials are
demonstrated. In the first demonstration only one FDTD cell in the computa-
tional space is nonlinear. The example geometry 1S a wire antenna with a
nonlinear diode load at the center lllummated by a pulsed plane wave. The
difficulties in dealing with this geometry in a “brute force” fashion of changing
the resistance of the diode as its voltage changes and reducing the time step size
until the FDTD calculation is stable are shown, and an alternative approach that
satisfies the nonlinear diode equation at each time step and allows the time step
size to remain large is demonstrated. This demonstration utilizes the ability of
FDTD to model lumped circuit elements in one FDTD cell, and it is assumed
the reader is familiar with this, as discussed in Chapter 10.

If nonlinear materials are contained in only a relatively small number of the
total FDTD cells in the problem space, then expending extra effort on these
cells in order to maintain a large value of time step is justified. However, if the
entire FDTD space is filled with nonlinear material it may be more efficient and
is certainly simpler to change the material parameters as the field strength
changes and to reduce the time step size until stability is reached. This ap-
proach is demonstrated in the final section of this chapter in an FDTD calcu-
lation of the low frequency attenuation of an incident plane way by a sheeto
nonltinear magnetic materlal.

Application of nonlinear equations requires the use of the total field

strength. The propagation calculation will be done directly in total fieids.

However, since the dipole problem involves an incident plane wave, we
prefer to use the scattered field formulation for all cells except the cell that

"“"':

used for dctennmmg the current through the cell, since the scattered mag-
netic fields due to the current flowing on the wire completely dominate the
incident magnetic field in the vicinity of the wire. The total electric field (and
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FIGURE 11-1, Gaussian pulsed plane wave incident on wire dipole with nonlinear diode load in
center.

related diode voltage) is obtained by adding the incident to the scattered field
at each time step. After the nonlinear diode equations are applied and the total
electric field is determined, the scattered electric field is recovered by sub-
tracting the incident field.

11.2 ANTENNA WITH NONLINEAR DIODE

In this section we discuss the capability of FDTD to include effects of
nonlinear lumped circuit elements. Our demonstration geometry is a wire
antenna with a nonlinear diode load connected across a central gap in the wire.
Modeling a wire antenna including lumped loads was discussed in Chapter 10.

The first geometry considered is shown in Figure 11-1. The wire dipole is
illuminated by a Gaussian pulsed plane wave. The pulse is as described in
Section 3.4, but with P = 64 unless noted otherwise. The amplitude of the
pulse will be varied s0 as to drive the diode into varying levels of nonlinear
behavior so we can investigate the stability of the various nonlinear FDTD
approaches. The FDTD space has cells that are 0.006-m cubes, and the
problem space is 15 x 15 x 30 cells, with the wire antenna in the z direction.
The outer boundary is second order Mur. The time step will be at the Courant
limit of 11.55 ps unless noted otherwise. Each dipole arm is ten cells long,
with an additional center cell containing the nonlinear load. The wire diam-
eter is 0.8118 mm. Because this diameter is much smaller than our FDTD
cells, the sub-cell wire approximation of Chapter 10 is used except for the
center cell containing the diode load. The lumped element circuit model for
the cell at the center of the dipole for the initial demonstrations is shown in
Figure 11-2. The nonlinear diode is in parallel with the free space capacitance
C of the FDTD cell, as discussed in Chapter 10. The voltage across the diode
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FIGURE 11-2. Equivalent circuit of nonlinear diode in paralle! with FDTD cell capacitance.

o
through the diode.

The nonlinear relationship between the diode voltage and current is given
by

is v, which is also the voltage across the FDTD cell, and id is the current

iy =1.0x1078v,, vy <0 11.1)

i =29x107[exp(15 v,)~1], v4<0 (112

This relationship is shown graphically in Figure 11-3 for positive diode volt-
ages. For negative voltages the diode current is essentially zero on the scale of
Figure 11-3. This particular diode relationship was taken from Reference | and
is used later to calculate results to compare with results in (11.1).

We can expect to encounter difficulties if we neglect the FDTD free space
cell capacitance C = g, (AxAy)/(Az), as was discussed in Chapter 10. Ignoring
this for the moment, let us consider how we may most simply include the

nonlinear diode in our FDTD calculations. A simnle wav to model a nonlinear
aCuIalIons. A sunp:e way 0 moael a nonminear

diode is as a voltage-controlled variable resistor, R. In Chapter 10 we saw that
a lumped conductance G = 1/R within an FDTD cell could be modeled by
setting the conductivity of the cell as 6 =G(Az)/(AxAy). This conductivity can
be changed at each time step as a function of the voltage across the diode, with
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FIGURE 11-3. Current-voltage relationship for forward biased diode.
the latest value used to determine the next value of electric field directly from

the current flowing through the cell. Explicitly we would determine the diode
voltage at each time step from

Vi =EPAz (113

With this value of v," we would find the current through the diode and the

sponding diode resistance from {11-1) and(11.2). We label this diode
COITESPONAQINgE Gioac TESiS@nte Ui (1i-1y 1

resistance R,". If the capacitance of the FDTD cell is neglected, howeyer,_the
diode current must also be equal to the line integral of the magnetic field

around the cell, or

13+% = Asz(VxH""Jf) (11.4)

z

as discussed in Chapter 10. If we then attempt to predict the next value of
electric field from

EM=RET /A2 (11.5)
we find that for an incident Gaussian pulsed plane wave of 10 V/m peak

amplitude our FDTD code produces overflow values of electric 'ﬁe-ld almost
immediately after the incident pulse excites the wire. A slight variation on the
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above scheme is to use the value ofiz*’; to determine R, from the diode
equations (11.1) and (11.2) and then apply (11.5) to determine the next electric
field vaiue. Unfortunately, the same instability will result. The reason for this
is easily seen. In either of these approaches there are two values for ig, One
determined from the surrounding magnetic fields using (11.4), the other deter-
mined from the diode equations (11.1) and (11.2). The approach described
above makes no attempt to reconcile these two values, and the resulting electric
field (diode voltage) jumps wildly between extreme values trying to produce
an equality between them.

Having eliminated this approach, we now include the FDTD cell capaci-
tance C of Figure 11-2 in our calculations. As above we use (11.3) to find the
diode voltage, and the diode equations (11.1) and (11.2) to find the diode
conductance G," = 1/R". Then, using the free space value of the FDTD cell
capacitance, we find from (7.15) that the next value of the electric field is given
by

Ep e S pr, Ay (VX“"+%) (11.6)

C+GJAt CAz+GjAtAz :
This approach to modeling the nonlinear diode as a variable resistance will be
stable as long as the GZAI product remains relatively small as compared to the
free space FDTD cell capacitance C. There are two conditions for which this
will be true. One is when the conductance G of the diode is small, i.c., the diode
is reverse biased or only very slightly forward biased. The other is when the
time step size At is sufficiently small.

Before providing some examples of results obtained with this approach,
which we will call the “variable resistor” method, let us consider another
alternative. The difficulty with the variable resistor approach is that the diode
current and voltage predicted by the FDTD update equations will not agree in
general with the terminal relationships of the diode given in (11.1) and (11.2).
But we can, however, ensure that all the equations applied to these quantities
are consistent by solving the equations simultaneously at each time step. This
is still an explicit approach, since future values depend only on past values.
However, the explicit dependence is nonlinear,

To apply this approach to the lumped circuit of Figure 11-2 let us again
consider the lumped element FDTD equation (7.15) repeated below for conve-
nience as

/ \ cn+l _ pn

AxAy(VxH""%):CAZ%“_Z+GAZ Er*! (11.7)

The first term is the total current flowing through the cell, the second is the
displacement current flowing through the capacitor, and the third is the



208 The Finite Difference Time Domain Method for Electromagnetics

conduction current flowing through the cell conductance, in this case through
the diode. Considering our circuit of Figure 11-2, the diode current is the
conduciance current, i.€., the total current less the displacement cuirent. Mak-
ing this identification and solving (11.7) for the conduction current through the

diode, we obtain

i =AxAy(VxH"*%)z-£AAt—Z(E;” -E) (11.8)

We also need to determine the diode voltage. Because we are hoping to
determine E,™!, for maximum stability we should use the most recent value of
electric field. Thus, instead of using (11.3) we use

y (11.9)

Equations (11.8) and (11.9) provide the values of diode voltage and current
based on the FDTD equations. Equations (11.1) and (11.2) provide values of
the diode voltage and current based on the diode characteristics. This system
of nonlinear equations can be solved at each time step for E™! using a nonlinear
equation solution method such as Newton-Raphson iteration. This value of E**!
will satisfy both the FDTD equations and the nonlinear diode equations at each
time step. The convergence is very fast since an initial guess for E,™! of the
previous value of E,, E", provides the Newton-Raphson iteration with a good
starting value. The computer time required for running the Newton-Raphson
iteration for this demonstration is essentially identical with that for the variable
resistance method, because only one FDTD component is invoived. It should
be emphasized that except for the magnetic fields surrounding the wire (which
use a sub-cell modification to compensate for the thin wire) and the E, field in
the cell containing the nonlinear diode, all fields are updated using the normal
FDTD scattered field formulation.

Now let us compare results for our test geometry using these two ap-
proaches. FDTD calculations of the total current (conduction plus displace-
ment) flowing through the parallel combination of the FDTD cell capacitance
and diode of Figure 11-2 are shown in Figure 11-4 for an incident Gaussian
pulsed plane wave of peak amplitude 10 V/m. For comparison, results for the
diode modeled as a short circuit (E, = 0) and an open circuit in parallel with the
FDTD cell capacitance C (iy= 0) are also included. The Newton-Raphson
iteration and the variable resistance approach provide nearly identicai resuits
that show the nonlinear behavior of the diode. However, comparing the current
amplitude in Figure 11-4 to the diode characteristic shown in Figure 11-3 it is
evident that the diode resistance remains high throughout the calculation.

To increase the nonlinear effect of the diode we repeat the calculation,
but with the Gaussian pulse amplitude increased to 20 V/m. The total
current through the dipole gap is shown in Figure 11-5. The peak diode

1
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Current in Gap
Pulse Amplitude 10 V/m
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:'; IGUI'IE l 1-4. Transient total current flowing through the center of the dipole with incident 10
/m Gauss;an puise, calculated for diode replaced with short and open circuits, and with diode
modeled with Newton-Raphson iteration and as variable resistor.
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FIGURE 11-5. Transient total current flowing through the center of the dipole with incident 20

V/m Gaussian pulse, calculated for diode replaced wi i
i 3 p ith short and open circuits, and with di
modeled with Newton-Raphson iteration and as variable resistor. . o it diode
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Current in Gap
Pulse Amplitude 20 V/m

Variable R with 0.5At

Current (ma)

|

— o — [~
-] o =] =2

I

@

>
T

5.4 . . .
0.0 0.5 1.0 1.5 2.0
Time (ns)

FIGURE 11-6. Transient total current flowing through the center of the dipoie with incident 20
V/m Gaussian pulse, calculated with variable resistor approach, but with time step reduced by one
hatf.

current is now large enough so that the diode is clearly exhibiting nonlinear
behavior. The Newton-Raphson results are smooth and continuous, while
the variable resistance results are discontinuous near the peak of the diode
current. This calculation is repeated for the variable resistance method but
with the time step reduced to half the Courant limit, and the pulse width
doubled to 128 to provide the same pulse duration. The results are shown
in Figure 11-6. With the time step reduced the variable resistance method
now provides results nearly identical to those produced by the Newton-
Raphson method, although taking approximately twice the computer time
to do so.

Let us stress these two methods even more by applying a 100 V/m peak
pulsed plane wave, with the FDTD results for the gap current shown in
Figure 11-7. The Newton-Raphson iterated results predict a gap current
close to that for a short circuit when the diode is forward biased, and to that
for an open circuit (in parallel with the cell capacitance) when the diode is
reversed or only weakly forward biased. The variable resistance results,
however, oscillate during the interval when the diode is forward biased. For
this more nonlinear behavior, reducing the time step by a factor of one half
(and correspondingly doubling ) improves the behavior of the variable
resistance method, but does not entirely eliminate the oscillations, as shown
in Figure 11-8. Presumably a further reduction in time step would eventu-
ally provide accurate results using this method.

4
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FIGURE 11-7. Transient total current flowing through the center of the dipole with incident 100
V/m Gaussian pulse, calculated for diode replaced with short and open circuits, and with diode
modeled with Newton-Raphson iteration and as variable resistor.
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FIGURE 11-8. Transient total current flowing through the center of the dipole with incident 100
V/m Gaussian pulse, calculated with variable resistor approach, but with time step reduced by orie
haif.
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FIGURE 11-9. Transient total current flowing through the center of the dipole with incident 300
V/m Gaussian pulse, calculated for diode replaced with short and open circuits, and with diode
modeled with Newton-Raphson iteration and as variable resistor.

For our final demonstration with this geometry the Gaussian pulse peak
amplitude is increased to 300 V/m, with the results shown in Figure 11-9. The
variable resistance method results oscillate and then overflow, terminating
execution of the FDTD calculation. The Newton-Raphson iteration produces
reasonable results, showing the diode behaving approximately like a short
circuit when it is strongly forward biased. Ail resulis shiown for the Newton-
-Raphson iteration shown here were calculated with the time step at the Courant
limit.

While the results obtained using iteration to simultaneously satisfy both the
FDTD and diode equations appear reasonable, accuracy has not been demon-
strated. In order to do this we will compare FDTD results obtained using the
iteration approach with published results for transient current through a wire
antenna with a nonlinear diode load in the gap.

The specific example of interest is taken from Reference 1. The wire dipole
still has a wire diameter of 0.8118 mm but now has arms 0.6 m long, as shown
in Figure 11-10. The FDTD cell at the center of the wire again contains the
lumped load. To approximate this geometry the only necessary adjustment .of

our previous example is to increase the number of celis used o model the wire
dipole. Using the same 0.006 m cubical FDTD cells, 200 FDTD cells [?lus tt'le
gap cell were used for the dipole. Again, sub-cell modeling (described in
Chapter 10) was used to adjust for the wire diameter being smaller than the
FDTD cell size. The FDTD problem space was 39 x 39 x 240 cells, and was
again terminated in second order Mur absorbing boundaries.
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FIGURE 11-10. Gaussian puised plane wave incident on wire dipole with nonlinear diode load
in center for comparison with results of Liu and Tesche.

As described in Reference 1, this dipole is loaded with two diodes in series
with a 100-Q resistor (the actual measurements were made using a single
diode at the base of a monopole; image theory requires adding the additional
diode and increasing the actual 50-Q resistance to 100-Q). The total diode
junction capacitance of 0.5 pF must also be included in the model for
accurate results at the frequencies contained in the pulse. The equivalent
circuit used to approximate this lumped load is shown in Figure 11-11. The
resistance R is now a fixed resistance representing the input resistance to an
oscilloscope used to make the measurements. The capacitance C now in-
cludes both the FDTD free space cell capacitance and the diode junction
¢. For our cell size the FDTD cell capacitance is only 0.053 pF,
therefore, the diode junction capacitance dominates and the lumped capaci-
tance in (11.9) was taken to be 0.5 pF.

Because the lumped circuit is different than in our previous example, the
interaction must be slightly modified. This requires only substitution of

onananit
Capacit

2vg+igR=v, =E!M'Az (11.10)

in place of (11.9) to determine the diode voltage, where R is the constant
lumped resistance of the equivalent circuit in Figure 11-11.

The dipole considered in Reference 1 is excited by a pulsed plane wave. As
shown in the reference, this plane wave has a peak electric field strength of
approximately 390 V/m. For simplicity, this pulse has been approximated for
our calculations by the same Gaussian pulse used in the previous examples in
this section with § = 64, but with the peak amplitude set at 390 V/m. Our
Courant limit time step of 11.55 ps provides a pulse duration of approximately
0.7 ns. The actual pulse shown in Reference 1 has approximately this duration,
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FIGURE 11-11. Equivalent circuit of nonlinear diodes in series with fixed resistor R and in
parallel with capacitance C, the combination of the FDTD cell capacitance plus the diode junction
capacitance, for comparison with results of Liu and Tesche.

but rings at a low amplitude out to about 3 ns. This has been neglected in the
FDTD calculations.

The transient currents given in Reference 1 have a duration of approxi-
mately 14 ns. The corresponding FDTD calculation was 1300 time steps
(allowing time for the incident pulse to reach the dipole). Three calculations of
the current through ihe dipote load were made and compared to results caleu-
lated by Liu and Tesche.' As before, the total current flowing through the
FDTD cell, determined by evaluating the curl of H around the cell containing
the lumped load, is plotted. In the first calculation only the 100-€2 resistor (in
parallel with the free space capacitance of the FDTD cell) was included. The
results are shown in Figure 11-12. The agreement with the results of Liu and
Tesche is quite good.

Next, the diodes were added in series with the 100-Q resistor, and the FDTD
cell capacitance C, shown in Figure 11-11, was set to 0.5 pF to model the
combined diode junction capacitance. FDTD results for the two cases consid-
ered in Reference 1 were then calculated using the Newton-Raphson iteration
approach to determine E, in the antenna gap. These results are shown in Figures

11-13 and 11-14, and differ only in that the pulse initially forward biases the
diode for the results in Figure 11-13, but reverse biases the diode in Figure 11-
14. Comparing the peak current amplitudes to those in Figure 11-3 shows that
the diode is highly nonlinear in these calculations. Some points taken from
calculated results in Reference 1 are included in Figures 11-13 and 11-14 for
comparison. The agreement between the FDTD results and both the calculated

4
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and measured results in Reference 1 are excellent considering the different
assumptions and approximations made in the analysis.

For problems in which only a relatively small number of cells contain
nonlinear material or lumped circuit elements the iteration approach is highly
advantageous. It allows us to calculate results for highly nonlinear situations
without reducing ihe iime siep size. However, in problems in which all or most
of the FDTD cells are filled with nonlinear materials, it is nearly as efficient
and certainly simpler to reduce the time step size in order to maintain stability.
In the next section an example of this type of calculation is given for shielding

by a nonlinear magnetic sheet.
11.3 NONLINEAR MAGNETIC SHEET

In this section application of FDTD to propagation through a nonlinear
magnetic material will be demonstrated. The FDTD calculations will require
changing the permeability of th al at each time step based on the value
of the magnetic field at the previous time step. Stability will be obtained by
reducing the time step size well below the Courant limit. The frequencies of
interest are 1 and 10 kHz. It is very unusual to apply FDTD at such low
frequencies, but it is possible in this case because the conductivity of the
material is so high that the time step is drastically reduced from typical free
space values.
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FIGURE 11-15. Infini i 2 i i
vy inite sheet of nonlinear magnetic material (Region 2) with free space on both

) The problem geomeiry is taken from Merewether? and is illustrated in
Figure 11-15. A plane wave is incident from Region 1 on an infinite planar
§F}eel of conducting saturable ferromagnetic material of thickness d. We would
like to determine the field that is transmitted through the sheet. Merewelher

Qﬂ'V d thP nroblem ucing an imnlici iffaranna ma A Aaennacre .
solved the problem uging a plicit differe hod e 3 &
0 impacit guierence g lll . ‘V‘V’C Le IllllllS.Il'ki.e nere

the ability of FDTD to solve the problem explicitly.
. The B-H characl‘erislic of the nonlinear magnetic material is shown in
Figure 11-16. The differential permeability is given by

3B
du(H)==—=p_+ B, exp(~[H/H_)H_

M (11.11)

(\:/fh;:e umtz 1a617 xllo()7"‘5;-[/m, B,=1.53 T, and H.= 120 A/m. The conductivity
e material is 'm, and the permittivity was tak fi
sheet thickness d is 1.26 x 10 m. Y e o free space. The

The electric and magnetic fields in the sheet i
¢ . etic fields in the sheei were quaniized o {it the
geometry w1¥h ¥ = (j~1)Ay and t = nAt. There are J magnetic field locations
with magnetic fields located aty = 0 (j = 1) through y = d = JAy, so [ha;
magnetic fields are at the surfaces of the sheet. Electric fi intc
. tric field:
between the magnetic fields. " e niereaved
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Saturable Ferromagnetic Material
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FIGURE 11-16. Magnetic characteristic of nonlinear magnetic material.

Let us first determine the FDTD equations. We assume only EZ,'BX, a-nd H,
components. The update equation for the electric field is determined in the
usual way from the Maxwell equation

H 3E
v ok, & ot

z (11.12)

€y Y
eo+oAtE2 (i)

- (TI%&G[H:““)‘H:(")]

B (i+3)=

(11.13)

1 L. iy
where in taking the differences we !et oE, = o-E'z” 7 to maximize stability for
the high conductivity of the material. o

The magnetic field update equation is affected by t}?e nonhnedpty of the
the Maxwell equation and applying the chain rule for

material anrﬁng wil

derivatives we obtain

ot s WS St SE (Hx)af;t*

(11.14)

from which we easily obtain

4
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n o pyng At n+lf. _pnHgfi 1
ug'())_nx(l)‘m[% ed)-E 3] Guas)

with the nonlinear differential permeability of (11.11) evaluated using the
magpetic field from the previous time step.

Because the conductivity of the magnetic material is so high, the veloc-
ity of electromagnetic waves in the material will be extremely slow relative
to the speed of light in free space. Thus, we will be able to use relatively
large time steps, which is good because we want to make calculations at
relatively low frequencies that compare with the results in Reference 2.
While in previous 1-D demonstrations we calculated fields in the free space
regions on either side of a slab of material, this must be avoided in this
situation because the time steps required in the free space regions will be
many orders of magnitude smalier than in the material. We, therefore,
follow Merewether’s approach and apply the houndary conditions at the
two interfaces at y = 0 and y = d, so that all FDTD field components will
be inside the material.

In order to accomplish this the fields in Regions 1 and 3 are separated into
incident, reflected, and transmitted. In Region 1 we have

E,(ty)=Ejp(t =y} +E g (t +y/fc) (11.16)
1
Ho(6y) = —=[Eqe(t —yle)+ E (1 +y/c)] (A1.17)
lo
and in Region 3
E (Ly)=Ey(t -(y-d)k) (11.18)
1
Hy(ty)=—E(t -(y-d)kc) (11.19)
To
where 1, is the impedance of free space and ¢ is the speed of light. If we
multiply (11.17) by 1, and add (11.16) we obtain
E,(t,0)+n,H (1,0)= 2E, (1) (11.20)

and performing a similar operation on (11.18) and (11.19) yields
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- = 11.21
E (t.d)-nH (t.d)=0 (11.21)

Inside the magnetic material the conductivity is high, and so to a good approxi-
mation at the frequencies we will be concerned with the displacement current
being much smaller than the conduction current. Thus, (11.12) can be approxi-

mated as

oH
=1 (11.22)
: c dy

Applying (11.22) to (11.20) and (11.21) yields the boundary conditions just
inside the two surfaces

1 0H
0= D58 \ 0=2E.m.(‘) (11.23)
10H,|
noH,(,0) ——ﬁ . =0 (11.24)
-

These two boundary conditions translate into one-sided second order accurate
difference equations (11-2) and (11-3)

r bl
1 n

H"(1)=l 2Einc(nAt)+T—T(4H:(2)—HX(3))I (11.25)

x FL 2G8y ]
1 n

MOE 4H;(T-1)-H;(1-2) (11.26)

HY(0) = 3o (4RO - D= Hi( - 2)]
where
3
=Nyt 5o 11.27
F=n,+ 20hy ( )

At each time step we use (11.25) and (11.26) to evaluate the magnetic fie}ds
n the surfaces after the interior magnetic fields have been evaluated using

11.15). _
( We are now ready to begin our FDTD calculations. From Merewether we

obtain the expression for the incident field as

4
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E,(t) = 1.2678Ae ™' sin(2nf,t (11.28)
inc 0

where A is the variable amplitude and f, is either 1 or 10 kHz.

Let us first present the resulis, and ihen discuss the FDTD parameters
necessary to obtain them. For the first set the fundamental frequency f, is 1
kHz, and the incident waveform is shown in Figure 11-17. Calculated transient
values of the field transmitted through the nonlinear magnetic sheet are shown
in Figure 11-18 for three different amplitudes of incident field and compared
to the implicit results of Merewether with excellent agreement. For the second
case fy is 10 kHz, and the incident waveform is shown in Figure 11-19,
Calculated values of the transmitted field for three different amplitudes of
incident field are shown in Figure 11-20, and again excellent agreement is
obtained with the Merewether results.

Now let us examine the FDTD parameters needed to obtain these results.
This is somewhat complicated because the material is both highly conductive
and noalinear. The usual approach is to determine the minimum wavelength in
the material, set the cell size a fraction of that, determine the maximum velocity
of propagation, and set the time step based on these according to the Courant
limit. However, in this case determining the minimum wavelength and maxi-
mum velocity of propagation are complicated by the nonlinearity of the mate-
rial. The permeability depends on the field strength, and the frequency spec-
trum is affected as well. Also, because the material is so highly conductive, we
are near the limits of applicability of FDTD because the term that makes our
differential equation hyperbolic is extremely small compared to the other
terms.

Because our material is highly conductive, i.e., at the frequencies of interest
(0)/(we)>>1, the equations for velocity of propagation and wavelength sim-
plify to those for a good conductor and we can determine the maximum
velocity and minimum wavelength as

Anf e
\4
" Ol (11.29)
a—
L P (11.30)
V v”max max

As an estimate we will take f,,, to be 6f,, as the spectrum of the incident
waveform is below 1% of peak amplitude at frequencies above this. The
maximum permeability occurs at H = O field strength and is given by
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FIGURE 11-17. Normalized incident electric field for resuits in Figure 11-18; fundamentat
frequency is | kHz.
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FIGURE 11-18a. Normalized transmitted electric field for incident waveform in Figure 11-17,
with three different amplitudes (a—).
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FIGURE 11-19. Normalized incident electric field for results in Figure 11-20; fundamentai
frequency is 10 kHz.

A=104V/m, fo=10 kHz

xi0-8
5.0 Einc = 1.2678 A exp(—fot) sin(2nfot)
25|
Q000
< 00 20000 \eRwAvAvAvAvA~E
~
g
I~1
—25¢t
— FDTD
@] Merewether
50 . X . ~
0.0 0.1 0.2 0.3 0.4

Time (msec)

FIGURE 11-20a. Normalized transmitted electric field for incident waveform in Figure 11-19,
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TABLE 11.1
FDTD Calculation Parameters for Results Shown in Listed Figures
Figure Ay {(um) Amia/ AY At (ns) AYIV A
18a 6.3 20.2 93.76 10
18b 6.3 20.2 93.76 10
18¢ 63 20.2 31.25 30
20a 2.0 20.1 94.12 10
20b 2.0 20.1 31.37 30
20c 20 20.1 31.37 30
B -2
Hiax = H(O)—*ﬂl =129x10 (11.31)

c

while the minimum permeability occurs at H = (=) and is
M, =du(ee)=p  =1.67x107 (12.1)

We usually like to have Ay < (A;,)/(10), and Courant stability requires that
At < (Ay)/(V,g,)- The parameters actually used to obtain the results in Figures
11-18 and 11-20 are summarized in Table 11.1. While a search for the precise
maximum time step for which stability was obtained was not performed for
each situation, values much larger than those shown in Table 11.1 would
introduce oscillations and noise in the FDTD results. The parameter of 20
divisions per minimum wavelength is quite typical of FDTD calculations. Due
to the combination of high conductivity and nonlinearity, however, the time
step size must be reduced from 10 to 30 times less than that required by the
Courant condition to maintain stability, with smaller time steps required as the
material is driven more nonlinearly. Nevertheless, with only this decrease in
the time step size relative to the Courant limit, the FDTD method is capable of
producing accurate results for this very challenging combination of material
parameters.

It is interesting to investigate the relative effects of the high conductivity
and nonlinearity in forcing the time step size reduction relative to the Courant
limit. In order to illustrate the relative importance some test calculations were
made for various combinations of conductivity, permittivity, and nonlinearity.

The test calculations were made for the excitation of (11.18) with f,= 1 kHz.
1g waveform was again taken

The maximum freauency contained in the e
The maximum frequency contained in th

as 6f,, so that @, = 21 - 6f,. Because not all calculations are made for high
conductivities, general expressions were used to find the maximum velocity

and minimum wavelength, with the wave number k given by

k(w,p)= 1+ (12.2)
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TABLE 11.2
Time Step Reduction below Courant Limit (right column) Required for

ENTN Ctahilite o Nl
H2 R ) Sladhily as Londaa

s JRR DU Fars

y dllu rer llll“lVll._y are unan, gcu IUI'
Linear Medium

© (S/m) €, Ay (m) Aenin! AY At (ps) AYIV i, At)
0 Any 2400 20 83 1.0
10-¢ 1 170 20 6.4 1.3
10 1 630 20 36 23
10+ 1 200 20 2.7 3.0
107 1 65 20 2.6 32
107} 10 64 20 28 3.0
10 100 63 20 36 23
107 1 0.0013 10 10.0 1.6
107 1 0.00065 20 2.6 32
107 i 0.00032 40 0.65 6.4

with
Vmax =wmax /k(wmax’p'mm) (12.3)
)\'min = zn/k(wmax’p‘max) (124)

and With [, Hes given by (11-31) and (11-32).

Let us first consider stability requirements for a linear medium. The time
step size relative to the Courant siability limii is independent of the excitation
amplitude A of (11.18) and of the permeability (for no magnetic losses). It
does depend on the conductivity, and on permittivity for non-zero conductiv-
ity. This is illustrated in Table 11.2. The right-hand column indicates the
factor below the Courant limit inside the material at which the time step must
be set for stable calculations. From this table we see that only for zero
conductivity can we actually compute with our time step at the Courant limit
inside the material. As the conductivity increases the time step must be
reduced, but with a plateau at relatively low conductivity values. This time
step reduction also depends on the cell size, as shown in the data for the
highest conductivity. For a given cell size (relative to the wavelength in the
material) the time step reduction depends on the ratio of (5)/(we). Identical
time sicp reduction factors in the right-hand column of Table 11.2 will be
found to correspond to the same (6)/(we) ratio for the same cell size, that is,
for the same (A,,;,)/(Ay) ratio. This reduction in time step is not a consider-
ation in typical FDTD calculations because most involve free space, and for
all conductivity values considered here a time step at the Courant limit for
free space will provide stable resuits,

Next let us consider the nonlinear medium with permeability as described
previously and permittivity of free space, but with conductivity zero. Now the
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TABLE 11.3
Time Step Reduction below Courant Limit (right column) Required for
FDTD Stability as Excitation Amplitude is Changed, Nonlinear

Magnetic Medium

s (S/m) A Ay (m) Amin/AY At (ns) AY/(V aAt)

0 1 25 20 950 1
0 10 25 20 950 1
0 108 25 20 240 42
0 108 25 20 95 100
0 108 25 20 32 30
0 10° 25 20 38 258
0 100 25 20 32 30
0 10° 50 10 130 15

*  Unstable.

b Marginally stable,

stability depends on the amplitude A of (11.18). In Table 11.3 the reduction in
the time step below the Courant limit required for stability is shown for various
amplitudes. The boundary between complete stability and instability is not
precise, as the FDTD results may not be so unstable as to overflow but yet still
have noise and chatter over some parts of the computation. Thus, some entries
in Table 11.3 have an indication of marginal stability. For small values of A
no reduction in time step is required (a | in the right column), but as A is
increased and the permeability goes through greater changes during the FDTD
calculation the time step size must be reduced. Because Table 11.3 is for zero
conductivity, this clearly indicates that a smaller time step is required by the
nonlinearity of the material. This is the price paid for including nonlinearities
by changing a parameter at each time step without simultaneously satisfying
the relevant equations as described in the previous section.

Finally let us consider the nonlinear magnetic material with a conductivity
of 107 S/m. Stability conditions for varying amplitudes of the excitation are
shown in Table 11.4. Some of the entries in the right column are <1 because
V pax is computed with 1, while A, is computed from y,,,. Comparing Tables
11.3 and 11.4 it is clear that both the high conductivity and the nonlinearity of
the material contribute to the necessity of reducing the time step size below the
Courant limit.

To summarize, two approaches for including nonlinearities in FDTD calcu-
iations have been demonstrated. One of these allows the time step to remain at
the Courant limit, but requires that a nonlinear equation be solved at each time
step. The other simply changes the nonlinear parameter at each time step, but
requires that the time step size be reduced below the Courant limit for stability.
The former is most useful when only a relatively small number of FDTD cells
contain nonlinear materials or devices, while the latter is simple to appl: and
is relatively efficient when most of the FDTD cells contain nonlinear matenals.
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TABLE 114
Time Step Reduction below Courant Limit (right column) Required for
FDTD Stab ion Amblitude is Changed, (‘nnductmn

RIS on Amplifude 1s Changea,

Nonlinear Magnetic Medium

o (S/m) A Ay (pm) Amin/ AY At (ns) AYHV manAT)
107 107 6.4 20 3200 0.3
107 107 6.4 20 2400 04
107 10! 6.4 20 3200 03
107 10+ 6.4 20 2400 0.42
107 1 6.4 20 47 202
107 1 6.4 20 38 25°
107 1 6.4 20 32 300
107 1 6.4 20 24 40
107 10} 6.4 20 38 252
107 10° 64 20 32 30
107 10° 13 10 150 132
107 10° 13 i0 i3 i5

@ Unstable.

b Marginally stable, but noisy; other entries stable and smooth.
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12.1 INTRODUCTION

The FDTD technique, as well as other electromagnetic (EM) modeling
techniques such as the method of moments, is numerically intensive, requiring
significant computational resources for complex models. In addition to EM
modeling techniques two broad areas stand out as numerically intensive —
digital signal processing and scientific visualization. Our work on FDTD has
been on computers optimized for scientific visualization applications, and we
have found that this is an excellent hardware environment for FDTD. It is our
general observation that computers optimized for visualization work well with
FDTD and there is no reason to forgo visualization when working with FDTD
on such a platform as the numerical resources needed to support one generally
goes hand in hand with the resources to support the other. In fact, visualization
should be considered whenever numerically intensive computer modeling is
employed in whatever application.

The rationale for scientific visualization applied to FDTD can be made more
specific by noting that it provides

. Increased confidence in the fidelity of the model when the model is
rendered visually

. Effective diagnostics on field behavior, in particular the timing, magni-
tude, and source of scattering and coupling effects

. Physical insight as the evolution of the interaction is observed

. Intuition bulldmg as a _rnLllUpllCltV of interactions are viewed over time
and conditions are varied such as the type of interaction object (geometry
and material) and field configuration (angle of incidence and polariza-

tion, as examples)

The visualization discussion presented here is not meant to be definitive nor
exhaustive, but rather suggestive of what visualization can do to help the EM
modeler employing FDTD or for that matter other modeling techniques. Our
discussion is based on our own experiences in developing visualization using
graphical primitives on a Silicon Graphics workstation. These efforts can
easily be matched or bettered by any modestly dedicated practitioner of EM
modclmg ‘We hope only to point out the advantages of scientific visualization
fo EM mo:

eling and to encourage the reader.
€iing and to encourage the reacer.

12.2 TYPES OF VISUALIZATION

Visualization can be implemented in many forms with varying degrees of
sophistication. In its simplest form it is static and monochromatic, a traditional
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radiation pattern (Figure 12-1), or a contour field plot (Figure 12-2). Color can
be used to enhance the features as might be done with the contour plots. A
further step is a 3-D plot of the geometry or fieids, which is composed of 2-
D slices. The slices can be orthogonal planes or more flexibly arbitrarily
oriented slices. If the geometry is being rendered, it is desirable to have the
option of hidden line removal. Rather sophisticated tools to perform these
functions have evolved along with FDTD. One example is IMAGE 3.3, a mesh
(the object in the gridded space)-verification tool' developed at Lawrence
Livermore National Laboratory, Livermore, CA.

The next major step, and it is enormous, is to animate the visualization.
Frequency domain codes are in essence static; time has been replaced by ®.
A time domain code such as FDTD is, on the other hand, essentially dynamic
and the time behavior of the fields is crucial. Animation is vital for a
complete understanding of the behavior of the modeled system. A local
monitor point can provide a time-dependent record, for instance, H, (I,,3,,K,)
over N time steps. This is not animation, and the user must “fill in” the
blanks. A plot of H, over some region of space, typically a 2-D slice through
the problem space, at successive times is the beginning of an animation if
displayed as a succession of “stills” in time. If the computer employed is fast
enough these “stills” can be displayed at a speed as slow as 6 to 10 frames
per second (fps) for a possible animation when the “stills” are a time step
between successive frames. Alternatively, individual frames that may take
hours to compute can be assembled into frames on videotape or laser disc and
played back at rates again as low as 6 to 30 fps or higher. This is true
animation whether in color or black and white, or in 2- or 3-D. We have
successfully animated waveguide field propagation in real time (~10 fps) in
color over 28 x 28 2-D slices on a Silicon Graphics 4D220.2 With the same

machine, 2-D scattering, and coupling geometries up to a 100 x 100 cell

display was possible.

This real-time animation capability raises two points. Point one is interactivity.
A real-time animation display is a powerful “teaching” tool for a student and
for an EM modeler. The student can quickly grasp powerful concepts and gain
real physical insight. The modeler can quickly check the model and the
physical process, and determine their significance. Visualization at this level of
sophistication can in minutes (a few hundred to thousands of frames) impart the
same understanding that might take weeks or months to obtain from conven-
tional response plots.

The second point is that there is a cost to all this that will be looked at in
more detail later in the chapter. For now it will be noted that the architecture
of the Silicon Graphics machine is what is needed for effective visnalization.
There is separate hardware for the visualization activities, in effect an indepen-
dent visualization CPU and the double buffering needed for a flicker-free
display. Only recently have PCs begun to appear in this configuration and this
development will hasten the adoption of more sophisticated visualization for
FDTD applications on this category of computers.

'Y
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FIGURE 12-1. E-plane gain pattern of E8 p = 0°, 30° shaped-end radiator.
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FIGURE 12-2. Contour plot of El for 30° shaped-end radiator x-z plane at y = 27.
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12.3 EXAMPLES

Four specific rationales were given in the introduction for scientific visual-
ization. Here, we shail give concreie examples of what was meant. We will
treat the issues of model fidelity, model response, physical process insight, and
intuition building.

12.3.1 MODEL FIDELITY

For a simple example of how model fidelity may be assured with visualiza-
tion consider the cuts that can be made through a spherical scatterer to ensure
sphericity. The use of different colors to denote different materials would allow
the verification of the correct material modeling using exactly the same tech-
niques used to verify the geometry.

Without visualization some glaring modeling errors are possible. Once
when modeling an aircraft one of the authors left out a large section of the
fuselage. This aerodynamically impossible aircraft stiii refiected electromag-
netic energy and behaved in a seemingly reasonable fashion. The only obvious
indication that something was amiss was the absence of a strong half-wave-
length dipole resonance at the expected frequency based on the fuselage length.
The error was discovered as a result of this observation, but the potential was
there for not discovering the error or not discovering it quickly enough.
Visualization makes events like this extremely rare.

12.3.2 MODEL RESPONSE

The minimum model response characterization is to select a modest number
of monitor locations and to store the resulting response data from these loca-
tions. The aircraft response data of Chapter 4 is an example of this response
characterization. Time response data are obtained directly from the code and
the corresponding frequency domain response data are obtained through the
simple expedient of applying a fast Fourier transform (FFT) to the time domain
response data, This is sufficient to observe the major physical processes such
as resonant behavior in the aircraft response and as just discussed, to note gross
abnormalities in the response, which occur, for example, when part of the
aircraft fuselage is missing. What of more subtle questions — the question of
how the vertical stabilizer effects the responses, for example.

One approach to the above question is to remove the vertical stabilizer from
the model and observe changes in the monitor location responses. A second
approach is pos. tion, and this is to observe the
fields scattering off the aircraft, and in particular the vertical stabilizer. The size
and direction of the scattered as well as the total fields can be examined and
their effects on adjoining portions of the geometry estimated.

Another example is a 2-D parallel plate waveguide operating in the TE
mode. We can examine how a sinusoidal wave with E parallel to the plate
surfaces scatterers from the leading edges of the plates and establish that this
is the dominant scattering mechanism. For most other geometries there are
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other equally obvious dominant or at least important scattering mechanisms
that are immediately identifiable.

12.3.3 PHYSICAL PROCESS INSIGHT

The example of the parallel plate waveguide and the dominant scattering
from the leading edges of the two plates ideally illustrates how visualization
provides the modeler insight into the physical processes that characterize the
electromagnetic interaction being modeled. These processes are often catego-
rized as scattering or coupling processes or mechanisms. The discussion pre-
sented here is based on an actual example of visualization presented on
videotape in Reference 2.

For the parallel plate waveguide visualization allows a clear view of a
cylindrical wavefront emanating from each leading edge of the waveguide in
the scattered field display. Comparing two different geometries with two
different piate spacings it is easily noted that with the wider spacing the
interferences between the two scattered fields, one from the top plate and one
from the bottom plate, is lessened and a significant total field appears within
the plates. For the smaller plate spacing there is nearly complete cancellation
due to interference and the total field between the plates is nearly zero.

The plate spacing was, of course, selected so as to be above and below cutoff
for the frequency of the incident sinusoidal field for the large and small plate
spacing. The wave penetrating the parallel plate waveguide structure with the
wider spacing therefore comes as no surprise, as does the near-absence of
penetrating fields in the parallel plate waveguide operating below cutoff. Even
though the results may have been anticipated, the visualization clearly identi-
fies the process and makes its effect obvious.

12.3.4 INTUITION BUILDING

As the modeler works with the visualization of increasingly different mod-
els, an ever-increasing set of experiences, similar to the parallel plate waveguide,
are required. The modeler becomes aware of what are likely scatterer sources,
how effective a shadow area may result in the region behind a plate, what
portion of the frequency range of an incident pulse will penetrate an aperture,
what does a bend in a waveguide do to the signal that encounters the bend, etc.
These are not trivial insights.

Visualization literally makes the unseen world of electromagnetics visible.
The designer of an anechoic chamber can see how the incident wave emanating
from a horn and reflected off a reflecting dish (Figure 12-3) fills the bulk of the
chamber with what is hoped to be a plane wave. The energy loss to the
absorbing walls can be examined (Figure 12-4) to see where most of the
absorption takes place and to decide where design changes may be advanta-
geous. The figures shown here are static renditions of what was actually
visualized of Silicon Graphics 4D 220 FDTD predictions in color on videotape.

With visualization intuition building is a natural process and it reinforces
itself. The EM modeler develops this intuition which in turn lets the modeler
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FIGURE 12-3. Idealized rendering of waveform “straightening”.
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FIGURE 12-4. Idealized rendering of heat absorption.

an t_r‘lnarp what results may be obtained with a nan!cl_lla_r model and to tune the
model to obtain optimum results before making any runs. Without visualiza-
tion intuition building is a slow and laborious process. Visualization plays an
important role in EM modeling, a role that will only grow as modeling becomes

more sophisticated and the physical processes more complex.
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12.4 RESOURCES AND COST OF VISUALIZATION

Having extoiled the virtues of visualization we must now address the
resources required and the costs. They are not insignificant when one addresses
the most demanding form, animation. We shall assume color is desired over a
wide range of colors mandating 24-bit color (16-meg colors) as opposed to 8-
bit color (256 colors). Note that 8 bits provides a dynamic range of 256:1 if
used for a linear gray-scale display and can only marginally convey amplitude
information. We shall also assume at least 6 fps are required for animation.
Ideally, 30 fps or more should be sought. If animation is not required then the
cost of a single frame sets the visualization requirements, and these can be
easily met in most cases.

A problem space (NS)’ in size or nominally NS cells on a side may range
from NS equal to around 30 and up to nearly 1000. A slice through the problem
space will then be on the order of 30 x 30 cells up to 1000 x 1000 celis. If a
cubical cell with square faces is represented by an array of pixels no less than
2% 2 pixels, then on a screen with 1280 x 1024 pixel resolution a slice of up
to 500 x 500 cells can be accommodated. We will take this as a reasonable
current upper limit as it represents a problem space of a little over 108 cells, and
we will use a 28 x 28 cell slice as the lower limit as this corresponds to our
present EM courseware? visualization resolution.

The 500 x 500 cell slice would require 1000 x 1000 pixels to be trans-
ferred per frame or 1-meg pixel per frame. At 30 fps a 30-meg pixel/s transfer
rate is required. At 3 bytes/pixel the transfer rate is nearly 100 Mb/s. Our
visualization platform (Silicon Graphics 4D220) has a capability approxi-
mately 4 times this rate or 400 Mb/s. Graphic accelerator boards costing
hundreds of doiiars now offer approximately one third this capability on PCs.
When the frame rate is dropped to 10 fps and only an array of 200 x 200 cells
at 2 x 2 pixels per cell or 400 x 400 pixels is updated for each frame the data
transfer rate drops to 400 x 400 pixels x 3 bytes/pixel x 10 updates per second
= 4.8 x 10° or ~5 Mb/s. This is well within the low end capability of
visualization hardware. It would provide a slice through a (200)? cell or 8-
meg cell problem space, which is a rather large problem space. For more
powerful PCs with 100 Mb/s transfer rates no compromise is required and
machines of this caliber are becoming common.

In the future matters only improve. Using the role of thumb that speed,
memory, cost, etc. improve tenfold every 6 years, in 24 years machines will
be available with CPUs that are roughly 10* times more powerful. The
problem space that can then be modeled will be ten times larger than that of
today hecause the modeling cost scales linearly with x, v, z, and t. A 2-D slice
through the problem space will only increase in the number of pixels by the
increase in two spatial dimensions or 100-fold. Having reached a perfor-
mance level today capable of supporting visualization we will only find the
requirements less demanding as a percentage of total resources required of



238 The Finite Difference Time Domain Method for Electromagnetics

FDTD modeling and visualization. Thus, we expect visualization to be an
inseparable adjunct to FDTD modeling.
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Chapter 13 241
FAR ZONE SCATTERING

13.1 INTRODUCTION

Electromagnetic scattering has been an interesting problem since the earli-
est days of electromagnetic research. In the past, problems of interest included
scattering from raindrops at light frequencies in order to explain the color of
the sky and the origin of rainbows. Scattering from raindrops and ice crystals
is still a topic of interest, but at microwave frequencies for applications such
as radar meteorology. More recently the design of military aircraft with low
scattering cross sections that make them less detectable by radar has renewed
interest in this topic.

All components of an FDTD code required to make scattering calculations
have been introduced in previous chapters, including the scattered field formu-
lation itself, the outer radiation boundary condition (ORBC), and the far zone
transformation. Should the scatterer contain frequency-dependent materials
their effects can be included as well using the methods of Chapter 8. The only
additional item needed is a suitable fast Fourier transform (FFT) computer
code if frequency domain scattering results are desired. Let us consider these
components as they apply to scattering calculations.

First, the scattered field formulation is extremely well suited to scattering
calculations. Because the incident wave is specified analytically, it illuminates
the scatterer accurately without being distorted by grid dispersion or other
FDTD error sources. The scattered field, which is the field desired in scattering
calculations, is directly computed. As this is the case, there is no need to divide
the FDTD space into total and scattered field regions, as is the case when the
total field formulation is used!. Launching the incident plane wave is also
simpler, since it is specified analytically as described in Chapter 3.

The outer radiation boundary condition is extremely important in scattering
calculations. This is especially true when trying to calculate scattering from
targets with low level cross sections. The difficulty is that fields scattered from
the target may partially reflect from the absorbing boundary and reilluminate
the target. If, for example, a target shaped for low level scattering when
illuminated from the incident field direction is reilluminated from another
direction due to outer boundary reflection, the resulting scattered field may be
much higher than the correct value. While most of the results presented in this
chapter were computed using a second order Mur absorbing boundary, other
absorbing boundaries with better performance, especially in the edge and
comer regions, may be desirable for scattering applications.?? Second order
Mur will work very well if enough empty cells are used to separate the
absorbing boundary from the scatterer, but the higher performance absorbing
boundaries will work better if fewer free space cells are used. Moving the
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absorbing boundaries closer to the scatterer saves computer resources and
allows larger targets to be considered with a given amount of computer
memory.

Scattering cross sections are defined in the limit of the far zone of the
scatterer, as the distance from the scatterer approaches infinity. This means that
the near zone FDTD results must be transformed to the far zone. This can be
done in the frequency domain,! but it is more efficient to use pulsed excitation
and transform the transient fields to the far zone, especially if only backscatter
or a few bistatic scattering directions are of interest. With a transient far zone
transformation, scattering results for the entire band of frequencies for which
the FDTD calculations are valid are produced from just one computation.
Because the computation time for FDTD to reach steady state for sinusoidal
and pulse excitation is approximately the same,* and because the FFT is
extremely efficient, pulse excitation for scattering calculations with a transient
far zone transformation is almost always preferred. In Chapter 7 an approach
to transform the transient FDTD fields to the far zone was presented, and some
examples given for scattering from simple shapes in 2- and 3-D were shown
to illustrate the method. In this chapter we concern ourselves only with 3-D
scatterers, and the 3-D far zone transformation of Chapter 7 is used.

While scattering calculations using the Yee cell can be quite accurate for
many situations, for low level scattering from curved surfaces or flat surfaces
that do not align with the grid, the results may be inaccurate. The error
produced in approximating surfaces which do not align with the grid is com-
monly called “staircasing” error, because the stepped Yee cell approximation
to the surface has the appearance of a flight of stairs (although the steps may
be irregular). This difficulty can be solved by brute force by using extremely
smali cells, 1/20 to 1/50 of a wavelength or even smaller, but finite computer
resources may prohibit this. Alternative FDTD algorithms for this situation are
being actively researched,’” but the present state of development requires the
application of considerably more effort than the Yee cell algorithm discussed
here. A special mesh for each object shape must be generated, and the mesh
information used in the FDTD update equations. Later in the chapter a discus-
sion of staircase errors is given.

Many of the methods described in previous chapters to deal with special
materials such as frequency-dependent or nonlinear materials may be used to
deal with special scatterers. Scatterers made of highly conductive materials or
coated with thin layers of conductive material are difficult to model directly
because the wavelength in such materials is relatively small as compared to
free space. Thus, the FDTD celis must also be made quite small inside the
conductive materials. A method to avoid this, commonly used in the frequency
domain, is to model the boundary condition at the scatterer surface with an
impedance. The time domain equivalent of this for both constant and fre-
quency-dependent materials was presented in Chapter 9, and a result was given
there for scattering from a lossy cylinder. Scattering results for a sphere
composed of frequency-dependent material are given at the end of this chapter.

4
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Because all of the tools needed for scattering calculations have been
introduced in previous chapters, this chapter is not comprehensive. The
next section presents the basic equations and approach for transient far
zone scattering calculations using FDTD. The section following that gives
a simple demonstration of the errors that can be encountered due to
staircasing effects. Following that, the ease with which FDTD can calculate
scattering from impedance sheets is presented. The importance of the
absorbing boundary condition in producing accurate scattering results is
then demonstrated, followed by an example of scattering from a frequency
dependent material.

The chapter gives examples of scattering results obtained using FDTD.,
Also, several examples have already been shown in conjunction with the far
zone transformation method in Chapter 7 and the surface impedance formu-
lation of Chapter 9. The thrust of these examples is that scattered field
formulation FDTD based on the Yee cell is extremely well suited to scatter-
ing calculations, within the limitations imposed by staircasing, and provided
that the absorbing boundary is located sufficiently far from the scatterer to
absorb the scattered fields.

13.2 FUNDAMENTALS

Given the tools already developed in previous chapters calculating scat-
tering using FDTD is quite straightforward. First consider the basic defini-
tion of scattering cross section, reproduced here from Chapter 7. For 3-D we
have

(13.

where 6, is the scattering cross section in square meters, E b is the Fourier
transform of the far zone electric fields E, or E, obtained usmg lhe transient far
zone transformation of Chapter 7 (specifically from (7.7) or (7.8)), and E! is the
Fourier transform of the incident plane wave electric field. Because the far
zone transform of Chapter 7 normalizes the far zone distance R to 1, the actual
value of R used in evaluating (13.1) is 1 also. For phase-accurate results the
incident field should be sampled at the same location as the time reference for
the far zone transformation, specifically from the point where the ©’ vector of
(7.9) and (7.10) starts, and the time shift of (7.16), which is applied to the far
zone fields, must also be applied to the sample of the incident field Ei before
the Fourier transformation is made. Also, E' may be affected by the polarization
of the incident field, i.e., it may be determined by the incident E, or E, or some
combination of the two.
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The corresponding 2-D scattering width is defined as

(13.2)

O,p = lim t2np
P>

where EsZD is the Fourier transform of either E, or E, of (7.23) or (7.24). The
discussion of the variables E' and p (R) given above for 3-D scatterers also
applies for 2-D scattering calculations.

Examples of results obtained using scattered field FDTD with the transient
far zone transformation and Mur second order absorbing boundaries are given
in Chapter 7 for both flat plates in 3-D and circular cylinders in 2-D. While
those tesults indicate the fundamental capability of scattered field FDTD to
compute scattering cross sections, some additional discussions of this applica-

timen Kty - A navi cantin &
tion follow. In the next section the errors that can be expected when Yee cell

FDTD is applied to scatterers that have either curved surfaces or are not aligned
with the grid are presented.

13.3 STAIRCASE ERRORS

Chapter 7 presented results for scattering from a flat plate using scattered
field FDTD, and these were compared with the method of moments. The
comparison indicated that FDTD was capable of producing accurate results
for this geometry. The flat plate geometry considered then is shown in Figure
13-1, but with the computational space extended in size to 60 X 60 x 60. One
reason that the FDTD results were good is that the flat plate naturally fits the
Yee cell rectangular grid. To demonstrate what happens when the scatterer
does not fit the grid we will use the geometry of Figure 13-2. Here, the same
29 x 29-cm square plate is being considered, but in this case it lies at a 45°
angle with respect to the FDTD grid, and therefore must be approximated by
a series of “steps” (not all the steps are shown in the figure for clarity). Figure
13-2 clearly shows the source of the term “staircase” used to describe the
FDTD approximation to surfaces which do not conveniently fit the grid, and
by association to describe the resulting errors.

Now let us investigate the error in approximating a plate which is actually
flat by a staircased plate located at 45° with respect to the grid. To do this
consider the sequence of Figures 13-3 to 13-6. In Figures 13-3 and 13-4 the
scattering cross section of the flat plate is computed for normal incidence (with
respect to the plate) for both the actual flat plate aligned with the FDTD grid
(Figure 13-1) and the flat plate at 45° with the FDTD grid (Figure 13-2).
Figures 13-3 and 13-4 indicate that for normal incidence the scattering from the
staircased plate is almost identical to that from the grid-aligned flat plate.
Consider next, however, the case of scattering from a flat plate with the
incidence angle 85° from the plate normal in the ¢ = 0 plane, as indicated in
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FIGURE 13-1. Flat plate 29 x 29 cm (I cm cells) aligned in the FDTD grid.
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FIGURE 13-2. Flat plate 29 x 29 cm (l-cm ¢
FiG . - elis) at a 45° angle with the FDTD gri i
staircase” effect. Not all of the “steps” are shown. ¢ grid shoving
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FIGURE 13-3. Copolarized backscatter for normal incidence, ¢-polarized incident wave, for both
flat and staircased plates.
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FIGURE 13-4. Copolarized backscatter for normal incidence, 8-polarized incident wave, for both
flat and staircased plates.
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FIGURE 13-5. Copolarized backscatter for 85° incidence, ¢-polarized incident wave, for both
flat and staircased plates.
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FIGURE 13-6. Copolarized backscatter for 85° incidence, 6-polarized incident wave, for both
flat and staircased plates.
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Figure 13-2. Even in this case, for ¢-polarized incident field as shown in Figure
13-5, the flat and staircased approximation have very nearly the same scatter-
ing result. For the 8-polarized incident field results of Figure 13-6, the staircased
plate produces very different scattering results than the flat, grid-aligned plate.

The physical explanation for this is quite simple. The ¢-polarized incident
wave has its electric field parallel to the plate surface, and relatively strong
currents are induced on both the staircased and grid-aligned flat plate. In this
situation, the incident E,- polarized wave is equivalent to an E, component, and
both the grid-aligned flat plate and the staircased plate directly interact with
this field component.

On the other hand, the 8-polarized electric field is nearly perpendicular to
the plate surface, and excites relatively weak currents on the flat plate. Indeed,
for 90° incidence angle (relative to the plate) no currents would be excited on
the flat grid-aligned plate at all, and the plate would not scatter, because for the
one-cell-thick grid-aligned plate only E, and E, components are directly af-
fected by the plate conductivity, and the incident field has only an E, compo-
nent. For the staircased plate, i wever, the Eq incident field has both E, and E,
field components, and both are directly affected by the staircased plate.

From this example we see that we can expect maximum staircase errors in
situations where the electric field is perpendicular to the staircased scatterer
surface. Does this mean that the Yee cell computer codes cannot be used for
this situation? The answer is no. As the cell size is reduced the results from the
staircased scatterer will eventually converge to the correct result, but very
small cells (relative to the wavelength) may be required for accuracy.

Consider scattering from a sphere. In Figure 13-7 a sphere is approximated
using 1-cm cubical Yee cells, with the staircasing of the sphere surface shown
clearly. The incident fieid direction is 6 = ¢ = 22.5°. The time domain far zone
scattered field (with a Gaussian incident pulse) in Figure 13-8 clearly shows the
pulse being scattered from the “staircase” as the ripple on the response.
Nevertheless, the corresponding frequency domain backscatter result for the
staircased perfectly conducting sphere, shown in Figure 13-9, is reasonably
accurate. It could be improved by using smaller (and more) FDTD cells with
a greater expenditure of computer resources. The results will be worse for
incidence directions normal to the staircased flat surfaces, for example, from
0=0and ¢ = 0 or 90°, since these flat surfaces backscatter more strongly than
the smooth sphere surface.

The results used thus far to illustrate staircasing errors have been the results
for perfectly conducting scatters. For penetrable scatterers the staircasing error
is generally less, because some of the energy is scattered from within the targei
for penetrable scatterers by gradually changing the constitutive parameters at
the surface of the target. While the sphere shown in Figure 13-7 may be
composed of Yee cells with all edges set to the same material, this need not be
the case. It would be more accurate to have the outermost edges set to differing
constitutive parameters, depending on the portion of the edge actually within
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FIGURE 13-7. Staircased sphere in cubical Yee cells.

the sphere volume. Results using this approach will be more accurate than for
an abrupt change in dielectric constant, with the improvement being greater for
lower dielectric constants. An example of sphere scattering using a “fuzzy”
surface approach is given at the end of this chapter for a sphere composed of
frequency-dependent penetrable material.

If extremely accurate results are required for scattering from staircased
t"axgets with electric field polarization normal to the target surface, especially
for high dielectric constants or perfectly conducting targets, there are two
approaches to be considered. The first, as stated above, is the obvious approach
of using smaller and therefore more FDTD cells. Accuracy can be checked by
convergence as the cell size is reduced, much as can be done for method of
moment solutions. The difficulty with this is that computer resources, in terms
of both memory and processing time, may be exhausted before convergence is
reached. The second approach is to abandon the cubical Yee cell, at least in the
vicinity of the scatterer, in favor of alternative approaches.>” At the present
stage of research good results have been obtained for 2-D scatterers with

several different approaches, while approaches valid in 3-D have been formu-
lated but tested only on special geometries

Applying these alternate approaches is quite complicated as compared to
using cubical Yee cells. As explained in Chapter 3, “building” an object in Yee
cells only requires setting the constitutive parameters at the appropriate field
locations. The update equations for the electric and magnetic fields are the
same for all field components (depending only on material properties). The
field components are directly addressed in computer memory, i.e., the index on
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FIGURE 13-8. Transient backscattered far zone electric field for Gaussian pulse incident plane
wave on staircased conducting sphere.
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the array (I,J,K) automatically determines the location of the fields in the space.
With nonuniform cells, the cell mesh itself must first be generated to fit the

surface of the scatterer. Then thic me
surtaCe o1 {ne scatterer. 1nen this me
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‘ormation must be incorporated into
the FDTD update equations, usually requiring indirect addressing. This means
that in order to find the location of an (1,J,K) field component one must use
another set of array variables in which the locations are stored. In addition to
the increased memory required to store both the field and grid information,
nonuniform grids also require additional calculations to update the fields
relative to Yee cell calculations. Thus, there is a trade-off between the two
approaches, with the choice involving whether it is better to use larger and
fewer nonuniform cells, which require more memory and calculation time for
each cell (plus more human time to deal with the greater complexity), or
smaller but more Yee cells, which require less memory and calculation time
each (and less human time for programming due to the relative simplicity) for
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10 clear answer herc. The choice depends on the
geometry of the scatterer and its size in wavelengths, the polarization of the
fields, the accuracy required, and the human and computer resources available
for the calculation. At present, with the nonuniform cell FDTD still an active
research area, Yee cells are preferred for most applications and are certainly
more commonly used. However, in the future, with automated mesh generation
and improved field update algorithms, the nonuniform cell methods may have
wider use. Anyone interested in the application of nonuniform cell FDTD
should read the literature®’ and consider the current state of development
relative to the specific problem at hand.

13.4 IMPEDANCE SHEETS

Thin sheets of resistive or dielectric material are commonly encountered in
radar cross section (RCS) scattering calculations. They are also used in
waveguide and antenna components. Analysis of such sheets is simplified by
using sheet impedances. In this section it is shown that sheet impedances can
be modeled easily and accurately in FDTD calculations. The discussion and
results of this section are taken from Reference 8.

Reference 9 reviews various approximate boundary conditions, including
several for thin sheets and layers. These are applicable to sheets which are thin
relative to the free space wavelength, so that they can be approximated by an
electric current sheet. If the thin sheet is primarily conductive, the sheet
impedance will be resistive, as is the case for resistance cards. A thin lossless
dielectric sheet will have a purely reactive sheet impedance, while in general,

the sheet impedance wi

only encountered in

be complex. These sheets are characterized by a
discontinuity in the tangential magnetic field on either side of the sheet but no
discontinuity in the tangential electric field. This continuity, or single valued
behavior of the electric field, allows the sheet current to be expressed in terms
of an impedance multiplying this electric field. These conditions imply that the
effects of the sheet on the perpendicular electric field can be neglected. If this



252 The Finite Difference Time Domain Method jor Electromagnetics

is not the case, more complicated models must be used, as discussed in
Reference 10.

The sheet impedance can be defined in several ways. A convenient defini-
tion can be obtained by combining (3.3) and (3.5) of Reference 11

Ys =0T+ ju)(»:o(er - I)T (13.3)

with
z, =1/, (13.4)

where Y, is the sheet admittance, Z, is the sheet impedance, ¢ and €, are the
conductivity and relative permittivity of the sheet material, T is the sheet
thickness, and & is the free space permittivity.

consider how to incorporate this approximation into the FDTD

Letust
method. The surface impedance approximation requires the impedance sheet to
be thin as compared to the free space wavelength. In most FDTD calculations
the FDTD cell size must be on the order of 1/10 wavelength or less for
reasonably accurate results, so this condition is automatically met. Scattering
from an infinitesimally thin perfectly conducting plate has been calculated by
approximating the plate as being one FDTD cell thick with good results, as
shown in Chapter 7. If it is assumed that the same approach can be applied to
infinitesimally thin impedance sheets, then the plate thickness T in (13.4)
becomes the thickness of the FDTD cell, and the conductivity and/or relative
permittivity to be used in the FDTD calculations are adjusted in accordance
with (13-4) to give the desired sheet impedance. Note that the FDTD cell

L . PSP t5 tho thicknace o i 3
dimension need not correspond to the thickness of the actual physical sheet.

The FDTD cell thickness is used only to determine the conductivity and
relative permittivity of the FDTD electric field location so that the desired sheet
impedance is approximated. Note also that even if the wavelength in the
material forming the impedance sheet is much smaller than a free space
wavelength, the FDTD cell size need not be correspondingly reduced.

The approach is extremely simple, and its application will be demonstrated
by examples. The first consists of calculating the far zone backscatter from a
29 x 29 cm flat plate of sheet impedance Z, = 500 Q. The FDTD calculations
will use cubical Yee cells with 1-cm edges. Using T = 1 cm, the corresponding
FDTD conductivity is 6 = 0.2 S/m. The FDTD calculations shown in Figures
13-10 and 13-11 are made with the plate approximated by setting the conduc-
tivity to 0.2 S/m for x and y polarized electric field locations corresponding to
single z dimension index over a range of x and y dimension indices to model
the plate. The problem space size, orientation, and position of the plate,
incident Gaussian pulse plane wave, and time step size are consistent with
those in the flat plate examples of Chapter 7.
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Flat Plate, 29 x 29 cm, 0=0.2 (Zs = 500 Q)
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FIGURE l3-l.0. Copolarized backscatter far zone electric field vs. time for a 29 x 29 ¢m flat
plate of sheet impedance 500 Q, for a 8-polarized normally incident Gaussian pulse plane wave
computed using FDTD.

Flat Plate, 29 x 29 ¢m, 6=0.2 (Zs = 500 Q)
1 cm FDTD cells, 60 x 60 x 49 space

0

[
L

@ Polarized

Co-Polarized Cross Section (DBSM)

—— FDTD
O MoM
=70
-80 L L . L s )
0o ag .
0.0 0.5 1 2.5 3.0

.0 i.5 2.0
Frequency (GHz)

F”IGUR'E l:!-ll.' RCS for a 29 x 29 cm flat plate of sheet impedance 500 Q, normal incidence,
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Figure 13-10 shows the far zone backscattered electric field for a Gaussian
pulsed plane wave normally incident on the plate. The RCS obtained from this
far zone transient results is shown in Figure 13-11 and compared io resulis
obtained using the method of moments.!"" The agreement is quite good. In
Reference 8 results for this sheet impedance plate for non-normal incidence
angles are given and also show good agreement with method of moments
results.

In Figure 13-12 both FDTD and method of moments!! results for scattering
by a plate with a complex sheet impedance are shown. The sheet impedance
is determined by applying (13.4) and (13.5) with conductivity 0.25 S/m,
relative permittivity 3.0, and thickness 1 cm. The plane wave is a Gaussian
pulse incident from 6 = 45, ¢ = 30°, and ¢-polarized. The FDTD results agree
with the method of moments results for frequencies up to about 12 cells per
wavelength.

The final result is for a plate with edge treatment. For this demonstration a
21 x 21 cm perfectly thin conducting plate is given a 4-cm border of sheet
impedance Z, = 500 2, resulting in a square plate 29 x 29 cm. This edged plate
is modeled in FDTD by setting x and y polarized electric field locations for a
single z dimension index as being either perfectly conducting for the central
portion of the plate or with a conductivity of 0.2 S/m for the edges. The method
of moments'! calculations were made with a central perfectly conducting plate
surrounded by four plates of sheet impedance Z=500 Q attached to the central
plate using overlap modes. Once again the plane wave is a Gaussian pulse
incident from 0 = 45, ¢ = 30°, and ¢-polarized. The results are compared in
Figure 13-13 with excellent agreement between the two methods.

This section demonstrated the ability of the FDTD method to easily and
accurately model scattering by sheet impedances by comparing FDTD results

for scaitering from flat plates modeled using sheet impedances with method of

moment results. The approach described here is directly applicable to the Yee
cell, and demonstrated good accuracy for frequencies up to approximately 12
cells per wavelength.

13.5 DISTANCE TO OUTER BOUNDARY

Scattering cross-section results are very sensitive to unwanted reflections
from the outer absorbing boundaries of the FDTD space. An adequate distance
must be maintained between the scatterer and the outer boundary. This distance
will depend on the geometry and material of the target, the type of outer
boundary used, and the way in which the scattered fields illuminate the outer
boundary. For example, Mur absorbing boundaries work relaiively well for
scattered fields which are normally incident on the outer boundary, not so well
as the incidence angle moves away from normal, and are at their worst in the
corners of the FDTD space. In Chapter 7 results for plate scattering with a 45°
incidence angle were given, and the plate was moved out of the center of the
FDTD space for these calculations. If the plate is located in the center of the
space, the specular reflection from the plate will illuminate a corner of the
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FDTD space and will be reflected back to the plate by the imperfect Mur
absorbing boundary. From the plate it will again specularly retlect to the
backscatier direction, resulting in significant error. This error is nearly elimi-
nated by locating the plate so that the strong specular reflection does not
illuminate the Mur absorbing boundary in the corner. Other absorbing bound-
aries, such as described in References 2 and 3, absorb better in the corner
regions than does Mur’s and require fewer cells between the scatterer and the
outer boundary for the same absorption, but at the expense of additional
complexity.

In the following sequence of results taken from Reference 11 the effect of
the distance between the scatterer and the Mur second order absorber is
illustrated. For the first example the scatterer is a square perfectly conducting
rod with a 10:1 length to width ratio. In Figures 13-14 and 13-15 the rod is
approximated using 100 x 10 x 10 FDTD cells. The FDTD cells are 1/10
wavelength at the highest frequency shown. In these figures scattering results
for end-on incidence are shown with 6 and 20 FDTD cells between the rod
and the second order Mur absorbing boundaries, respectively, and the im-
provement in accuracy is striking. These problem spaces are 112 x 22 x 22
or 54,200 cells and 140 x 50 x 50 or 350,000 cells. Clearly, the need to allow
so many cells between the scatterer and the absorbing boundary creates a
severe impact on the computer resources needed.

Next we consider in Figures 13-16 and 13-17 the effects of reducing the
FDTD cell size by half, so that the rod is approximated using 200 x 20 x 20
cells with the cells size now 1/20 wavelength at the highest frequency. Again,
backscatter for end-on incidence is shown, with the second order Mur ab-
sorbing boundaries separated from the scatterer by 8 and 20 cells, respec-
tively. The improvement obtained by increasing the separaiion of the Mur
absorber from the scatterer is significant, especially at the higher frequencies.
The FDTD problem spaces used for these two figures are 216 x 36 x 36 or
280,000 cells and 240 x 60 x 60 or 864,000 cells. The results in Figure 13-
15 appear to be of an accuracy similar to those in Figure 13-17, however,
even though Figure 13-17 has FDTD cells half the size and required nearly
2.5 times as much computer memory. Let us consider the reason for this. The
results in Figures 13-15 and 13-17 both use the same number of cells between
the rod and the absorbing boundary, but since the cells used in Figure 13-17
are half the size, the Mur absorber is actually closer to the scatter in this
calculation than it is in Figure 13-15. One would expect that if the number
of cells between the rod and the absorbing boundary were increased to 40
with the smaller cells used, maintaining the same distance to the absorbing
boundaries, the results would be even more accurate.

From this example we see that basing the decision on how much distance
to place between the scatterer and the Mur absorber on the number of cells may
not be entirely valid, but considering the actual distance is important as well.
This example also illustrates that the allocation of computer resources to
provide smaller cells to more accurately model the interactions with the scat-
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FIGURE 13-14. FDTD calculation of end-on backscatter for 100 x 10 x 10 cell square rod with
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FIGURE 13-16. FDTD caiculation of end-on backscatter for 200 x 20 x 20 cell square rod with
8 cells between the rod and the absorbing boundaries compared to measurements.
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terer, as opposed to using larger cells to locate the absorbing boundary as far
from the scatterer as possible, is important in obtaining the most accurate
results possible with the computer resources available. Ideally, one would like
to make convergence tests on both variables, cell size, and distance between the
scatterer and the absorbing boundaries, and observe convergence to the same
result.

This example also points out the tremendous savings in computer storage
(and, of course, computer execution time) that will result from using absorbing
boundaries?? that reduce the reflections from the outer boundary without
requiring the distance needed by the Mur formulation used here.

13.6 FREQUENCY-DEPENDENT MATERIALS

For the final example in this chapter FDTD scattering results for a fre-
quency-dependent material will be given. The material permittivity is de-
scribed by one second order Lorentz pole with parameters (‘nrrPanndlnu to
(8.37) and (8.38) of €,= 1, ¥,= 5.01 x 106, a0, = 3.99 x 10'6, and [3[ 028 x
10'¢. The complex permittivity of the material is shown in Figure 13-18.

To illustrate the application of the frequency-dependent scattered field
FDTD formulation of Section 8.7 in 3-D, the backscatter cross section for a
sphere made of this material is calculated. The FDTD space is 71 x 71 x 71
cells, using Liao’s? second order absorbing boundary. A smooth cosine pulsed
plane wave with pulse width B =24 excites the sphere. The time step for both
FDTD calculations was set at 0.45 x the Courant limit. This was required for
stability due to the relative permittivity being <1. The angle of incidence is 6
= 70, ¢ = 20. The sphere radius is 15 nm or 25 FDTD cells.

‘The outer surface of the sphere is “fuzzy”, as discussed in Section 13-3. The
<neg1fm annrnarh used was to determine the distance from the center of the
sphere to !he two endpoints of each Yee cell electric field component. If both
endpoints lie within the sphere volume, constitutive parameters are set for the
Lorentz material. If both endpoints are outside the parameters are free space.
If one endpoint is inside the sphere volume and one is outside, the multiplying
constants for the FDTD update equations are modified in proportion. For
example, consider that for a certain E field component 40% of the correspond-
ing Yee cell edge is inside the sphere volume and 60% is outside. First,
compute the multiplying constants in (8.61) for the Lorentz material and for
free space. Then, for the dispersive calculation for this particular component
use material parameters in (8.61) which are the sum of 0.4 times the dispersive
constants for the Lorentz material plus 0.6 times the constants for free space.

000 different sets of constants were
For the calculations shown here about 1000 different sets of constants were

used for the various electric ficld components on the sphere surface.

The far zone transient scattering was Fourier transformed and used to
produce the frequency domain backscatter. The result is shown in Figure 13-
19. Compare this with the exact solution and with an FDTD calculation which
does not include the frequency dependence of the material. For the nondispersive
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FDTD calculation the permittivity and conductivity was chosen to match the
Lorentz material at a frequency of 1.7 x 10'¢ Hz. The frequency-dependent
calculation required approximately 5 h on a workstation with a 7-MFLOPS
computations speed, about twice the computer time for the non-frequency-
dependent calcuiation. The accuracy of the fuzzy dispersive caiculation is
excellent. The results also clearly illustrate the advantage of using the scattered
field frequency-dependent approach to obtain wide bandwidth scattering from
frequency-dependent materials.
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ANTENNAS

14.1 INTRODUCTION

In this chapter application of the FDTD method to antennas is discussed,
and several fundamental example calculations are presented. FDTD calcula-
tion of the basic antenna parameters, including self- and mutual impedance and
admittance, gain, efficiency, and radiation patterns is demonstrated for several
different antenna geometries. The FDTD results are compared both with cal-
culations made with the method of moments (MoM) and with measurements.

While extremely accurate results for impedance for relatively simple 2-D

antenna geometries can be obtained if FDTD is used to model the feed region
in detail ! the approach taken here is to use only the usual Yee cell FDTD field

in detail,! the approach taken here is to use only
components to model each source. This corresponds to the usual way thin wire
MoM computer codes model approximately a source as a thin gap in the wire
or as a frill of magnetic current. In this discussion the term “source” is used in
a rather restrictive sense, meaning the spatial location(s) in which the antenna
problem is being excited, i.e., where a source is supplying energy to the
electromagnetic calculations. It is not to say that an antenna feed region or
subsystem whose geometry affects the antenna performance cannot be mod-
eled using the approach here. For example, later in this chapter we consider a
shaped-end waveguide antenna which is fed by a metallic probe located near
the closed end of the waveguide. This probe is shaped and located so as to
excite a particular waveguide mode. The metallic probe is modeled using a
number of FDTD field components. However, the probe is driven by a single
applied electric field in one FDTD cell, located where the probe contacts the
waveguide wall. The advantages of using the FDTD field components to excite
the antenna problem are that relatively large, 3-D antenna geometrics can be
considered, and that calculations can be made using parallelepiped FDTD cells.
In addition to sources, lumped loads can also be modeled within one FDTD
cell, much as is done in thin-wire MoM calculations, where lumped loads are
also located in infinitesimal wire gaps. The general topic of modeling wires
with lumped sources and loads was considered in Chapter 10, and FDTD
antenna calculations including lumped loads within a single FDTD cell are
illustrated later in this chapter. On the other hand, extended regions of lossy
dielectric or magnetic materials also can be included easily in FDTD calcula-
tions, while this is relaiively difficuli using ihe MoM. Further, aperture anien-
nas can be more readily accomodated using FDTD than with the MoM.
Application of FDTD to antennas has occurred recently relative to other
applications such as shielding and radar cross-section (RCS). This is somewhat
surprising, since the geometrical and material generality of FDTD suggests that
it might have significant application to antenna analysis, especially in situa-
tions in which other structures, especially those that are electromagnetically
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penetrable, are nearby. Also, when FDTD is applied to radiating antenna
calculations it loses one of its disadvantages relative to the MoM in some other
applications that require results at multiple far zone angles. For examplie. in
scattering applications the MoM produces results for different plane wave
incidence angles efficiently from a single impedance matrix, while FDTD
requires a complete recalculation for each different incidence angle. However,
for antenna radiation problems, FDTD can produce far zone fields in any
number of different directions efficiently during one computation. Because
FDTD also provides wide frequency band results with pulse excitation, it is
extremely efficient in antenna applications, since from one FDTD computation
results for impedance and radiation patterns over a wide frequency band can
be obtained.

However, one reason FDTD has lagged in antenna applications is that the
MoM can provide results for small, relatively simple antennas with much less
computer time and memory required than can FDTD. This is because the MoM
ing on the wire or conducting surface, while FDTD

ing on tné wire or ¢o ting suriace, while

finds only the cuirents flo
must calculate the fields in the entire computational region. This region must
contain enough cells to allow 15 to 20 cells between the antenna and the
absorbing boundaries, and if the antenna is small and geometrically simple the
overhead involved with computing fields in all the surrounding free space cells
makes FDTD much less efficient than MoM. It is only for relatively large
antennas, or antennas with geometries and/or materials that are not easily
included in MoM formulations, that FDTD becomes a competitive method, and
these situations require fairly powerful computers that have become generally
available only recently.

The FDTD calculations described in this chapter are converted to the
frequency domain for comparison with frequency domain methods, such as the

- MioM. However, it should be kept in mind that FDTD is capable of computing

transient far zone radiation for antennas excited by nonsinusoidal sources using
the transient far zone transformation of Chapter 4. These transient calculations
can be done more efficiently for most antenna geometries using FDTD than by
applying frequency domain methods. They also allow efficient determination
of wide bandwidth gain, as will be shown later in the chapter.

Because the antenna problems considered here are excited by sources
located in FDTD cells within the problem space, there is no analytically
specified incident field and the total field form of FDTD is used.

Situations do occur where antenna parameters can be determined from
scattering calculations. For example, in Reference 2 the impedance of a dipole
antenna was determined by performing two scattered field calculations with a
puised incident piane wave. In one ilie open circuit voltage in the dipole gap
was computed, and the second computed the short circuit current. By applying
Fourier transforms and fundamental circuit theory, the dipole impedance was
determined. However, for most situations exciting the antenna by a local
source is preferred. Indeed, the dipole impedance determined using two scat-
tered field calculations in Reference 2 can be determined with only one total
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field FDTD calculation using a voltage source in the dipole gap, as will be
demonstrated in the next section of this chapter.

The remainder of this chapter is divided into three sections. In Section 14.2
the fundamentals of applying FDTD to antennas will be presented and demon-
strated using the simpie geometry of a pair of parallel wire dipole antennas.
This antenna geometry can be easily modeled using the MoM, which will be
utilized to provide comparison results. In Section 14.3 a more complicated
gCOInglry of a wire monopole attached to a conducting box will be considered.
For this example, FDTD is capable of producing accurate results for wide band
impedance and gain with much less computer time than would be required by
a series of MoM calculations to cover the frequency band. Finally, in Section
14.4 FDTD results for a shaped-end waveguide antenna will be calculated
using FDTD, with gain and radiation pattern results compared with measure-
ments. This example illustrates the capability of FDTD with parallelepiped
cells to accurately predict radiation from an antenna with curved surfaces.
MPEDANCE, EFFICIENCY, AND GAIN

‘ In this section calculation of self- and mutual antenna impedance, effi-
ciency, and gain will be demonstrated. So that comparison data can be obtained
easily, a thin wire antenna geometry consisting of a pair of parallel wires will
be used so that the MoM can be easily applied. Modeling wires in FDTD was
cqnsidcred in Chapter 10, and we will use the approach described there. The
wire geometry is shown in Figure 14-1. Two wire dipoles of 57 and 43 cm
length are parallel and separated by 10.5 cm. Both are center fed, and are
symmetrically positioned. For purposes of defining voltages and currents for
our mutual impedance calculations the longer antenna is labeled as antenna 1
'wit4h voltage and current V_and I (not to be confused with the I spatial index
in the Yee notation) at the center cell, similarly for the shorter antenna consid-
Cl"Cd as antenna 2. The problem space is 61 x 51 x 80 cells, with the cell
d%mensions Ax=Ay=05cm, Az=10cm. Making the two transverse
dimensions smaller results in a greater length to diameter ratio, so that a thin-
wire MoM code may be used to provide comparison results over a wider band
of frequencies. Thinner wires may be modeled in FDTD using sub-cell meth-
ods described in Chapter 10, as will be demonstrated in the next section of this
chapter.

For the FDTD calculations the longer dipole is fed at the center with a

Gaussian pulse of 1.0 V maximum amplitude so that the electric field in the gap
of antenna 1 is sp d

H(1L1,K)=-V,(nAt)/ Az (14.1)

where V() is a Gaussian source voltage given by

V(1) = 1.0e (-84 (14.2)
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FIGURE 14-1. FDTD problem space for demonstrating calculation of impedance, efficiency,
and gain. Dimensions are given in FDTD cells, with cell size 0.5 x 0.5 x 1 cm.

with B = 32, & = (4(BAt))? and the pulse truncated for t < 0 and t > 2BAt, as

described in Chapter 3. The time step was set at the Courant limit of 11.11 ps.

i h the centers of their respective
The currents I,(t) and I,(t) flowing through the cent

dipoles can be sampled by taking the discrete approximation of the Iilne i{lt?grfil
of the H, and H, components encircling this electric field, so that I;(t) is

obtained from

I,(nA) = [HI (1,0 - LK) - H} (LI, K)]ax (143)

+1 n+d
+[HIH(L1LK) - Hy (1= LK) Ay

with the values of spatial indices 1J,K corresponding to tt'le location of Fhe
E (1,] K) clectric field along the wire axis at the antenna ]()Ci}tlﬂn lhmugh' which
thze current I, is to be determined; the method is similar f,of Iz(t).ADujmng the
progress of the FDTD calculations these currents are saved ro'r efiCh time stcg).
The FDTD calculations are continued until all transients are ('11551pated, so that
the Fourier transform yields the steady-state frequency domain response of the
antenna. The (At)/2 time offset between V,(t) and Lo fiue to the time offset
between electric and magnetic fields in FDTD calculations can be ncgl.ected
because it is a small fraction of the period of the waveform, even at the highest

frequency considered.
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Along with the applied Gaussian voltage pulse the currents are Fourier
transformed to the frequency domain. With one antenna fed by a voltage source
i pler to determine admittances than impedances, and the same informa-
tion is available. (Keep in mind that Z,, # 1/Y,; rather the following equations
must be solved simultaneously for V, and V, in terms of I, and I, and
impedances substituted for admittance expressions which result.) From the
admittance parameter equations

L {0)=V(@)Y,; +V,(0)Y,, (14.4)

L(0) = V(0)Y,, + V, (@)Y, (14.5)

with V() the frequency domain driven dipole voltage and V, zero for the
passive antenna, we easily obtain the self-admittance of dipole | and the
mutual admittance (since Y,, = Y,,) between the dipoles by dividing the
appropriate complex Fourier transforms of V (©), I,(w), and L(w).

For comparison, MoM results were obtained using the Electromagnetic
Surface Patch Version 4(ESP4)} computer code. The wire radius for the MoM
calculations was taken as 0.281 cm, providing the same cross-sectional area as
the 0.5-cm square FDTD cells, While the FDTD calculations should be valid
up to approximately 1.5 GHz based on having 20 FDTD cells per wavelength,
the thin wire approximation for the MoM code becomes questionable at
approximately 1 GHz, and this was taken as the upper frequency limit for
comparison of results. The FDTD calculations were continued for 8192 time
steps to be sure that all transients had dissipated.

Figure 14-2 shows the Gaussian pulse voltage applied to the one ceil gap at
the center of the longer, driven dipole. Figures 14-3 and 14-4 show the current
flowing in the center cell of the driven and passive dipole, respectively. All are
plotted on the same time scale, corresponding to about 4500 of the 8192 total
time steps. Figures 14-5 to 14-7 show the magnitude of the Fourier transforms
of the voltage and current results of Figures 14-2 to 14-4. The current results
indicate the complicated frequency domain behavior of the coupled dipole
system.

The self-admittance was obtained by dividing the complex Fourier trans-
form of the driven dipole current by that of the Gaussian voltage pulse feeding
the dipole at each frequency. The results are shown in magnitude and phase in
Figures 14-8 and 14-9 and compared with ESP4 MoM results. Considering the
differences in how the feed region is modeled (a 1-cm gap in the FDTD
calculations vs. an infinitesimal gap in ESP4) the agreement is quite good.

The mutual admittance was obtained in a similar manner, dividing the
complex Fourier transform of the passive dipole current by that of the Gaussian
pulse. The results are shown in Figures 14-10 and 14-11. Again, the agreement
is quite good considering the different approximations and assumptions made
in the FDTD approach relative to the ESP4 computer code, especially in
modeling the feed region.
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FIGURE 14-2. Gaussian voltage pulse across center cell of antenna 1.
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FIGURE 14-3. Calculated current flowing through source in gap at center of antenna | excited
by Gaussian voltage source.
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43 CM Passive Dipole Current
10.5 cm spacing, 57 cm fed dipole, 61x51x80 Space
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FIGURE 14-4. Calculated current flowing through center of antenna 2 with antenna 1 excited
by Gaussian voltage source.
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FIGURE 14-5. Magnitude of the discrete Fourier transform of the Gaussian pulse voltage across
the center cell of antenna 1.
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10.5 cm spacing, 43 cm passive dipole, 61x51x80 Space
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FIGURE 14-6. Magnitude of the discrete Fourier transform of the current flowing through the
center cell of antenna 1.
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57 CM Fed Dipole
10.5 cm spacing, 43 cm passive dipole, 61x51x80 Space

I O MoM (ESP4) l

V% "

0 100 200 300 400 500 600 700

n L " L s " L "

800 900 1000
Frequency (MHz)

FIGURE 14-8. Self-admittance magnitude for antenna 1 calculated using FDTD and compared
to the MoM.
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FIGURE 14-9, Self-admittance phase for antenna 1 calculated using FDTD and compared to the

MoM.
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43 CM Passive Dipole
10.5 cm spacing, 57 cm fed dipole, 61x51x80 Space
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FIGURE 14-10. Mutual admi gnitude calculated using FDTD and compared to the
MoM.
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FIGURE 14-11. Mutual admittance phase calculated using FDTD and compared to the MoM.
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Having demonstrated the capability of FDTD to calculate antenna self- and
mutual admittance (and therefore impedance), we now proceed to deal with

affinia
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a wide frequency band can be obtained from one FDTD computation. The
approach which we will use for this is simple and straightforward.

Let us consider a typical situation in which an antenna is fed with one
voltage source modeled as an electric field E,%I,J,K) with corresponding
voltage V (t) across the cell at the antenna feed gap, and that this source
supplies a time domain current I,(t), just as described in (14.1) to (14.3) for the
above mutual impedance example. If after all transients are dissipated the time
domain results for these two quantities are Fourier transformed, the equivalent
steady-state input power is given quite simply by

P, () =Re[V, (o)1 (w)] (14.6)

at each frequency.

Dissipated power is also computed quite simply. Consider that an FDTD
electric field component Ez(I’,J’,K') is in a region with conductivity o. If we
assume that the electric field is uniform within a single FDTD cell, then the
equivalent steady-state power dissipated in this region is given by

Py =[] 0]E,(0)fdv

= ofE, () AxAyAz
_ GAxAy 2
= = [Ea(0)a] (14.7)

= G|V, (o)’

where E,(w) is the Fourier transform of E,(I’,J’,K’). Furthermore, we also
see from (14.7) that we can equivalently determine the dissipated power by
considering the FDTD cell to contain a lumped conductance G with a
voltage V, across the cell in the z direction. Thus, (14.7) indicates that a
lumped resistance R = 1/G in a wire gap can be approximated by adjusting
the conductivity ¢ appropriately. If many FDTD cell locations contain
dissipative materials the computation in (14.7) is repeated for each such
cell in each field component direction, with the total power dissipated

given by the sum.

To determine the antenna gain, the far zone electric field in the desired
direction must be determined. Using the approach given in Chapter 7 this
can be done for the transient far zone fields. Since the far zone electric field
is computed so that the 1/r amplitude factor and the r/c time delay are
suppressed, where r is the far zone distance and c the speed of light, the
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antenna gain relative to a lossless isotropic antenna in the 8, ¢ direction is
given by

|E (0,6, 4’)'2/&

b (14.8)

Gain(0,¢) =

where Eg(,8,0) is the Fourier transform of the transient far zone time domain
electric field radiated in the ©,¢ direction and 1, is the impedance of free space.

We again will use the geometry shown in Figure 14-1 for demonstration.
However, while the shorter dipole was a continuous conducting wire for
convenient calculation of mutual admittance, here a 50-Q resistor will be
located in a one-cell long gap in its center so that considering the pair of dipoles
as a single antenna fed at the center of the longer dipole, the antenna array will
have an efficiency of < 100%.

The FDTD computations were made using the same parameters as for the
previous example. The 50-Q resistor was approximated by setting the conduc-
tivity associated with the Ez field at the center of the shorter dipole to 8 S/m.
This value was obtained using (14.7) for the cell dimensions given with a
conductance G = 1/50. Calculations again were run for 8192 time steps to allow
for complete dissipation of transients, and again only the first 4500 are shown
on the time domain plots which follow in order to increase clarity. During the
progress of the FDTD calculations the z-directed current flowing through the
feed gap at the center of the longer dipole and the z-directed electric fields at
the center of both dipoles were saved for each time step along with the far zone
transient electric field.

The MoM results for efficiency and gain were again obtained using the
ESP43 computer code using the same wire radius of 0.281 cm.

The time domain results for the current in the wire gap fed by the Gaussian
pulse and for the voltage across the 50-Q resistor in the center of the shorter
wire are shown in Figures 14-12 and 14-13. The complex Fourier transforms
of these are used in (14-6) and (14-7) to determine the steady-state frequency
domain input and dissipated powers, shown in Figures 14-14 and 14-15.

The input power peaks when the longer wire is resonant, while the level of
the dissipated power depends on the interactions between the two wires in a
more complicated way. The antenna efficiency is determined from the input
and dissipated powers in the usual way as

P -P.
Efficiency = —n——diss (14.9)

in

and the result is shown in Figure 14-16 and compared with results from ESP4 *
The agreement is quite good, except at the lower frequencies. The FDTD
results are questionable here because the antenna is very short electrically and

e —————
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57 CM Fed Dipole Current
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HGURE 14-12. Time domain current flowing through the voltage source in the gap of wire 1
with a 50-Q resistive load at the center of wire 2.
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FIGURE 14-13. Time domain voltage across the 50-2 resistor at the center of wire 2.
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Input Power )
57 cm Fed Dipole, 43 cm Passive Dipole with 50 Ohm Load
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FIGURE 14-14. Input power vs. frequency from the complex Fourier transforms of the transient
FDTD input voltage and current in the gap of the longer wire.
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FIGURE 14-15. Power dissipated in the 50-€2 resistor from the complex Fourier transform of the
transient FDTD voltage.
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Antenna Efficiency
57 cm Fed Dipole, 43 cm Passive Dipole with 50 Ohm Load
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FIGURE 14-16. Wide band efficiency computed from the transient FDTD resuits and compared
with the MoM for the two wire antenna with a 50-Q load at the center of antenna 2.

the voltage and current are very nearly 90° out of phase. A very small error in
the computed phase of the fed dipole current will result in a relatively large
error in the value of P, This is also a problem, although presumably to a lesser
extent, with the MoM results, since at 10 MHz ESP4 predicted an efficiency
of —46% (this value is not shown in Figure 14-16), with the negative sign
indicating more power dissipated than supplied.

Proceeding now to determine the absolute gain, Figure 14-17 shows the
transient far zone E, electric field in the § = 90, ¢ = 0 direction such that the
shorter wire is acting somewhat as a director element for the longer fed wire.
The Fourier transform of this is shown in Figure 14-18, with the peaks corre-
sponding roughly to the resonances of the fed dipole. The absolute gain with
respect to a lossless isotropic antenna is computed using (14.8) and the results
are compared with the MoM in Figure 14-19. Except at the lower frequencies
(where the input power level is extremely low and difficult for FDTD to
accurately determine), the results are quite reasonable, especially considering
the fundamentally different approaches of the two methods in approximating
the lumped sources and loads.

In this section an approach for calculating the fundamental antenna param-
eters of self- and mutual impedance (admittance), efficiency, and gain using
FDTD has been formulated and demonstrated on a simple wire antenna geom-
etry. This geometry was chosen for convenience in obtaining validating results
using the MoM. For this wire geometry the MoM is simple to apply, and takes
much less computer time and memory than does FDTD. However, in the next
two sections of this chapter FDTD is applied to other antenna geometries for



278 The Finite Difference Time Domain Method for Electromagnetics

Far Zone Electric Field
57 cm Fed Dipole, 43 cm Passive Dipole with 50 Ohm Load
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FIGURE 14-17. Time domain far zone radiated electric field normalized to a unit radial distance.
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FIGURE 14-18. Fourier transform itude of the ient far zone radiated electric field.
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Antenna Gain
57 cm Fed Dipole, 43 cim Passive Dipole with 50 Ohm Load
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FIGURE 14-19. Absolute gain with respect to isotropic of the two wire antenna with 50-Q load
at the center of antenna 2 computed from the transient FDTD results and compared to the MoM.

TABLE 14-1
Dimensions of Monopole on Box shown in Figure 14-20
a =60 mm b =10 mm
h =50 mm r=05mm
¢ =50, 130, or 200 mm
w =10 or 30 mm

Note: The monopole wire radius is r.

which it produces accurate results and requires less computer time than the
MoM. The first of these is a wire monopole on a conducting box, considered
in the next section.

14.3 MONOPOLE ANTENNA ON A CONDUCTING BOX

The geometry for our example is shown in Figure 14-20. A wire monopole
antenna is connected to a conducting box and fed at the junction between the
monopole and the box. The antenna connection is centered in the top of the box
in the y dimension, but may be offset in the x dimension. The geometry is an
approximation to a small hand-held radio unit with attached antenna. It is
desired to calculate a radiation pattern at a frequency of 1.5 GHz, and the input
impedance and gain over a band of frequencies. Three different size boxes are
considered, with the dimensions given in Table 14-1.
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FIGURE 14-20. Geometry of monopole antenna on conducting box. Dimensions are given in
Table 14.1.

At the highest frequency of interest, 6 GHz, the boxes are approximatgly 3,
8, and 12 square wavelengths in surface area. The monopole is centered in the
x dimension (w = 30 mm) for radiation patterns and gain, while both centered
and offset locations (w = 10 mm) are considered for impedance. )

Both first and second order Mur absorbing boundaries acting on eleciric
fields are used, with second order applied except when noted otherwise. It was
found that the low frequency impedance results were very sensitive to the size
of the problem space, i.e., the number of cells between the antenna and the Mur
absorbing boundaries. A relatively large border of cells between the antenna
and the absorbing boundaries was used in the impedance and gain calculations,
as reflections from the absorbing boundaries reduced the accuracy, especially
at lower frequencies. Making the FDTD space much smaller reduced the
accuracy of the impedance at low frequencies due to reflections from the
absorbing boundary. )

The wire diameter is much smaller than the FDTD cells used, and using
smaller cells in order to more accurately model the wire diameter would be a
tremendous waste of computer resources. On the other hand, impedance resuiis
are quite sensitive to the wire radius. In order to include the effects.of the
relatively small wire radius, the magnetic fields surrounding the electr.w fle!d
components along the wire monopole axis were ca}culated as described in
Chapter 10, except for the magnetic fields surrounding the E,(1,],K) electric
field component at the antenna base when that component was use(.i as the
driving source. It was found that attempts to calculate these magnetic fields

using the sub-cell method produced less accurate impedance resuits.

|
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FIGURE 14-21. FDTD monopole antenna excited using the electric field component on the wire
axis at the base of the wire. Corresponds to MoM gap feed.

Now let us discuss how the antenna was fed. Two methods were used. The
first of these is illustrated in Figure 14-21, and corresponds to the approach
used in the previous section for a wire dipole. The conducting box is modeled
in the usual way by setting FDTD electric field components to zero over the
surface of the box. These Yee cell field components are not indicated in Figure
14-21; however, the E, field components on the wire monopole axis are
indicated by arrows. These E, components are set to zero, except for the
component at the base of the monopole. This electric field component was used
as the voltage source driving the antenna. If we let V(t) be the source voltage,
then the E,(I,J,K) electric field at the base of the monopole is given by (14.1).
This method for driving the antenna corresponds to the MoM gap source,
except that usually in MoM calculations the gap is infinitesimally thin, while
the FDTD gap is one spatial interval (Az in this case) in length.

The other approach investigated for feeding the monopole antenna is shown
in Figure 14-22. In this method the E, field components along the wire axis are
all set to zero, including the one just above the top of the box. The four electric

field comnonents on the surface of the hox ogine radially from the monongle
161G componfnts on In€ suriace of In€ DOX going radiany irgm n€ monopo:S

axis are, however, driven. Since the E,(I,J,K) component at the base of the
antenna is now set to zero, the thin wire approach of Chapter 10 will be used
to calculate the magnetic fields surrounding all of the E, electric fields along
the wire axis, including this one.

The method used to calculate these magnetic fields assumes a 1/p variation
of the E, and E,; components adjacent to the wire, where p is the radial distance
from the wire. The radial field dependence of the coaxial cable that this source
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FIGURE 14-22. FDTD monopole antenna excited using the electric field components on the top
of the box at the base of the wire. Corresponds to MoM magnetic frill feed.

is supposed to approximate is also 1/p. Thus the E, and E, source components
on the top of the box at the base of the monopole as shown by arrows in Figure

14-22 are driven as

: : _Vifna) 2.
ENLIK) =—EJ(I- L1.K)=—F-< = (14.10)
\ \ _-V,(nat) 2 .
Ey(I,J,K):—Ey(l,J—],K)— N (14.11)

This approach corresponds to the magnetic frill method for exciting wires in
the MoM, since one can consider these impressed electric fields to be equiva-
lent to a magnetic current source circulating around the wire.

In the following calculations the approach shown in Figure 14-22 and des-

cribed in (14.1) is used for all calculations except where explicitly noted othf:rwise.

Now let us consider the FDTD parameters for the various calculations to
follow. First let us consider the single frequency radiation patterns. The
FDTD cells were sized at Ax = Ay = A z=5 mm, corresponding to 40 cells
per wavelength at 1.5 GHz. This relatively small cell size is required by the
size of the box rather than the necessity of having so many cells per wave-
length, since for this cell size the “b” dimension of the box is only two cells.

'Y
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The time step is chosen slightly below the Courant limit for all calculations
at At= Az/(2c).

For the smallest box an FDTD space of 72 x 62 x 70 cells was used and far
zone fields were calculated at 9° increments (21 directions, making use of the
problem symmetry). For the ¢ = 130 mm box the space was 72 x 62 x 86 celis,
and far zone fields were calculated in 6° increments. For the largest box with
¢ = 200 mm, the problem space was 72 x 62 x 100 cells and patterns were
calculated in 4° increments.

The radiation patterns were desired in the ¢ = 0 (x-z) plane. The far zone
fields were calculated using the 3-D transient far zone transformation of
Chapter 7. The far zone fields in all pattern directions were calculated during
1 FDTD computation. Once steady-state conditions are reached the magnitude
of the electric field is easily determined at each far zone angle.

Since radiation patterns are desired at only one frequency, for these calcu-
lations the source voltage V(1) was specified as a 1.5-GHz sinusoidal time
variation.

Next we consider calcuiating the input impedance of the monopoie. Since
impedance results over a wide bandwidth are desired the antenna was excited
with a Gaussian pulse source voltage V,(t) rather than the sinusoidal time
variation used for the single frequency radiation patterns. The Gaussian pulse
width is approximately 0.04 ns. Since higher frequencies are involved, and
since impedance requires greater accuracy than radiation pattern calculations,
the cell sizes were reduced from those used for the pattern calculations. For the
smallest box (c = 50 mm) 1.67 mm cubical cells were used, corresponding to
approximately 30 cells per wavelength at the highest frequency. The problem
space for this box was 130 x 90 x 180 cells. For impedance calculations for the
intermediate size box (c = 130 mm) a cell size of 2.5 mm was used, since for
this box too much computer memory was required with the 1.67 mm cells. This
larger cell size corresponds to 20 cells per wavelength at 6 GHz. With the larger
cells the problem space for the larger box could be reduced to 100 x 90 x 150,
fewer than required for the smaller box. The impedance results for the larger
cell size appeared to be just as accurate as with the smaller cell size, as will be
shown. The larger cell size allowed the absorbing outer boundary to be located
farther from the antenna with fewer FDTD cells required.

The transient current [,(t) through the base of the monopole was sampled at
each time step by calculating the discrete line integral of the magnetic field
around the E,(I,J,K) electric field located at the monopole base using (14.3).

After all transients have dissipated, the resulting transient current I,(t) and

the Gaussian excitation voltase V (1) were Fourier transformed. The complex

.............................. ge V (1) were Fourie) e comple
transforms were divided at each frequency to obtain the input impedance of the
monopole.

For calculating the wideband gain the input power to the antenna is needed.
The equivalent steady-state input power is obtained at each frequency from the
complex Fourier transforms of V(t) and I,(t) from (14.6), and the absolute gain
with respect to isotropic from (14.8).
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All computations were performed on an NEC SX-2N computer. The mea-
surements were made in an indoor anechoic chamber.* The monopole was fed
with a coaxial cable terminated in an SMA type 219T miniature coaxial
connector mounted flush with the top surface of the box.

Radiation patterns were calculated for all three box sizes, ¢ = 50, 130, and
200 mm, with the monopole centered on the top of the box (w = 30 mm). The
radiation patterns are shown in Figures 14-23 to 14-25, and are compared to
measurements and to MoM calculations made using a code developed specifi-
cally for this geometry.’ The computer time required by the FDTD calculations
varied from 7 min of CPU time for the radiation pattern for the smallest box
to 20 min for the largest box. Some of this time increase was due to calculating
the radiation patterns in finer angle increments for the larger boxes. The MoM
computer code required about 9 min of computer time for each radiation
pattern calculation since the same number of modes was used for ail three box
sizes.

Next consider the impedance calculations. The transient time domain cur-
rent through the base of the monopole due to the Gaussian source voltage
computed using FDTD is shown in Figure 14-26 for the smallest box size (c
= 50 mm) with the monopole centered on the top of the box (w = 30 mm). This
calculation required approximately 8 min of CPU time, about the same as for
the radiation pattern calculation despite the smaller cell size and greater num-
ber of cells. This is because no far zone fields were computed while the
impedance calculations were being made. The impedance obtained by dividing
the Fourier transforms source voltage V(1) and the monopole base current 1,(t)
of Figure 14-26 is shown in Figure 14-27 and compared to measurements.

The results shown in Figure 14-28 use the same cell size, time step, and
problem space size as in Figure 14-27 and provide two different comparisons.
First, FDTD results are shown for both methods of feeding the monopole, the
E, feed of Figure 14-21 and the E, , feed of Figure 14-22. The FDTD results
are changed slightly, with the E,, feed perhaps being more accurate at the
lower frequencies and but less accurate at the higher frequencies. This slight
change is similar to that observed in MoM thin-wire calculations, where the
gap and magnetic frill feeds typically yield similar but slightly different results.
The second comparison involves the fact that the results of Figure 14-28 were
obtained using first order Mur absorbing boundaries. Comparing the E, fed
results in Figure 14-28 to those obtained using second order Mur in Figure 14-
27, it can be seen that the only effect is a slight change in the real part of the
impedance at the lowest frequencies. The second order Mur results are slightly
more accurate. However, first order Mur performs quite well due to the large
number of cells between the antenna and the absorbing boundary.

Returning to the E, wire axis feed approach of Figure 14-21 and (14.1) to
excite the antenna, impedance results are shown in Figure 14-29 for the
monopole centered in the top of the middle sized (c = 130 mm) box, and in
Figure 14-30 for the smallest box (¢ = 50 mm) but with the monopole offset
in the x direction from the center of the box top (w = 10 mm). The agreement
with measurements is again quite good for both cases.
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FIGURE 14-23. Calculated and d radiati
centered (W = 30 mm) on smallest box (¢ = 50 mm).

pattern at 1.5 GHz for monopole antenna

(=]

N

R

(=
@
i
The patterns. c=130 mm.

— FDTD, - - - MoM

FIGURE 14-24. Calculated and measured radiation pattern at 1.5 GHz for monopole antenna
centered (w = 30 mm) on intermediate size box (c = 130 mm).
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FIGURE 14-25. Calculated and measured radiation pattern at 1.5 GHz  for monopole antenna
centered (w = 30 mm) on largest box (¢ = 200 mm).
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FIGURE 14-26. Transient current flowing in base of monopole centered (w = 30 mm) on
smallest (c = 50 mm) conducting box due to 0.13 ns Gaussian pulse voltage source.
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FIGURE 14-27. Input impedance for monopole antenna centered (w = 30 mm) on smallest (c=
50 mm) conducting box computed using transient FDTD results and compared to measurements.
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FIGURE 14-28. Input impedance for monopole antenna centered (w = 30 mm) on smallest (¢ =
50 mm) conducting box computed using transient FDTD results with the monopole fed in two
different ways and compared to measurements.
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FIGURE 14-29. Input impedance for monopole antenna centered (w = 30 mm) on intermediate
size (¢ = 130 mm) conducting box computed using transient FDTD results and compared to
measurements.
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FIGURE 14-30. Input impedance for monopole antenna offset from center (w = 10 mm) on
smallest (c = 50 mm) conducting box computed using transient FDTD results and compared to
measurements.
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FIGURE 14-31. Absolute gain with respect to an isotropic antenna in the 8 = 90, = 0 direction,
for the monopole centered (w = 30 mm) on the smallest box (c = 50 mm) calculated using transient
FDTD results and compared with measurements.

Finally consider the results for antenna gain in the 6 = 90, ¢ = 0° direction.
The cell size, time step, and problem space size are the same as used in the
impedance calculations. In Figure 14-31 the FDTD absolute gain (with respect

ne nulse excitation, is compared
ng puise excitation, is compared

to isotropic), obt
to measured results. The agreement is excellent over the frequency range
shown.

In this section the ability of FDTD to calculate radiation patterns, input
impedance, and absolute gain for a monopole antenna on a conducting box
has been demonstrated. The feed region was modeled using only the usual
rectangular Yee cell FDTD electric field components. The sub-cell approach
given in Chapter 10 was used to calculate the magnetic field components
adjacent to the wire to compensate for the thin wire being smaller than the
FDTD cells. Two feed methods, corresponding to MoM wire gap and mag-
netic frill feeds, were investigated and found to give similar results. The
FDTD results were compared both with measurements and with the MoM
with good agreement. The computer time required for a single frequency
pattern calculation was similar to that for the MoM. However, for wide
bandwidth impedance and gain calculations the FDTD method is much faster
for the antenna and box sizes considered. Also, the FDTD approach could be
extended quite easily to consider antennas including dielectric materials,
such as a monopole on a conducting box coated with a layer of lossy
dielectric.
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14.4 SHAPED-END WAVEGUIDE ANTENNA

i gt e s taneley ot tha

In the previous examples the antenna geometries fit conveniently into the
FDTD grid. In this section the antenna geometry being considered is based on
a circular tube, and does not fit well into the rectangular FDTD grid used.
Nevertheless, as will be demonstrated, accurate results for the gain patterns can
be obtained.

The antennas structures considered are circular waveguides and shaped-end
radiators. A shaped-end radiator (SER or Vlasov radiator) is simply a hollow
circular tube with a beveled cut on one end. The beveled cut is designed to
provide some directionality to the radiation. References are given®* which
provide more detailed information on these antenna structures. Figure 14-32
shows a side view of a SER with the cut angle & and the monopole probe used
to excite the antenna. Thus, the circular waveguide is a special case of the
general SER geometry with & = 90°.

The antennas are oriented with the cylinder axis parallel to the z axis.
The antennas are modeled in the usual stepped-edge (or staircased) fashion
(discussed in the previous chapter) with the cells being approximately
cubical. To excite the antennas, a monopole probe with one cell air gap was
placed above a perfectly conducting endcap (see Figure 14-32). The mono-
pole probe is designed to excite the TM,; mode (for sinusoidal excitation),
and the probes are A,/2 long, where X, is the guide wavelength of the TMy,
mode. The monopole probe is excited at the air gap by a single electric field
component that is an analytically defined excitation. The excitation used is
a time harmonic signal with a linear ramping function r(t) that transitions
from O to 1 over several cycles of the sinusoid. The functional form of this
excitation is

el (1) = r(t)sin{w,t) (14.12)

with @, being the radian frequency of interest.

The first antenna structure analyzed is a simple circular waveguide with cut
angle & = 90°. Figure 14-33 illustrates how the circular waveguide is modeled
in FDTD cells. The waveguide is 4.76 cm in diameter, 21 cm in length, and the
sinusoidal excitation frequency is 8.6 GHz. The cutoff frequency, f,, for the
TM,, mode is defined by’

f= M 14.13
¢ 21ta\/u—-€ (14.13)
where %, is the first zero of the Bessel function Jy(x), a is the radius of the
waveguide and {1 and € are the constitutive parameters of the fill material of the
waveguide. The guide wavelength for the TMy,, A,, is defined as’
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FIGURE 14-32. Side view of Vlasov SER geometry showing cut angle & and the monopole
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(14.14)

where A, is the free space wavelength. With the cylinder filled with free space
the guide wavelength is calculated to be A, = 4.2098 cm. At ten cells per
wavelength the cell sizes are chosen to be 8z = 4.2098 mm with 8x and 8y at
4.76 mm so that an integral number spans the cylinder diameter. The time step
is 8.76 ps and the total number of time steps is 2048, which represents about
40 cycles of ihe sinusoidal waveform. The toial probiem space size was 60 x
60 x 95 cells, which provides a 25-cell border between the cylinder and the
outer absorbing boundaries (second order Mur) and a 30-cell border at the
radiating end of the cylinder.

In addition to the 90° cut waveguide, antennas with 30° and 60° cut angles
§ are also analyzed. Figures 14-34 and 14-35 illustrate how the 30° and 60°
Vlasov radiators are modeled using FDTD cells. The tubes are 4.76 cm in
diameter and have a constant reference distance of 17.78 cm from the endcap
to the top of the beveled aperture. For these geometries, the sinusoidal fre-
quency, the problem space size, cell sizes, time step, and total number of time
steps are the same as for the 90° waveguide radiator.

We desire to calculate the gain patterns from these antennas at the
excitation frequency. To obtain the input power, the electric field and
the current are recorded vs. time at the air gap of the monopole probe. The
input voltage is simply given by

Vin{t) =€l (t)Az (14.15)
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FIGURE 14-33. Perspective view illustrating how a circular waveguide is modeled using FDTD
cells.
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transformed to the frequency domam and the frequency componem at the
excitation frequency is selected. The input power is given by (14.15), and the
gain by (14.8).

Figure 14-36 shows the copolarized absolute gain FDTD computations
and measurements vs. polar angle 0 for the straight-cut circular waveguide.
Note the agreement is excellent over the entire angular range. Figure 14-37
shows the electric field distribution across the cylinder cross section. This
field distribution is a reasonable approximation to the TM,, mode distribu-
tion given by J(Bp), where B is the propagation constant for the waveguide
mode and p is the distance from the center of the waveguide tube
(D=VX +y?) Figure 14-38 shows the electric field distribution on the
cylinder axis vs. z position along the cylinder. We can see from this figure the
wavelength of the TM, mode is exactly 10 cells/A corresponding to the Az

elength of the TM; mode is exactl 10 cells/ espondir
selected for this problem.

Figures 14-39 and 14-40 show the copolarized absolute gain FDTD
computations and measurements vs. azimuth angle ¢ for the 30° and 60°
Vlasov radiators, respectively. The agreement between the FDTD compu-
tations and measurements is quite good and the curves differ only by 1 to
2 dB, except at the pattern nulls. The larger values for the measured data
at these nulls is most likely due to the presence of the cross-polarization
component. These data were plotted at 8 = 32°, which corresponds to the
peak in the polar gain pattern. Figures 14-41 and 14-42 show the co-
polarized absolute gain FDTD computations and measurements vs. polar
angle 0 for the 30° and 60° Vlasov SER radiators, respectively. Note in

these figures that the FDTD method follows the main beam very well, but

has more difficulty tracking the measurements away from the main beam,
and especially in the rearward direction (6 = £180°). The larger values of
gain for the FDTD computations in the rear direction is most likely due
to diffraction effects from the staircased beveled cut on the radiating end
of the cylinder.
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FIGURE 14-34. Perspective view illustrating how a 30° Vlasov SER is modeled using FDTD
cells.

FIGURE 14-35. Perspective view illustrating how a 60° Vlasov SER is modeled using FDTD
cells.

This section has demonstrated the application of the FDTD method to a
different class of antenna structures involving curved surfaces. The basic
FDTD method including staircasing was used and produced good results in
comparison to measured data.
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FIGURE 14-36. Copolarized absolute gain measurements and FDTD computation vs. polar
angle O for the straight-cut circular waveguide.
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FIGURE 14-37. Copolarized electric field distribution across the cylinder cross section for the
straight-cut circular waveguide.
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FIGURE 14-38. Copolarized electric field distribution on the cylinder axis vs. z position along
the cylinder for the straight-cut circular waveguide.
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FIGURE 14-39. Copolarized absolute gain and FDTD computations vs. azimuth
angle ¢ for the 30° Vlasov SER with 8 = 32°,
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FIGURE 14-40. Copolorized absolute gain measurements and FDTD computations vs. azimuth
angle ¢ for the 60° Vlasov SER with 9 =32°
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FIGURE 14-41. Copolorized absolute gain measurements and FDTD computations vs. polar

angle 0 for the 30° Vlasov SER.
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FIGURE 14-42. Copolarized absolute gain measurements and FDTD computations vs. polar
angle 8 for the 60° Vlasov SER.
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15.1 INTRODUCTION

Gyrotropic is used to indicate materials which are anisotropic and have a
strong frequency dependence in one of their constitutive parameters. When
subjected to a constant magnetic bias field, both plasmas and ferrites exhibit
anisotropic constitutive parameters. For electronic plasmas this anisotropy
must be described by using a permittivity tensor in place of the usual scalar
permittivity. Each member of this tensor is also very frequency dependent.
Like plasmas, ferrites are a class of materials which become anisotropic when
subjected to a static magne[ic field. I'nlike plasmas which are dispersive even

sth A hin 1A fa ad th tha ~F
without the biasing ficld, dispersion in ferrites is coupled with the presence of

the biasing field. When this field dlbappedrs the permeability is no longer
frequency dependent and the only resonances that exist are comparatively
weak.

While the ferrite permeability tensor is very similar in form to the magne-
tized plasma permittivity tensor, the two tensors are not identical due to the
different asymptotic frequency behavior of the respective materials. In addi-
tion, because of the difference in boundary conditions for the two materials,
substitution of one material for the other will not always yield completely dual
behavior.

This chapter describes an FDTD formulation which incorporates both aniso-
tropy and frequency dispersion at the same time, enabling the wideband transient
analysis of magnetoactive plasma and magnetized ferrites. The frequency disper-
sive nature of these materials is included using the methods described in Chapter
8. However, the susceptibility functions which must be considered here are more
complicated than any considered in that chapter. In addition, the anisotropy of the
materials forces another extension to the FDTD method, since orthogonal com-
ponents of electric or magnetic fields are directly coupled by the tensor permit-
tivity or permeability. While in this chapter results are presented only for a 1-D
geometry with field components in 2-D, 3-D results could be obtained by
extension of the approach described here. If the Yee cell arrangement of field
components is used, this would involve spatial averaging in order to obtain the
necessary field components. The material in this chapter is based closely on
References 1 and 2.

15.2 MAGNETIZED PLASMA

Cold plasmas, metals at optical frequencies, and semiconductors are often
described as a free electron (or ion) gas. The equation of motion for the
charged carriers (electrons) in response to an electric field yields the usual
Drude frequency domain permittivity expression as discussed in Chapter 8.

700
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There are several consequences of this expression. Among them are the
possibility of relative permittivities <1 and that for frequencies belrow'the
plasma frequency ®p electromagnetic waves do not propagate very far into

It should be noted that FDTD is generally a macroscopic approach, and the
primary interest here is how electromagnetic waves interact with an isotropic
magnetized plasma. Modeling of microscopic phenomena is not attempted
here and is left to more mature particle-in-cell (PIC) simulation codes which
are better suited for modeling plasma dynamics.?

The well-known permittivity expression for unmagnetized plasmas is
given in Chapter 8 and reproduced here for convenience as

0]

INTVREPRY (15.1)
ofjv, — @)

o o

gy =1+

Notice that for lossless plasmas the permittivity approaches zero at the plasma
frequency (@,), and below the plasma frequency the real part of the pem)imvn‘y
of the plasma is negative. When a plasma is subjected to a steady magnetic
field, such as in the earth’s ionosphere, the electrons will rotate about the
magnetic field vector. The plasma will now become nonreciprocal and the
scalar relationship between electric polarization and electric field must be
replaced by the tensor relationship

D;(w) =g, £;(0) E;(®) (15.2)

with the tensor permittivity

exx(m) jex)’ (0)) 0
gy(0)=|-en(0)  ey(0) O (15.3)
0 0 e,(0)

where it has been assumed the biasing field is parallel to the z axis. The
components of this tensor are

PR C ) lE) y
£ l0) =€, (00) = [1_(jvc/m)]2_(mb/m]2 (15.4)

(u)p /w)z(mb /(o)
£, (0)=¢, (0) = [] (. /m)]z —(wb/w)z (15.5)
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while g, is identical to (15.1) since the biasing magnetic field will not
affect wave behavior in that direction. In these expressions @, is the plasma

frequency, @ is the cyclotron frequency (proportional to the static field

B,), and v, is the electron collision frequency representing the loss mecha-
nism. The real and imaginary parts of (15.4) and (15.5) are plotted in Figure
15-1.

The consequences of (15.2) are many and are best left to other sources.
Extensive texts on the subject include that of Ginzburg. Among the electro-
magnetic phenomena made possible by the circulating electrons is Faraday
rotation of waves propagating along the biasing field direction. Because of the
circulating electrons, circularly polarized (CP) waves will interact with the
medium depending on the handedness of the wave with respect to the circula-
tion direction. If the CP wave electric field vector rotates with the direction of
electron motion, there will be a net transfer of energy between the wave and

sSi n chanism If the (D alacerio fiald
and poessibly a resonance mechanism. If the CP electric field

vector rotates in the direction opposite that of the electrons, then there will be
minimal interaction between the wave and electrons.

We now proceed to develop the FDTD treatment of this dispersive and
anisotropic media. To simplify the process we deal with total fields with
propagation in the *z direction, and with only x and y components of the
electric and magnetic fields.

The first step is to determine the time domain susceptibility functions,
which as described in Chapter 8 can be obtained from the frequency domain
permittivity functions by inverse Fourier transformation. The time domain
susceptibility function corresponding to (15.1) (except at zero frequency) is
given in (8.27) and reproduced below as

x(0)=

8 LAY
€ (12.5)

where U(7) is the unit step function. Using the Fourier transform pairs given
in (8.38) and (8.49) the time domain susceptibility functions corresponding to
the permittivity functions in (15.3) and (15.4) are found to be

X (D=1, (1)

o’ (15.7)
= -‘ﬁ(vC - e“’f‘[Vc cos(wbt) -0, sin(mhr)])U(r)
Xy (D =2%,.(7)
2 (15.8)
= 7%:2(‘0’5(“’» - E’V"[mh cos(w,7) + v, sin(o)b‘[)])U(t)
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FIGURE 15-1. Real and imaginary parts of the on- and off-diagonal frequency domain

permuttivities. The plasma parameters are @ = 2m- 50 x 10° rad/s. o= 6 x 10! rad/s, and v_=
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where the time domain susceptibility functions are transforms of the frequency
domain susceptibilities appearing in

e, (0) =1+, (0) &81) +x,,(7) (15.9)
jaxy(m) = jxxy(a}) o ¥+ Xxy(T-) (15.10)

where <> denotes a Fourier transform.

Notice that when the plasma is not magnetized (@, =0) the off-diagonal
susceptibilities vanish and the on-diagonal elements reduce to the isotropic
plasma permittivities, as expected. A plot of these functions is shown in Figure
15-2.

As discussed in Chapter 8, in the time domain the relationship of (15.2)
becomes a convolution involving (15.6), (15.7), or (15.8). These convolutions
will be reevaluated recursively by introduction of a complex susceptibility
function. Only the real part of this function is used when updating the electric
fields. This will require storing a single complex number for each susceptibility
function convolution summation. The complex susceptibilities corresponding

e s E Ponps | nwea
to (15.7) and (15.8) are

ixx (t) = iyy (I)
2

() . _ .
=z (v +J€0h)[1—e e J“"’)T]U(T)
c b

(15.11)

"
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FIGURE 15-2. Time domain electric susceptibilities corresponding to the frequency domain
functions in Figure 1.

Lo (1) =%y (7)

[0} .
=§2_—+iuf(“’b —jvc)[l etV fjmm]um (15.12)
with
1o (D= Re[X,, (7)] (15.13)
X, (0= Re[f(xy(‘f)] (15.14)

where Re is the real operation, and the “A” symbol designates complex
quantities.

Efficient implementation of the time domain complex susceptibility convo-
lution is not the lone difficulty which magnetoactive plasmas present to FDTD.
The other problem is that the FDTD equations for two field components must
pe solved simultaneously since they are coupled by the off-diagonal permittiv-
ity terms. The constitutive reiations in this case are

D, (0) = g,{1 + X, (W)E, (0) - jx,,{0)e,E, () (15.15)

D, (0) = £o(1+ Xy, (0)) E, (@) + jit,, (0)e E, () (15.16)
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D (m):so(l +xn(u))) E (o) (15.17)

z

or in ihe ilme domain

D
U b 0+, (0B 0- 2,0 B0 asag
0
E"Q=E(t)+x (t)*E ()-x. (T)*E (1) (15.19)
[ y ¥y y > * ’
D, (t)
_:_:Ez(t)+xzz(t)* EZ(I) (15.20)
€0

where (*) denotes the convolution operation, and ¥,,(T) is the isotropic plasma
susceptibility function of (15.6).
By use of the convolution integral, (15.18) and (15.19) imply

D, =E (t)+ }Ex(l -1, (1)dt - }Ey(t ~ (DT (15.21)
£, 0 0
Dé(t) = Ey(‘) +iEy(t N T)ny(‘[)d‘t +(})E‘([ - T)ny(t)d't (15.22)

or, in terms of discrete time steps and complex susceptibilities

D" [ nat R
—X=E} + Re[ {E (nAt— 1), (T)dT
€y 0

nat X (15.23)
- Re|: JE{nAt—1)),, (‘t)d‘t:l
0
nn Maat
—L=E}+ Rel JE (nAt - t)xyy(t)er
0
(15.24)

+ Re[n[ E, (nAt - )R, (‘l:)d‘t:|
0
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If we assume E, and E, are constant over each time step, the integrals become
summations

nn+l
_Eﬂ*l
EO
n . (m+har (m+1)At (15.25)
v S 1 - £ e "] o]

m=0 m=0 mal

and it follows that
D:?I _ Dn - )
e =B By (BN -y B

[(m+1)Al

+Re[i Em f XXX(T)er [7

n \ (m+1)At (m+1)AL
— R En+7m > n-m >
e mzzl . mfm 1yt )drj‘+ReLZ: E; mjm xxy(t)dt}
which becomes
n+t n
Dx4 Dx =Il+'° o+l 0 mn+l
e U T A JEx By~ Xyby
0
n-1 (m+2)At (m+1)At .
+Rel ¥ EM™ JA X (dt— ] x“(‘t)dtﬂ (15.27)
m=0 (m+ mAL

n-l (m+2)At R (m+1)At
-Re| ¥ EF" | g (vdr- | (t)drﬂ
(m+1)At mAt y

where

- L f=Va-
A = A AU (15.28)

(m+1)At

iy= [1,(@a (15. 29)

mat
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and where it is understood that Xxmy = Re[f(;"y]' etc. Defining

YMED AR S (15.30)
M S (15.31)

(15.27) becomes

n+l n
b =Dy =(1+ x5 By —E - x,ET"
€ (15.32)
n-1 n-1 R
- Re[z EmARn + 3 El Ax‘“-l
Lm=0 m=0 1

Before solving for the updated field values let us consider the evaluation of
the convolution summations, and introduce some simplifying notation. As in
Chapter 8, but generalized to off-diagonal terms, we define the values of the
complex discrete convolutions at time nAt as

~ n-1 .
¥ = 3 E}MAxy (15.33)

Because AY™ has an onential time dependence we can evaluate the con-

LECAUST 24, xy Has

volutions recursivel

-
[-e)

\{,nu Z BN AT < E! "AY, + el A«Ail:y (15.34)

m=0

Therefore, each discrete convolution requires the storage of one complex
number per cell, with two complex multiplications and one addition per update
operation. '

Solving (15.32) for the new field value we obtain

BN+ 0, EN 4 W0 -+ —EA:‘(V x Fl)x

on+l

X

~
w
W
wn
2

L+ x5

where the subscript x on the curl operation denotes the x component, and it is
understood that ‘P: is the real part of the complex recursive convolution

summation "I’:y. By the same procedure we obtain

Gyrotropic Media 307

n o o+l n _ayn At x|
DX EN Yy -+ (VxH

B} = o : (15.36)
¥y
These two equations can be solved simultaneously to yield
EM! = 1+ %0 n X:y E"
O N N
1*%; [ n n At 3]
+ 3 7 \Pxx-\ny +'—(VXH) :,
(e %) +(x3) g :
(15.37)
TPl e
L)+ b
T+ X5 Xy
g+l = ¥y E" — y E"

’ (”x(y)Y)z*(X;x)z ' (”XL;Y):‘L(X?X)Z '

L {‘I‘“ wr Ay J
+(l+x2x)2+(xgy)l vt "+80( " )y (15.38)
R )\(} (o2 [‘P:‘ -y +§(VX H)V]

U+ayy) +{xw) L o ]

The FDTD update equations for the magnetic fields are the same as for free
space because no magnetic materials are present.

To demonstrate this FDTD formulation, we present the 1-D problem of
reflection and transmission of a Gaussian-derivative pulsed plane wave
normally incident on a magnetized plasma layer. The Gaussian derivative
pulse is described in (8.35) and (8.36). The direction of propagation is
parallel to the biasing field direction. The FDTD problem space consists of
350 cells, the magnetoactive plasma occupying cells 200 through 320, with
free space in the other cells. Each cell is 75 um long so that the plasma layer

1s 9.0 mm thick. Both ends of the cell space are terminated i first order
18 2.0 mm ek, 5o ends O tne Cei: space are terminatcd in a 1irst oracr

Mur absorbing boundary condition. For these simulations the plasma pa-
rameters were

®, =(21)-50.0x10° rad/s
®, =3.0x 10" rad/s
v, =2.0x10" radjs
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The simulations were allowed to run for 6500 time steps (At = 0.125 ps) and
the electric field time histories (both co- and cross-polarized) were recorded
just in front of and behind the slab. These time histories were then trans-
formed to the frequency domain and combined to yield right and left circu-
larly polarized (RCP and LCP) reflection/transmission coefficients at each
frequency:

(@)=E (0)+]-E (o) (15.39)

R(P

T, (0)=E, (0) - j-E (o) (15.40)

with T (and t) replaced by R (and r) for the reflection coefficients, and the t or

r subscript on the complex electric field values denoting locations at either the
or reflection side of the plasma slab. For comparison analytically

rancmicsi
ransmission or refiection si¢e o1 12 81ab

computed reflection and transmission coefficients for a magnetized plasma
layer following the method found in Ginzburg* are provided. Figures 15-3
through 15-10 show the agreement between the FDTD results and the analytic
values for both RCP and LCP polarizations. The notation (FD)?TD indicates
that the frequency-dependent FDTD formulation presented here is used for
computing the FDTD results. Both magnitudes and phases exhibit excellent
agreement.

This section has described how a material possessing both dispersive and
anisotropic material properties can be efficiently implemented by the FDTD
method. For a plasma subjected to a constant magnetic field, the resultant
complex permittivity tensor will yield causal time domain susceptibility ex-

pressions which can be implemented with FDTD. For 1-D wave propagation,

as presented here, the off-diagonal susceptibilities will create coupling between
orthogonal electric field components, resulting in polarization rotation.

Excellent agreement between pulsed wave simulations and analytic fre-
quency domain results was demonstrated over a wide frequency range where
the material properties of the plasma were greatly varying. In the next section
a similar derivation will be applied to magnetized ferrite materials.

15.3 MAGNETIZED FERRITES

The derivation of the FDTD equations for updating the magnetic fields in
a magnetized ferrite will now be derived. This derivation is quite similar to the

als nale an.
rials are not duals and the

above for the H]dgllulLCu l_nasmaa, but the two i
FDTD formulation derived in the last section cannot be directly applied. In
terms of the dispersive FDTD treatment, the dissimilarity between the consti-
tutive parameter tensors necessitates finding new time-domain susceptibility
functions and incorporating them into a new FDTD algorithm. The procedure
for developing this algorithm parallels that presented in the previous section.

'y

Gyrotropic Media 309

Exact
(FD)2TD

RCP Reflection Coefficient Magnitude (dB)

Freguency - GHz

FIGURE 15-3. FDTD and exact reflection coefficient magnitude vs. frequency for a plane wave
incident on a plasma slab for RCP.
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FIGURE 15-4, FDTD and exact reflection coefficient phase vs. frequency for a plane wave
incident on a plasma slab for RCP.
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FIGURE 15-5. FDTD and exact reflection coefficient magnitude vs. frequency for a plane wave
incident on a plasma slab for LCP.
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FIGURE 15-6. FDTD and exact reflection coefficient phase vs. frequency for a plane wave
incident on a plasma slab for LCP.
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FIGURE 15-9. FDTD and exact tr coefficient itude vs. frequency for a plane

wave incident on a plasma slab for LCP.
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FIGURE 15-10. FDTD and exact transmission coefficient phase vs. frequency for a plane wave
incident on a plasma slab for LCP.
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In order to simplify the derivation the same situation will be assumed as in the
prcvious section, propagation in the z direction with only x and y components
of the electric and magnetic fields present.

Chemically, ferrites are (most often) described by the empirical equation
MeO-Fe,0;, where Me is some divalent metal ion (nickel, manganese, nickel-
zinc and many others).’ Variations of this basic formula exist, many times with
the Fe ion replaced by some other element. The selection of one type of ferrite
over another depends on the intended application of the required electrical
qualities.

Ferrites without a biasing field normally have one or more resonances
(called “natural” resonances) due to microscopic structure and loss. However,
it is when the ferrite is subjected to a strong static magnetic biasing field that
the material becomes both strongly dispersive and strongly anisotropic.

In determining the interactions belween the electromagnetic fields and the

£a N nars a nriantation hatwoan
ferrite matcrial an important parameter is the orientation between the transie

fields and the static biasing field. There are two basic situations. The first is
when the magnetic field vector of the wave is oriented parallel to the static field
vector. In this case the result is an additional increase in ferritc magnetization
along the biasing field (again, assuming the transient field strength to be small
compared to biasing field). In terms of ferrite device operation, this situation
is uninteresting as it yields no unusual propagation phenomena. However, if
the magnetic field of the transient wave is located in a direction other than that
of the static field, the permeabilities will depend on the strength of the biasing
field, and the ferrite will be strongly anisotropic. The exact form of these
permeabilities is addressed next.
Assuming that the geometry is such that the applied static magnetic field,

H,, is Z-directed, then the permeability of infinite, homogencous ferrite can be

expressed by

nt

I+ x.(0) —jx(w) ©
#(0) = ol (@) =1, jx(@) 1+x,(@) © (15.41)
0 0 1

where the susceptibilities are

{ —
‘m\‘”"( LA (15.42)

(‘”n +j(w)2 —? (15.43)



314 The Finite Difference Time Domain Method for Electromagnetics

with o the damping constant, oy, = ¥,,H, the precessional frequency, where ¥,
(= 28 GHz/kO) is the gyromagnetic ratio and H,, is the static magnetic biasing
field, and ®,, = Y,47M, where M, is the static magnetization. The real and
imaginary parts of (15.42) and (15.43) are shown in Figure 15-11 for the ferrite
used in the demonstration at the end of this section.

The form of the above tensor is a result of the static biasing field being in
the z direction. If the biasing field is along some other direction, then the tensor
must be altered. Comparing this tensor and the permittivity tensor for plasmas
shows that there is much similarity, most notably the equal but unsymmetric
off-diagonal elements. Notice that unlike magnetoactive plasmas, at low fre-
quencies the imaginary parts remain finite. This is a consequence of the lack
of free magnetic carriers, so that there can be no zero frequency magnetic
“conduction” current.

A number of propagation phenomena result from this permeability tensor.
The first is the interaction between ferrite media and CP waves. For example,

Tat tha o
1I€1 ik §

Since the magnetic field components of the wave are transverse to the magnetic
field, they both experience coupled frequency-dependent permeabilities. In
this situation the wavenumbers for RCP and LCP will be different, and unequal
attenuations and propagation velocities result. ~ ~

Using the above tensor, the relationship between B and H is

c magnetic field be parallel to the direction of wave propagation.

B,(®) = o(1 + % (@)H, (@) - ix(@)t H (@) (15.44)
By(w) = H'l)(i + Xm(uj))ﬂy(m) + j"(w)}ioﬁx(fﬁ) (15.45)
B, (@) =p,H, (o) (15.46)
Time-domain versions of these relationships are
B ()
=2 =H, (1) + %, ()« H, (1) - x(z) *H (1) 15.47)
0
B (1)
L = H, (1) + %, (%) * H, (1) + k(1) » H (1) (15.48)
K,
B,(t) =1, H, (1) (15.49)

where “*” denotes the convolution operation and where X,(t)and k(1) are the
Fourier transforms of ¥,,(®) and, X(®), respectively.

4
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FIGURE 15-11. Real and imaginary parts of the on- and off-diagonal frequency domain
permeabilities. The magnetized ferrite parameters are @, = 2+ 20 x 10° rad/s, w,, = 2%+ 10 x 10°
rad/s, and a = 0.10.

Before these equations can be put into an FDTD algorithm, two difficulties
must be addressed. The first is that (15.47) and (15.48) are not independent
equations; they are coupled, and therefore any solution for one variable will
require the simultaneous solution of the other. The second impediment is that
K(®) does not transform into a real, causal time-domain function. However, as
with the off-diagonal permittivities of the previous section, the quantity jk(®)
does yield a causal, real-valued time function.

The time-domain susceptibilities that correspond to the above frequency-
domain expressions are obtained from the application of (8.38) and (§.49) as

(15.50)
o,
ocos 0t |+si 0t ||U
{ [ ) m(1+a2 H (t)
k(t)= wm-exp(_moo_ft\
l+a® "\l+a® J
[ 1 (15.51)

VAP . .
[.a smL o (‘;2 tJ - cos( ; :’(‘;2 IJJU(I)

The progression from (15.47) and (15.48) to an FDTD algorithm is fairly
straightforward, and quite similar to the derivation given in the previous
section. Expressing the convolutions explicitly in discrete time we have
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nAt
B} = H} + 1, | X, (OH, (nAt - t)de
L (15.52)
-1y | k(DH, (nAt - T)dt
0
a nAt
By =uoHy + 1o [ Xm(TH, (nAt - t)dt
0
nat (15.53)
+1o fr(tH, (nAt - 1)dt
0

Assuming that each magnetic field component is constant over each time
increment, the convolution integrals in these equations can be simplified to

|
(m+1)At ’

B" n-l
X=H'+ ¥ H JA' X, (T)dt
Ho m=o " (15.54)
net (m+h)AL
- X H™ [ (t)de
m=0 mat
|
|
B" n-1 (m+1)At
—L=Hj+ 3 H{™ [y,(tdc
Ko m=0 mAt
-l (m+1)at (15.55)
+ THY™  [x{zxc i
m=0 mAt
For the next time step
B 0 (m+1)At |
S HM Y HE [y (t)de
Ho m=0 - (15.56)
n (m+Dat
-y HE [ k(t)de
m=0 mAt
Bml . n n+l—m(m+l)m
Lo BT (1) e
Ug m=0 mAt
N (m+1)At (15.57)
+ YHI™ k(1) dr
m=0 mat
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In preparation for the finite difference approximation to the time derivative of
the magnetic field we combine (15.54) and (15.56) to obtain

B _ B SH - H'
Ko
+ Hnu ?[ n+l ¢
I @t - H [ k(t)de
0 0 (15.58)

n \ (m+1)At n—i (m+1)At
PR Sy (e
m=| m=i

(m+)At (m+1)At

n n-!
X HMT [ k(tdr+ Y HT™ [ k(t)de
m=l m=0

mat mat

Introducing the usual simplifying notation

(m+1)At

X" = x, (vdt

mAt

(m+1)At
k™= [x(t)dt
mAt

AK™ =™ Krrul
the above equation can be compactly written as

Bn+l _Bn
A = (1 O ~H? - k'H"!

Mo
n-1 n-m m n-1 f-m m
-ﬂEOHx Ay, +m§0Hy Ak (15.59)

Using the finite difference approximation
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E:jr_'*B*: ~~(VxE)

At . X

the reduced update equation becomes

Hml -
! m_ & premaem _ A i
HI - <HIY + Y HI A" - 20 HI Ak - 2 (V x l:)x (15.60)
m=0 m= ——
1+ Ax°

The same derivation applied to (15.55) and (15.57) will yield

Hml =
n-l n-i nem At -
HY =R+ 3 HTAT + 3 AR - (VxE) 156D
o 1+ Ay°

These equations are now ready to be solved simultaneously. Doing so yields:

H = 771;(’2(1 — H" 4 — 7_7‘;077#7\7 n
X X Pl - / =0
(i+x°)+(l(“) (1+x°) +{x")

KO [ —m m b n-m mﬁ
_— H ™A H} ™Ak J
' (l + Xo). + (Kn)2 Ln=0 ST ,Z"B

0 [n—l m]

_ L+x H™"Ay™ _ 3 H™™Ak
(e (e T
L e S S )
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0

0
+ﬁ————f—ﬁm(VxE) AL Ly (VxE) (15.63)
U (14 0 o (4 0)? TN S It 1y
r'\]\lrk}ﬁ'kf\} "‘Oll'fx)'f'KJ

These equations show how the FDTD update equations are modified for the
magnetic field components transverse the biasing field direction. It is evident
that these equations reduce to the usual FDTD equations when @, = 0 (i.e., the
biasing field is removed), as expected.

The above equations are almost ready for implementation into FDTD. What
remains is the transformation of the summation terms in (15.62) and (15.63)

. into recursive accumulations. As with the other dispersive materials presented

so far, the damped exponential forms of the susceptibility functions allow the
summations to be efficiently compacted into one variable, rather than requiring
inordinate amounts of computer storage and execution time. The procedure is

the same as that performed for the magnetoactive plasmas, except for the
functional differences in the susceptibiiity functions.

Using complex variables and mathematical operations, the updates can be
performed as presented in Chapter 8 and in the previous section. The real-
valued expressions in (15.62) and (15.63) are expressed as the real parts of the

complex-valued functions

X o, ) ® ‘

x(v)= ol (o~ J)CXP[‘ - Oazf(a— J)t} (15.64)

N o ) [ o o]

K(1)=—"5(1 +Ja)exr>]—:~ L (a-J)tl (15.65)
i+ L I+a ]

where again the superscript “A” denotes a complex variable, and j = J=1-The
values for x%and x° are given by

o_ WO, W, .
=—MResl- - o-ji
X ® e{ CXP[ 1+ 02 ( J) :,} (15.66)

0

j D, |
K= 2—;‘ Re{%[l - exp[—% (o= ])lﬂi (15.67)

and the values for Ay® and Ak? are

2
Ay? = Om 1— [7 Dy .
= [ . (o= j)t (15.68)

0
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with the recursive relation

xm+l _ ® . xm
A{Kml} = cxp[— = ';2 (- ))At)A{Km

being the basis for replacing the summations in (15.62) and (15.63) with
recursive accumulations as was done in the previous section in (15.33) and
(15.34). The procedure is identical, and is explained in Chapter 8, so it will

(15.70)

Tha alanteic fialds are un: i
The electric fields are updated in the usual way,

not be repeated here.
depending on the permittivity of the materials involved.

Let us now demonstrate the application of this FDTD formulation. As was
stated at the beginning of this chapter, magnetized ferrites will have different
effects on waves depending on the orientation of the static field and the
propagation direction of the wave. For demonstration purposes, the most
interesting situation will be used as an example. In this orientation, called
longitudinal propagation, the propagation direction and biasing field vector are
identical (parallel to the Z axis). Like magnetoplasmas, the ferrite has two
eigenmodes (allowed propagation modes) with different propagation con-
stants. Solution of the wave equation shows that the two modes are RCP and
LCP waves. At each frequency there will be a unique propagation constant for
each of the two CP waves, signifying unequal propagation velocities and
unequal attenuations. As a result, a linearly polarized wave will undergo a net
rotation as it passes through the material.

Using the ferrite permeability tensor and the two propagation modes, it can
be shown that the two propagation constants are®

Kpca(@)= 21+, (@) - ()

Kice(0) = 21+ 4 (0) + K(0)

For frequencies much less or greater than the resonance frequency @, the two
wavenumbers will be nearly identical. Near the resonance frequency, however,
the two constants will be significantly different, leading to very different
behavior between the two waves.

4
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FIGURE 15-12. FDTD and exact transmission and reflection coefficient magnitudes vs. fre-
quency for a plane wave incident on a magnetized ferrite slab for LCP.

The FDTD problem space for this demonstration consisted of 800 1-D cells
75um in width with At = 0.125 ps. The center 200 cells were filled with ferrite,
and the magnetic fields calculated using the above FDTD formulation. The
ferrite material parameters used are

o, = (2m)-20 x 10°
o_=(2r)-10x10°

and
a=0.10

The excitation for this problem was the Gaussian-derivative pulse used in the
previous section. The procedure for determining the transmission coefficients
is also the same as that presented in the last section. Figures 15-12 and 15-13
show the FDTD calculated reflection and transmission coefficient magnitudes
for both polarizations vs. the expected analytic results found in Reference 6.
Again, the notation (FD)’TD indicates that the frequency-dependent FDTD
formulation presented here is used for computing the FDTD results. The
agreement is excellent.

Although magnetized ferrites and magnetized plasmas produce gyrotropic
effects by different microscopic mechanisms, there are many similarities be-
tween the two materials. The most important similarity is in the symmetry
between constitutive parameter matrices.
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FIGURE 15-13. FDTD and exact transmission and reflection coefficient magnitudes vs. fre-
quency for a plane wave incident on a magnetized ferrite slab for RCP .

The magnetized ferrite formulation presented here is also very similar to
that developed for magnetized plasmas. However, it was shown that because
ferrites do not have the equivalent of free conducting electrons, the frequency-
and time-domain constitutive parameters behave differently. A more basic
difference is that ferrites are a dispersive magnetic material while the plasma
is a dispersive dielectric material.

In this chapter the time domain susceptibility functions for these two mate-
rials were presented, and the recursive convolution method was applied to

efficiently compute the convelution as an
ropy of the material was incorporated into the FDTD algorithm for 1-D
propagation with both transverse field components present. Extension to 2- and
3-D will involve some spatial averaging of the fields in order to include the

anisotropic effects if a Yee type of spatial field distribution is used.

ne sum, In addition the anigot-

1g sum. In agcaition, he ani
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Chapter 16
DIFFERENCE EQUATIONS IN GENERAL
16.1 INTRODUCTION

The differencing scheme employed in the preceding chapters is a central
difference scheme in space and time, typically referred to as the leapfrog
method. It is stable and accurate to second order. A number of other differencing
approaches have been formulated. Some are unstable; others, while stable,
provide a lower order of accuracy; and finally there are those schemes that are
stable and of a higher order of accuracy, but at the cost of a much more complex
and computationally expensive expression.

In the differencing schemes discussed above only hyperbolic equations such
as the Maxwell equations and the wave equation, which can be directly derived
from the Maxweii equations, are considered. More generally we can consider
the broad class of second order partial differential equations that describe most
physical phenomena. In 2-D, where we typically assume one is spatial and the
other temporal, a general second order spatial differential equation may be
expressed as

’A %A 3°A  O0A  9A
T tb ——+c——S+d—+e—+fA+g=0
2 ox? * dxdy e dy? * ax ¢ dy & as.n

where a, b, ¢, d, ¢, f, and g may depend on x and y. There are three categories,
one of which the above equation must faii into:

Hyperbolic - (b? - 4ac)>0 (16.2a)
Parabolic - (b” -~ 4ac) =0 (16.2b)
Elliptic - (b’ - 4ac) <0 (16.2¢)

The 1-D wave equation

Py 12y _,
nt dar (16.3)

has a = 1 and ¢ = -1/cy? so that b2 — dac = —4ac = 4/c,? > 0 and the equation
is hyperbolic. The diffusion equation which can in its simplest form be

expressed as

327
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Yy 3ty
——k—5=0 16.
at ax? as4)

has a = —k and ¢ = 1 so that b? ~ 4ac = 0 and the equation is parabolic. The
Schrodinger equation

2
w9V

o (163)

is also a parabolic equation. Poisson’s equation in two spatial dimensions

}w =-p (16.6)

has a = 1 and c = | and b? - 4ac = —4ac = -4 < 0 so that the equation is
elliptical. Elliptical equations such as Poisson’s and Laplace’s equations
are not of interest here because there is no time dependence and the
behavior is static.

There are two broad approaches to formulating difference schemes for any
of these equations: explicit and implicit differencing.

In an explicit scheme an updated component at time t = (n+1)At at
location x = IAx (one dimension is used here for simplicity) labeled y™*! (I)
is found from an explicit operation on prior time components, i.e., y",
w2 g2 Note the use of more than one component. This is
a generalization of the commonly expressed definitions'? where the Max-
well equations are not the primary focus. The offset in times between y and
¢ is only meant to be suggestive of the possible prior time schemes. In some
explicit schemes the offset would not be present. By explicit we mean
simple mathematical operations, addition, subtraction, multiplication, divi-
sion, etc. that can be immediately evaluated to yield the updated field
component. Note too that the prior time values need not be at the same
spatial location.

An implicit scheme expresses the updated component in terms of prior
time components at the same and adjoining locations just as for the explicit
scheme, but in addition in terms of adjoining spatial components at the
n what is typically a large set of coupled

..... a large set of

same updated t
first order equations which may be cast into matrix form and solved
simultaneously for the updated values at each time step by traditional
methods. Because the matrix itself does not explicitly yield the solution the
formulation is referred to as an implicit differencing scheme. A prominent
example, often used in heat flow or parabolic diffusion equations, is the

Crank-Nicholson equation:
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kAt
mll —y"()+ n+||+] -2 noll+ n+1141
v () w()z(Ax)z[w (1+1)=2y™ (1) + " (1= 1)
kAt (16.7)

We are only interested in explicit schemes because of their use in FDTD and
because of their simplicity and efficiency. Interestingly, some difference schemes
can be formulated in either implicit or explicit form, for example,? the Dufort-
Frankel scheme, also used for parabolic diffusion equations:

Implicit:
pelmy o nelgry . SKAL [ T sl gy N
v )=y 'U)+(T)2w I+ -y - D]+ v u—u}“ﬁ-gf
Explicit:
n+l 1—(‘1) n-1 o n n
= I+—— I+1 -1
) = (2 e O e -y )
where o = 2kA12 (16.9)
Ax)

The explicit form is of interest for solving the Maxwell Equations when D/
ot is smaii compared to GE and can be ignored, leading io a diffusion equation.
The Dufort-Frankel method allows any size time steps so that when diffusion
conditions pertain it may be employed to economically solve for the field
behavior. Unfortunately, in the case of large time steps an oscillation due to
errors in the scheme is present and limits the accuracy of the predictions.

Turning now to explicit schemes exclusively we can finish our survey of
parabolic difference equations by examining some common schemes, namely
explicit first order and the leapfrog method, that are readily formulated for
parabolic equations as:

Explicit first order :

a1 21 KAC ronie o nes nge ol o1 1m
yri)=vy “)+(Ax)2 v+ -2y () +y i+ (610
Leapfrog :
w"”(l)=\u“"(l)+(%M)—'2 Y+ 1) -2y (1) +y"(1+D)] (16.1D)
X
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The explicit first order method is stable for At < 4 (Ax)Y/(k) while the leapfrog
method is always unstable for parabolic equations

Hyperboiic equations (ihis equaiion type governs eleciromagnetics when
oscillatory behavior is present as opposed to when the system is static with
V2 ¢ = —p or is a slowly varying system that behaves diffusively as when aD/
dt ~ 0) behave oppositely for the two schemes just discussed. The explicit first
order method is unstable for hyperbolic equations, while the leapfrog method
is stable for sufficiently small time steps. In summary, similar techniques can
be formulated for hyperbolic and parabolic equations, but they may well work
differently for each equation type. Having dispensed with elliptical equations
as uninteresting because they are static and parabolic equations because they
do not describe harmonically varying electromagnetic systems we now focus
on hyperbolic equations.

16.2 DIFFERENCING SCHEMES FOR
HYPERBOLIC EQUATIONS
The wave equation
2
vy L9V _g (16.12)
cg ot
in one dimension
2 2
Py _Low_, (16.13)
ax* ¢y ot”
can be factored into
L'y =0 (16.14)
where
d 1ad
L'=—+——
dx  cq Ot (16.15)
a 1 0
L= ——= (16.16)
dx ¢, ot ¢ )

While the wave equation admits waves propagating in either direction, L*
and L- above allow for waves traveling only in the positive or negative x
direction, i.e.,

L'y =0 (16.17)
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Ly =0 (16.18)

where Y is positive going and y- is negative going. These equations are called
the one-way wave equations. Because L* and L~ commute, any wave of the
form y = Ay* + By satisfies L* L~ y= 0.

Starting with the one-way wave equation in the form

LA

+

a " ax (6.1

and two alternate formulations of the derivative in difference form given here
for the time derivative

oy _y™(D-v"(H)
W = T (forward difference) (16.20)

or

Ay _y™(D-y™'(1)

m AL (centered difference) (16.21)

and spatial derivative

v v -y(I-1
v uﬁ:—(—z (forward difference) (16.22)

Y
(228
or

oy _ v (I+D)-y'(I-1)

o A% (center difference) (16.23)

the following five finite difference schemes can be obtained:'

vO-v (D), D=y
At Ax

(forward time and space scheme) (16.24a)

V-, v 0-v'-n

ar Ax (16.24b)
(forward time, backward space scheme)
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At 2Ax B (16.2
(forward time, centered space scheme)

vy, v -y =D

VAT () R A B ) VAN LV NN
2At 2Ax (16.24d)
leapfrog (centered space and time scheme)

AN LA G S A k) DU B I Y
At . 2Ax

(Lax - Friedrichs scheme) (16.24¢)

This categorization makes clear what has been meant in earlier chapters by

centered differencing and also clarifies the term leapfrog scheme. However,

while the one-way wave equation will be used in the derivation of the Mur

boundary condition in Chapter 18, the Maxwell curl equations in component
form appear as

8w+§¢3=0

St e (16.25)

Using this form a similar set of difference equations directly related to the
Maxwell curl equations can be formulated:?

n+l D n _any ﬁ_
v )=y ()-[o"a+D-e"a-D] =

(16.26)
first order explicit scheme
n+l __1_ n LR P P —o™"(I-1 _A_t~
v =S+ - [or@en-on(1-n]~ 4627
Lax scheme
n+l = n-1 1 __L‘li_ ¢n(I+])—¢"(]-1)
v =y -] | 62%)

Leapfrog scheme

The earlier forward time and space scheme, forward time and backward
space scheme, and the forward time and centered space scheme are variants of
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the first order scheme presented here. It is always unstable for hyperbolic
equations. The leapfrog schemes are much the same as are the Lax schemes;
of the Lax and leapfrog schemes the ieapfrog scheme provides the more
accurate results.!

Having narrowed the field to the leapfrog method for hyperbolic equations
we can now look at permutations on this technique.

16.3 PERMUTATIONS ON THE
LEAPFROG TECHNIQUE

Following Strikwerda' we can obtain fourth order accurate approximations
to the first derivative operator using a Taylor series expansion. We start with
the center difference operator 8, defined by

\% -V
where 8+ V.= % (forward difference)

V., -V,
5_V, = —"‘—h"‘—“‘ (backward difference)

(16.30)

where & = (8, — 8_)/h or

52V,,, = ___Vm'f‘ - 2]:/2.!" + Vs

and d*/dx? = &f + 0(h?) is used to obtain the last expression of (16.30).
Symbolically we can rewrite (16.30) as
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2 -1
d—“;(nh—éz\ Sou+0(n*) (1631)
dx k 6 )
and for
du_o (16.32)
dx

we obtain to fourth order

~1
hl
(1+?82) Sou(X ) =f(Xnm) (16.33)
Thus,
h?
aou(xm)=(x+?52Jf(xm) (16.34)
or finally
V.-ml - Vm-l = fm + l(fmﬂ _ 2fm + fm—l)
w 6 (16.35)
=gl + 46, + fo)
This is in contrast to the second order accurate expression
M =f (16.36)
2h "

One can use these higher order accuracy expressions to obtain a higher
order accuracy expression of the Maxwell curl equations but at the cost of a
higher computational expense. Generally we have not found the tradeoff
advantageous.
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Chapter 17

17.1 INTRODUCTION

Chapter 17 formally establishes the stability condition for the leapfrog
method as applied to hyperbolic partial differential equations. This stability
condition, known as the Courant stability condition, is the key to this chapter.
It sets a condition on the Ax and At difference sizes that result in a stable
scheme. The Courant stability condition was presented in Chapter 3, but here
we derive and justify it based on a complete mathematical treatment. One
warning is that satisfying Courant stability does not guarantee unconditional
stability (which is possible with some implicit schemes applied to parabolic
partial differential equations, such as the Crank-Nicholson scheme); rather it is
a conditional stability. For hyperbolic partial differential equations modeied
with any of the various explicit differencing schemes, at best only conditional
stability is possible, and the stability condition is typically of a form similar to
the Courant stability condition for the leapfrog method.

In the electromagnetic applications of FDTD this conditional stability can
be illustrated easily. Suppose we have an FDTD code that has a time step size
set at or below the Courant limit. We still must not excite the FDTD problem
space at a frequency high enough so that the additional constraint of many
FDTD cells per wavelength is violated. Let us nonetheless violate this con-
straint. Since the spatial sampling will then be insufficient the code will be
unstable, even though the Courant limit is satisfied.

Lack of stability for a hyperbolic set of equations, as occurs when using an
explicit first order differencing scheme or the ieapfrog method with too iarge
a At, results in dramatically increasing high frequency (wavelengths on the
order of the grid size) oscillation. In short, the predicted response “blows up”
and is quite useless. For usable predictions the correct difference scheme must
be employed under conditions that ensure stability.

While an unstable scheme is definitely inaccurate, different stable schemes
will provide different orders of accuracy. The order of accuracy can be deter-
mined straightforwardly. Related to accuracy is the question of dispersion —
how the signal disperses because of the use of a finite grid and its numerical
effects. Note this is numerical dispersion due to finite spatial grid steps and not
physical dispersion as arises from propagation in a frequency-dependent ma-
terial media. The effects of grid dispersion are examined in more detail here.

Formally we want the leapfrog scheme to yield predictions that approximate
the exact solutions of the hyperbolic partial differential equations. Further, we
want this approximation to approach the exact solution as the spatial grid, Ax,
..., and temporal grid, At, approach zero. If this is indeed the case we say that
the predictions are converging and that the difference scheme is convergent.

335
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The Lax-Richtmyer equivalence theorem!' states that a consistent finite differ-
ence scheme for a partial differential equation is convergent if and only if it is
stable.

Consistency is the requiremen

Ly — Ly ¥ — 0 for Ax,At > 0

where L is the differential operator in the hyperbolic equation Ly = 0 and
Laax is the corresponding difference scheme operator. The selection of the
leapfrog method assures consistency. Therefore, the desired convergence
results when the scheme is stable.

It is for this reason we concentrate on stability, then look at dispersion and
accuracy in terms of the order of the difference approximation.

17.2 STABILITY

Consider a system satisfying (dii)/(dt) = L, where L is a spatial differ-
ential operator and U(r, t) is the state vector known att=0, i.e., i (r,0) =t so
the equation is an initial value equation. In difference form this can be
written

i"™! = T(At, Ax)d" (17.1)
or
i =00+ 0 L
or using a Taylor series expansion
!ntl
1] gr o
=i"+ Li)| — +0[(t'P)dr’
Jn {rzo[dt ( ):I[ r! ( )}
t
=1" + LuAt=(I+AtL)i" = T(At, Ax)i"
where I is the unitary matrix. The final result is the expression for an explicit
difference scheme.

Now assume a system where linear superposition holds. Solutions can be
PYI’\I’FQQP{' in terms of Fourier modes of the form for compactness nng;gr_)_r! is

given by x; rather than x(J)

= _An |kx_|

where by substitution into (17.1) there results

Stability, Dispersion, Accuracy 337

ﬁn&lelkx] - T(Al AX)A" ikxj”
or
An+l _ —ikxj ikxj"An _ An 1
0" = e UT(AL, Ax)e MM = G(At, Ax)h (17.2)
G is the amplification matrix of the difference scheme for the Fourier mode of
wavenumber k.
We can express the Fourier modes as an expamion in the eigenvectors of

the amplification matrix G. In particular let u be the amplitude of the vector
Fourier mode along the eigenvector S™ 4 ume step zero, then

=Y o Sw
hd T H
n

From {° and (17.2) we can find o as

i" =(G)"i® =(G)" L a3 SW
f (17.3)

Now S™ as an eigenvector of G satisfies

(G-g,)s% =0 or GSW¥ =g s (17.4)

<535 o5

For Ig,| <1 this behavior for U" is stable. Equivalently we could require

. 2
ge, =g <1

Our task is now to formulate the time centered leapfrog methed into a form

ulate tr 1€ centered leapt

with G, find the g, and see under what conditions lg,! <1
The difference equations in 1-D are of the form

} ) At
wp = (e - 1)

or
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dD JH

At _
(H;/ —-H /z)from(a - +a x_O) (17.5)

<N+l on-l
Ej"7 =E]” -

0B OE
n- -4 -
HY,, = HJ% A (EJ*1 E;‘ Z)from[a +8x 0] (17.6)

Now (17.5) may be rewritten by substituting (17.6) into (17.5) as

Evh o AL
J J eAX

e TG R B Ie N E?“H
L i HAX
Thus,
- At n- n-
e (2 -
At -1 -1
- E[HM -HIT) (17.6a)
~yn- n-% n-%
3‘*,’4‘“1*% “A,,(EJ*I -Ej )
Now let

. éu—};eikx
w= -t gikxe 1500)

so that jn+! — G{" can be written as

[ (eaty pikix ixax] —At ok A |
. 1+L ) -2+e JsAx )
! _ﬂ_(efikAx_l) (17.7)
HAX

where we have used

—_—
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EJ"u/ En u_ (En—'/geikxj)[eikAxgl]

B/ = 2B] 4 B4 = (B Ve feikan _ gy gikan]

Thus, the eigen values of (17.4) may be found from the determinant of IG — gl,
by setting the determinant to zero so that

[ zvem)-afo-a

17.
i (cAt)z(exkAx_erc-ikAx):O (17.8)
Ax )
this simplifies to
cAt i
24 T _z+e ™M) lgr1=0
{ (A J (e )le (17.9)

For (cA/(Ax) =1 or equivalently At=Ax/c the expression further simplifies
to
g> = 2(coskAx)g +1=0 (17.10)
and

_ 2(coskAx)im_4

2
= coskA £+/cos? kAx — 1 (17.11)

= cos kAx £ i sin kAx

Therefore Igl = 1 and the scheme is stable for At =Ax/c in 1-D. In 3-D and for
cubical cells the stability condition generalizes to At = Ax/ V3e

17.3 NUMERICAL DISPERSION
Start with the six free space finite difference equations:

EY™A(LLK) = E¥ " A(1 1K)

SOt H (L) K) - H3"(1,7 - 1,K)
€p Ay

H"(LJK)- H}"(1,J,K-1)
Az

:‘ (17.12a)
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s e —penh
E; "4(L1,K) = E} "(1,1,K)
+£[Hi‘"(I,J,K)—Hf;"(I,J,K—l)
EOL Az

Hy"(LJ,K)-H; "(I-1,1.K)
B AX

Es, myz(l‘J'K) = E> “'%(I,J,K)
Yy Yy

A HE"(1L)K) - H"(L,JLK-1)
Az

€

H"(L1,K) - B (LT - LK) ]
- " |

HS"(LLK) = H} "' (L},K)
ES " (11K +1)-Ey " #(LJ,K)
Az

At
+2
Ho

E} 41T +1,K) - E¥"4(L1,K)
- 5

H} "(LJ,K) =H§ (LK)

’ Ko Ax

ES M A(LI,K+1)— B "A(L1K)
B Az

At {Ej"’yz(HLJ,K)- E; "4(1,1,K)

HS ™(1,J,K) = HY ""'(1,7,K)
At Ey (13 +1,K)— B, (1K)

Ho L Ay
B "4 (1+1,0,K) - E3 "%(11.K)
B Ax

and the Fourier modes for each component:

(17.12b)

(17.12d)

(17.12¢)

(17.12f)
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ES .ny,(l LK)=¢ bCej{m(m%)m»[a(nyz)mwmymKAz]} (17.132)
0 X; a,b,

x; a,bc

s, n+l4 _ j{o(n+}4)at-[a1ax+b(J+ 5)AyrcKaz]l 1 1an
E;y: a,b.zc(]?'];—*)_ey; a,‘o,ce{ (n+4) [ { ) YooY

ES M%(I,J.K) =€, 00 Ce){m(ni»yz)m—[a le+bJAy+c(K+%)AL]} (17. 13C)

z; a,b,c

HE: D (LJ, K) - hz; aVb‘cej{mnA(-[a IAx+b(J+yz)Ay¢c[K»y2)Az]} (17.13d)

z ab,c

Hi, :\b,c (I,J,K) - hy; a.b.cej{m nAt—[a(l+y2)Ax+blAy*c(K+'/2)Az]} (17.13e)

HS® (L7, K) =h, a.h.ce]{m nAt—[a(H,’/z)Axi»b(J+%)Ay+cKAL]} 17.13f)

2z, a,b,c

By direct substitution of the appropriate Fourier mode into the six free space
finite difference equations we obtain the requisite six equations and six un-
knowns. We will assume e,.,,_ is given along with a,b,c; then the five remain-
ing Fourier mode amplitudes and o are unknown. What is wanted is o in terms
of a,b,c.

The six equations can now be found, but first a few simplifications are in
order. All Fourier modes share the term e/londt - @iax + blay +¢Ka2) which can be
divided out at the start. Also, the a,b,c subscript can be suppressed for brevity.
Then:

e,el0l28t-al24x) = o ei(-wl/24t - alRAX) +
X X

At[h ell-a120x-b128y) _ - j(-a12axsb128y)
—| £ z

L Ay
helCeI2M-eIR) _p cil-siacseiza) (17.142)
Az
eycj(m V280-b1128y) _ o (-0 128t-b1724y)
s I(b12Ay-c1242)
+ At rﬂxC"( o128y —cl28)
£o

(17.14b)

j(-a1/2ax-b1724, i(-atz28x+b172A,
_he ( v) _ h,el(-a1/28x+b1/22y)
Ax
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J — t—cl
ezej(w 128t-c1/242) _ CZCJ( ® 1/248t-c1/247)

j(-al28x—cl/2az) _ j(-al/2Ax+c1/2Az)
At |— h,e h.e

+€_UL Ax
h‘ej(—bI/ZAy—cl/ZAz) _ hxej(‘b'/zAY*C‘ﬂ"z) (17.14¢c)
- =
h eJ(—b 128y -clj282) _ her(—mApbx/sz%./:Az)
LA [e IO 1RACDIZA ) g (-0 L2a0-b12)
”0 L Az
0 ol O IBM BAY- RN g -0 128-c1080) {i7.14d)
Ay
hella 1/2ax-cli2be) - hyej(“‘)A‘—ﬂl/’-’Ax—clllAz]
At ezej(fml/ZAtfanfcl/ZAl)_elej{—mmm—”l/ZAz)
+I‘? Ax
o el 12l -cA) o o0 1201 120%) 1 (17.14e)
T Az J
h,el-a128x-b120y) - hxe](*ﬂ)Al*al/ZAxfhl/ZAy)
. At |:eer(m 17280-a1728x-b4" ) _ Xej(fwl/ZAl—a[&Ax)
Ho Ay
(17.14f)

(- 1/281-2Ax—b1/28y)

- 1/2At-b1/24 '|
e el v)

—eell

Ax I

The result of dividing out common terms and a small amount of manipulation
is

At 2sin(cAz/2 2sin{bAy/2
e [Zsm wA[/Z)] o {hy[ SH(ACZ )} h ]: (Ay )]} (17.152)
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2sm(an/2)] h‘ 2sm(cAz/2 l

Ax B L Az 1j

. At
e, [2sin(wAy2)] = E—{ h [ (17.15b)
0

. At [ [2sin(bAx/2 2 (aAx/2)
31[25'"(“>A‘/2)]=—{“x[ “"iy‘ )J"‘y ol ]} (17.15¢)

(17.15d)

_a {e —Zsin(bAy/Z)J 25m(cAz/2 }
z Ay

[ 2sin(aAx/2) -H

At [ [2sin(caz/2)]
M ] (750

siu(qu?.)}:—lex —c)i-

Az

0 Ax Ay

M9 i
b [2sin(re2)] = ﬁr {e} Zsm(an/Z):j‘ey[Zsm(bAy/Z)J} 171t

In the limit At, Ax, Ay, Az — O these expressions yield exactly the same results
for a Fourier mode as the original partial differential equations expressing the
Maxwell equations in component form, i.e., 2sin (0At/2)/At — , 2sin(aAx/2)/
Ax~->a, etc.

This set of coupled equations can be solved using conventional linear

o o rar~ nd th am At~
ant to be zero and this condition

algebra. A gsolution requires the deter

allows w to be found in terms of a, b, and c.
Following this approach:

] ' _

w 0 0 0o - [é} [g ] e

’ v ° [é] ° _[é} ey

0 0 w 7[3} Lij 01 |e,

0 [E]—[£1 w 0 0 | |hs -
LMol Mo )

bl o Ble v o]

R I
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M

M

where

2 sin(wAY/2)
A
2sin(aAx/2)
A= AX
2 sin(bAy/Z)
B= ———“—‘Ay
. 2sin{cAz/2)
€= Az

Setting M| = 0 yields
WO - W4(A2 4B +C?) /e, =0

7 tics
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(17.16)

A7.17)

(17.18)

or
w? - (A% +B’ +C?) /e, =0
i = =k,, B=k, and
Iy the limit as the cell size and time step go to zero, W = @, A=k, "
C =k, and the expression becomes
2

0’ -k%?=0

i not in
the exact result as expected for a continuum. If we are

limit and our cell size is finite, then

(2sin(Wat2) )’
a )
1 [[2sin(an/2))2+[2sin(bAy/2) ’

Az
A;
€ollo Ax Y

For 1-D

J . ( 2sin(cAz/2)

(17.19)

the continuum

]2} (17.20)

—d

a4
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sin(@AY2) 1 2sin(kAxf2)
A ooty Ax (17.21)

If At = (Ax)/(ac) and @ < | then the 1-D dispersion relation (17.21)

becomes

$n(*%%2) 1 (kaw)
= sin (17.22)
- VEokg Ax

Only for &t = 1 is the above relationship satisfied by w/c = k so tha there is no
dispersion. This is a very special case. If o # 1 we have a different dispersion
relationship between  and k, although 1 is still approximated by wfc = k. If
an individual is working in a higher dimensionality then they can at best
achieve dispersionless behavior along a particuiar direction.

For example, in 3-D let At = Ax/ J3e k= k, =k, and Ax, = Ay = Az, then

2si 2y 2 . 2
sm(mAx«Jc)/Z __ 1 2sin(k,Ax/2)
A = rr K v (17.23a)

or

’ 2

cz[ 25in(mw/§c)/2‘r
’ L Ax J

which holds so long as

3 [2sin(k,ax/2))

Veao | ax )

(17.23b)

t o
= ,kx=w/x/§cork2=kf+k§’;+kf=3(ww3c) =22.
€9l c

Thus, along the direction of k, =k, = k,, or more generally, k| = Ik | = k|
and with At = Ax/ /3 ¢ there is no numerical dispersion. In any other direction
there will, even under these special circumstances, be numerical dispersion.

17.4 ACCURACY

For a Fourier mode given by

u = he**
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the exact first derivative in space yields

QU ikhe
dx

= iku
The center difference approximation may be written

Au h elkx(JH) —h ecxkx(J-l)

(17.24)

Ax 2Ax

or with x(J+1) = x(J) + Ax and x(J-1) = x(J) — Ax this becomes
a1y AL
Au_ b sy Ly _e-..w]
x  Ax 2
iu (17.25)
= A—sin(kAx) . ik u for small kAx
X

For larger kAx we can expand sin (kAx) in a Taylor series to obtain

Au L“(kAx - ﬂ%f_ + 0[(kAx)5n

Ax  Ax
inlk (, (kAX)2 O[kax\4 ﬂ (17.26)
tuk k - e ) JJ

Thus, the center differencing employed above is referred to as being second
order accurate in kAx. The same results holds for the centered time difference.
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Chapter 18

OUTER RADIATION BOUNDARY CONDITIONS
18.1 INTRODUCTION

In Chapter 3 the most commonly used outer radiation boundary conditions
(ORBC), known as first and second order Mur, were presented in a form
suitable for application but without explanation or justification. In this chapter
we present a short history of absorbing boundary conditions that have been
used, explain the basis of the Mur absorbing boundary, and present some
generalizations of it.

As discussed briefly in Chapter 3, an ORBC is needed because the FDTD
technique uses a finite problem space. This space may be relatively large, say
100 X 100 x 100 cells or 1 million cells in all, yet it must of necessity have
componeits on ifie surface of the probiem space. These components, unlike the
remaining interior components, are not completely surrounded by their neigh-
bors. At least one neighboring component is missing because the problem
space is terminated at this outermost or surface component. As a result when
calculating the update of a surface component according to the FDTD differ-
ence equations given in Chapter 2 there is not enough information to correctly
calculate the updated value.

An ORBC must be employed to approximate the missing field components,
or more precisely the missing space surrounding the problem space. If the
approximation were perfect then the outermost component would be updated
as if the scattered field passed through the surface component’s location
unaffected by the truncation of the problem space. Thus, a perfect ORBC lets
the scattered field appear to radiate outward to infinity unimpeded. Any real
ORBC is an approximation; it will only approach the ideal and will generate
some reflected radiation, typically small, from the outermost or outer boundary
components.

The use of an ORBC cannot be readily avoided. If the outermost compo-
nents are E field components, as is often the case, and no ORBC is employed,
then all the energy reaching the outermost components will be reflected back
into the problem space, severely corrupting the predicted responses. The
mechanism behind the reflection is easily envisioned using a 1-D transmission
line analog based on the 1-D rectangular coordinate system set of equations of
Appendix A. The outermost E field component ac
transmission line in this 1-D analog. As such the radiating fields reaching this
Outermost location are reflected in their entirety without a sign change.

We assume in this discussion that the FDTD calculations involve scatterers
in free space. If, for example, the FDTD space is contained within a conducting
cavity then no ORBC will be required. Even for some limited applications
where the scatterer is surrounded by free space it is possible to make FDTD
predictions without an ORBC. The approach is to use a small enough scatterer

the end of an onen
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in a big enough problem space to obtain sufficient “clear time” before the
reflected signal returns to the scatterer to obtain meaningful responses in or on
the scatterer. This approach is quite wasteful and now that ORBCs have been
developed that work well their use is virtually universal.

It is well worth at least a brief examination of how ORBCs have evolved,
and so a short review of some of the techniques employed is given in the
following section. The latest commonly employed approach, called the Mur
radiating boundary condition, is discussed at greater length. It can be imple-
mented at any order, with first order the simplest and least demanding of
resources and second order the most favored among FDTD practitioners.
This is the ORBC presented briefly in Chapter 3. Higher order implementa-
tions have also been tried and are part of the ongoing quest for the “perfect”
ORBC. This chapter concludes with a look at these efforts to find a better

ORBC.

A number of ORBCs were developed prior to the now-widely used Mur
radiation condition. These include a conducting outer layer of the problem
space, Legendre polynomial analytic continuations, impedance matching con-
ditions at the outer boundary, and simple look-back schemes. The Mur condi-
tion is itself a look-back scheme but, at least in its higher order formulations,
is anything but simple.

The conducting layer approach was used by Taflove and Brodwin' in some
early work with the FDTD technique. Typically, a total field formulation was
employed and the field oscillated at a single frequency. By adjusting the
conductivity of a several-cell-thick layer at the extremities of the problem
space the field could be mostly absorbed. The disadvantage to this method was
that it entailed using a single frequency and was very dependent on the skill of
the user in setting the conductivity levels and rate of spatial variation to
optimize absorption. This approach is little used.

Legendre polynomial analytic continuation was an approach espoused by
C. Longmire and examined by Gilbert? along with several other of the
approaches discussed here, including impedance matching. Classical in na-
ture and quite capable of yielding accurate results, this approach nonetheless
was much too formidable to implement easily and required inordinately large
resources to do its job. It is not employed in any operational code known to
the authors.

The impedance matching technique is particularly appealing in its simplic-
ity. In effect all that is required is to assume a wave propagating outward and
relate E and H via the impedance of free space, Z, = 377 Q. In spherical

coordinates this can be expressed as

Ee(r,t)=ZOH¢(r,t) (18.1a)
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E(r)=Z H,(r1) (18.1b)

Iﬁs:?ffoﬁunate realityr ig thﬁt with spatially interleaved Es and Hs, required for
stavtiy, tnere are spatial offsets between components. Attempts to cc;necl for
th;se offse(tjs rl,ead to complications equivalent in complexity to look-back
schemes and this approach has been dropped in f:

hemes an pp avor of the look-back schemes
‘ One of the earliest look-back schemes was developed first by Merewether?
in 2-D and thgn extended by Holland* to 3-D. It was this latter implementation
ll.lat was }Jsgd in the F-111 modeling detailed in Chapter 4. It assumes that a far
field radiation behavior describes the scattered fields, i.e.

—~
co
™o

~

1
Egoy(r,t) = ~ o (r-ct)
(2) S felr-cy)

or

1
H(:)(r,t):;fH(r-ct) (18.3)

Thus, gilher E or H are found at the surface of the problem space from th
immediately interior field points whose behavior is extrapolated to the outc:
most components according to the above prescription that attributes a 1/r field
dependence and a wave propagation velocity of c.

Note that there is no calculation of field components beyond the problem
space..Rz?ther, the surface field components are uprdaled acco;ding ;:;vthk::;:;:
prescrzpnon‘ a"d cor.réspornd, ai least approximately, to an outgoing radiated
i\:;e:rveci Ttl.le ov‘c‘ervs./nt‘mg” of the outermost components as opposed to the
o Soe : ::Z dl(;lr; roef. missing”™ comporents is a common feature of all the schemes

The terminology “look-back scheme” comes from the fact that the outer-
most components are overwritten using field components within the problem
s'puce‘ components that are found by looking back toward the scatterer. The
S}mple look-back scheme outlined here gives results roughly comparat;le to
first order Mur and is in fact one of a myriad of look-back schemes that can be
formulated using a general approach® that encompasses the simple scheme
Mur of any order, and other variations. ,

na

10 v
10.9 MU

Ty

R OUTER RADIATION BOUNDARY
CONDITION

| Solution of tﬁe coupled curl equations via the FDTD technique is equiva-
ent to the solution of the wave equation for either field component.® Mur’s’
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derivation of an ORBC as well as more generalized treatments® start with the
wave equation. They treat either E or H, working with the individual field

components. The wave equation is approximated according to an approach
first developed by Engquist and Majda® for the scalar wave equation. The
approximation is referred to as a one-way wave equation or a look-back
scheme.

Following Mur’s treatment the wave equation for a single field component

W may be written as
(ag +02 402 -0 )W =0 (18.4)

where 97 = 3% /ox?, etc., and ¢, is the velocity of propagation. Assuming the
FDTD probiem space or mesh is located at 0 < x there is a boundary at x = 0
that a scattered wave will reach and be reflected unless an ORBC is imposed.

This ORBC is found from the above wave equation. The scattered wave has

: 2 2 2 2 . .
velocity components v,, v,, v, such that vi + vy 4 v =¢;. It is also possible

to define inverse velocity components S,, S, S, such that

1 !

2r9r — § =

9, _9/ox _ 1 1
To/ac oaxjoc’ v (dy/a)’ Tt (9z/ay)

X
x
t

2. Q2,2
S, +S) +8; = (18.5)

nl__
o'

The scattered wave can be approximated locally by a plane wave where
W = Re[w(t+Sxx+Syy+Szz)] (18.6)

and, by expressing S, as (]/c(z) - S? —Sf )%, this becomes

—
oo
=

=

When Re (062 —Si —SE)EO, ie.,S, 20 the wave is traveling in the —x
direction at some unspecified angle; i.e., S, and S, are not specified. This
wave satisfies, as can be seen by direct substitution, the first order boundary

condition at the boundary x =0
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d ]l' 2 3
—=cal1-(co8, ) ~(co5,) il =
el (coS,)" = (co z)] aiJWlFo—O (18.8)
N Iil;e W satisfy.ing the .above equation is therefore a wave traveling in the
o d ection and is outgoing and may therefore be characterized as absorbed
i resctaus; Syband dSz are not specified, a solution is not determined for the above.
order boundary condition. Approximations
. . of first and second order wi
be examined following Mur that elimi i T o be
t eliminate th igui
found at the boundarss e, is ambiguity and allow W to be
The first order approximation is that

x=0 =0 (18.10)
The second order approximation is
| IR I o1 1r
1-{c,S, ) —(c,8,) | =1-=|(c.s V 2]
[1=(eaSy) ~(eS.) | ~1-5(ess,) ~(cusl)J
(18.11)

so that the first order boundary condition is approximated to second order by

J 1

1 2
E N E

or by taking the time derivative of the equation

F 1@ 1 Tape. 3
{axat co aﬁ*ico[g;(sy) +5;(Sl)z]§}WIH,=0 (18.13)

which becomes upon multiplication by 1/cy Mur’s expression (12)
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- - 1
(c(,' 32— 33+5(a§+a§))w|,=0 =0 (18.14)
The first order approximation for E, is discretized as
EX0,5,k +1/2) =EZ(0,j,k +1/2)
At — Ax
S X E2(0,),k +112)] (18.15)

E™(1,j,k+1/2) -
cOAH-Ax[ z ( pEx )

The second order approximation is discretized for E, at the boundary x =0

as

E™(0,,k +1/2)==E""(Ljk + 1/2)

c At -

____E,.ﬂl, 1/2) + EX(0,], 2
o [Er'(Lik+1/2)+ E;'(0.jk+1/2)]
E_A?:_[E (0.j.k+1/2)+ EX(Lj k +1/2)]

(c Al) B .
— L [EMNO,j+1,k+1/2)-2E(0,j,k +1/2
( Y {(coht + Ax) [ (0 )-2E 0] )

+E(0, ‘—1,K+1/L)+n;\l,j+i.k+i/2) (18.16)

1

J+E;(Li-Lk+1/2)]

—2E}Ljk+1/2

Ax(c, At

+ 2(°0 )
2(Az)*(c,At + Ax)

+EN0,j,k—1/2)-EX1,j,k +3/2)

~2B7(Ljk +1/2) + EX(Ljk - 1/2)]

.(E:(O,j,k +3/2)-2E2(0,j,k +1/2)

PRSI Ve ot ane T 4 oMl £nn mananbhian] aalle

WllCIE we lIdVC t:)\lCllUCU lVlul 3 Ullglllal ICBUH 10 audw 101 noncuvicar Cus.
Mur examined the efficiency of these two approximations in a 2-D space
with a monochromatic point source. He examined how well the circular radia-
tion pattern was maintained (Figures 18-1 and 18-2) for different source
locations. Mur concluded that the second order approximation worked best and
recommended its use. The disadvantage of the second order Mur is that prior
time values of the outer E field components must be stored. Additionally, first

1
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FIGURE 18-1. Contour plot of the radiation

\-—— tirst approx.

———— second approx.

located at node (5,5) of a 35 35-node mesh (arbitrary units).

-

w

0

5

~—= first opprox.
[~ second approx.

FIGURE 18-2. Contour plot of the radiation

located at node (3,3) of a 35°35-node mesh (arbitrary units).
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order Mur has been shown in the interior coupling study of Chapter 4 to have
excellent stability, running for I million time steps in that investigation.
Another approach to evaiuating the efficiency of an GRBC is to €xamine the
reflection as a function of angle® in a 2-D formulation. It starts by treating a
single frequency component of a single field component in a 2-D space

“?m - ejcunAt(ejk, 1ax 4 Re—jk‘le )e—jk,mAy (18.17)

i.e., the sum of the incident and reflected scattered field at the outer boundary.
Here, k, and k, are positive and R is the reflection coefficient that is to be

found.
The process continues with the assumption of an ORBC, starting with Mur’s

first order approximation expressed by

un+1 —u" - X = ’un+1‘ 18.18
ul) (18.18)
Substituting the expression for u,," above into this equation yields

1 o Axsin(wAt/2)cos(k Ax / 2) - cAt cos(wat / 2)sin(k Ax /2)
R=-e™ -
Axsin(wAt / 2)cos(k Ax /2)+ cAtcos(wAt / 2)sin(k, Ax/ 2) (18.19)

Following the same procedure for Mur’s second order approximation yields

) (18.20)

where

2
: At
a=Ax|sin® oAt —l[c—mj sinz(y—-] cosﬂ

2 2\ Ay 2 2

b = cAt cos—uﬁsinQA—tsin—lﬂ
2 2 2

The reflection coefficient can be evaluated (Figure 18-3) for typical
conditions: Ax = Ay, cAt = Ax/2 (At slightly less than the Courant stability
condition) and ®/c = 2n/(10Ax). Because of discretization the reflection
coefficient is not exactly zero at normal incidence (8 = 0). By varying the
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GURE 18-3. Magnitude of the radiation coefficient vs. incident angle 8 for various discretized

RBCs. Solid line is the first order of impedance RBC and the dashed line is the second order RBC

(commonly called the Mur condition). N i
2(104%), ition). Numerical parameters are Az = Ay, cAt = Ax/2, and w/c =

.

as

0.8 4

g

0.¢4 /

00 100 200 W8 4«00 00 wo 70 00 %00
incidence angie

FIGURE i8.4 Naoniniie f

;{;;CU::;, :l;: Magngude of the radiation coefficient vs. incidence angle for the second order
ith different grie lutions. Numerical are Ax

p =Ay and cAt = Ax/2. The solid

curve uses 5 cells per continuous free space
iterrboumdmiiion pace wavelength, the short dashed curve uses 10, and the




356 The Finite Difference Time Domain Method for E lectromagnetics

number of cells per wavelength (Figure 18-4) the dependence on this param-
eter can also be examined.

3 an
18.4 ALTERNATE FORMULATIONS OF THE

ONE-WAY WAVE EQUATIONS

Mur’s approach was to “motivate” a first orL.icr poundary condition or one-
way wave equation. The key to his approximation is how ﬁe expands 'the tf:rr;;n
N —(cyS )2 —(COSZ)2 in what is in effect a Taylor series e)fl:-uansni)n. . :
presence of the square root term in the first order boundary condition classifte

the operator

in the equation

LW, =0 (18.22)

as a pseudo-differential operator in that it is not local in time and space.
Alternate formulations using expansions other than the Taylor series expan-
sion of Mur have been investigated® in 2-D problem spaces. The one-way wave

equation is expressed as

L-;a,‘—i‘aixh—s2 (18.23)

C
L'W|,.0=0 (18.24)

The expansion of the term Nfligi can take on many forms and \.Nilh each form
the one-way wave equation is expressed differently. This behavior has already
been seen with the first and second order approximations used by Mur (18.9

and 18.10, 18.11 and 18.14).
In general one can write

=% = pa(5)/a.(5) (18.25)
a generalization of Mur’s second order approximation is

157 . py+paS? (18.26)

One approximation,
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TABLE 18-1
Coefficients for Third Order Conditions

Type of Angles of exact
approximation P, P, q, absorption (degrees)
Padé 1.00000 —-0.75000 —0.25000 0.00
L=, (o = 45°) 0.99973 —0.80864 —0.31657 117,319,435
Chebyshev points 0.99650 —0.91296 -0.47258 15.0, 45.0, 75.0
L2 0.99250 —0.92233 —0.51084 18.4,51.3,76.6
C-p 0.99030 —0.94314 —0.55556 18.4,53.1, 81.2
Newman points 1.00000 —1.00000 -0.66976 0.0, 60.5, 90.0
L- 0.95651 -0.94354 -0.07385 26.9, 66.6, 87.0

Note: q, = 1.00000 for each approximant.

which results in a second order one-way wave equation

Xt vy

P,
w —TUW“—CpZW =0 at x=0 (18.27)

Alternatively the approximation

S 2
Vimst e Bothe (18.28)
q,+q,8? :

yields the third order one-way wave equation or absorbing boundary condition

7 2 Pg o
oWan + 7AW, = P CPZWW

, =0 at x=0 (18.29)

These approximations can be categorized into types (2,0) and (2,2) based on
the order of the polynomials p,(S) and q.(S) used in the approximation.
Studies'” have been made of approximations of type (0,0), (4,2), and (4,4) as
well as (2,0) and (2,2). Formally, Mur’s second order approximation is a Padé
(2,0) type approximation with py = 1 and p, = 1/2. Choosing a Padé (2,2) type
with p, = gy = 1, p, = =3/4, q, = —1/4 results in the third order absorbing
boundary condition of Engquist and Majda.}

For type (0,0) where V1-S? = 1 we have Mur’s first order boundary
condition and the wave is exactly absorbed at normal incidence. The other two
types we are examining here also have certain angles where absorption is
complete. This can be seen Reference 5 in Tables 18.1 and 18.2 for third order
boundary conditions, type (2,2), and second order boundary conditions, type
(2,0).

It is evident that it is possible to obtain perfect results at more than one
angle. However, when the overall absorption is evaluated for all angles the
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TABLE 18-2
Coefficients for Second Order Conditions

Angles of exact

app':z’;em‘;ftion Po P: absorption (degrees)
é 1.00000 —0.5000 0.00

i“a'de(u =20° 1.00023 —0.51555 7.6, 18.7

Ch‘ebyshev points 1.03597 —-0.76537 22.5,615

L? 1.03084 -0.73631 22.1,644

C-P 1.06103 ~0.84883 25.8,976369

\( i 1.00000 —1.00000 0.0, 90.

ifwma" pomne 1.12500 —1.00000 314,816

more complex approximations do not best second order Mur. Tt)is accounls fﬁn’
the continuing popularity of the Mur absorbing radiation boundary conditions.
The search still goes on nonetheless for a significantly improved ORBC.
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Chapter 19
ALTERNATE FORMULATIONS

19.1 INTRODUCTION

FDTD as developed here solves the Maxwell curl equations for the scattered
E and H fields using a broadband analytically described transient incident E
and H waveform. The numerical solutions are based on the leapfrog technique.
There are many alternate formulations of FDTD to this approach. We feel none
are superior in general and most, if not all, have some weakness. It is nonethe-
less important to survey these alternate formulations so as to provide an
appreciation of the possibilities and pethaps to discover a particularly apt
approach to a particular problem.
The alternate formulations inciude
. Total as opposed to scattered field formulation
Transient formulation
CW formulation
. Potential formulation (A, ¢) as opposed to field formulation (E, H)
. Implicit methods
. High frequency imaging approximations
. Acoustic analog/scalar equivalent

19.2 TOTAL FIELD FORMULATION

The total field formulation is strongly associated with Taflove and
Umashankar! and has a history as long and varied as the scattered field
formalism presented in this text. The total field formalism does not separate the
field into incident and scattered components, but treats only the total field when
interacting with a scattering or coupling geometry. This simplifies the interac-
tion process in that the governing equation now looks just like the Maxwell
equations for free space (Chapter 2), except €y — € and [, — W for the fields
in the interaction object where conductivity ¢ also now may be different than
zero,

Along with the simplicity of this formulation is the reputed advantage of
better interior coupling predictions;? L.e., no noise as is present in the scattered
field prediciions. This is a somewhat moot point in that when incident and
scattered fields are sufficiently out of step due to grid disp

11 GiSp

iered
field components, the scattered field components are at high frequencies ap-
proaching the Nyquist frequency limit, where the predictions are of doubtful
utility in any case. Further, the total field itself must transverse the grid and is
subject to dispersion. In a problem with multiple scattering centers the timing
of the scattering from each center will be affected, causing subtle phase shift
distortions.
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The scattered field must be “resurrected” as the total field leaves the
region of the scattered or interaction object so as to apply an outer radiation
boundary condition (ORBC). For example, the Mur ORBC assumes an

antwardly Adirantad wava aticfuing tha savy wava Thic va
cutwardary Girected wave, satisiying tn€ one-way wave \A.‘uuuuu 111§ ¥e-

quires the incident field, which is the same on the total field entering the
problem space, to be subtracted from the total field at a subboundary placed
just within the problem space. The implementation of this “stripping” pro-
cess and the “launching” of the total field at some extremity of the problem
space is not difficult, but does imply a conceptual overhead of its own. It may
be argued that one approach or the other is superior, but overall they are
virtually equal.

We have used primarily the separate field formalism in the text, while on
occasion generating a limited version of the total field formulation where the
incident field is zeroed and the total field appears in a small region such as
in the gap of a dipole antenna. This appeals to us as the best mixture of the
two techniques, but either can be employed for virtually any problem with
success.

It should be mentioned that the earliest version of the total field FDTD
formulation employed a continuous wave (CW) or sinusoidal excitation, i.e.,
a sinusoidal wave was introduced into the probiem space from one side. To this
was added an absorbing boundary condition in the form of an outer conducting
layer in the problem space. This formulation has been superseded by its
modern version, as well it should. The latest absorbing boundary conditions
such as Mur are superior and fast Fourier transforms (FFTs) return data from
a transient at many frequencies, a much more efficient approach than creating
an FDTD for a single frequency.

Rather than begin with Maxwell equations an equivalent set of starting
equations are the coupled potential equations expressed in c.q.s. units

19
V3 +——(V-A)=—4x
o+ —=( ) P (19.1)
VA lazA v{v.asl2) 4l
—_—Z . —_ =4 -
c o’ L +c BlJ c 192
where
19A
E=-|-2L,v
(C =" ¢) (19.3)

-
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and
B=VxA (19.4)
Note that
J=oE (19.5)
or
1 0A
J=—¢o| =22
°( cat V‘*’] (196)
and that
dp
V- J+—'— 0 19.7)

By taking the time derivative of 19.1, one obtains

v? ——V —Amp =47V = 1 9A
o+ ( A) 47tp AnV J——47EV-G(E-§+V¢) (19.8)

while taking the curl of equation 19.2 results in

V(v xa)- L 2(TxA)
c? ot? [N
(19.9)
4n
=-—V J:ﬂV 6(18—A+V¢
c c ot
The two equations (19 8) and (19.9) may be written as
1 9% 4n6 9
VAViA) - = (V.-A) =0 9y,
(ViA) 2 atz( ) . at(V A) (19.10)
i (VxA) _{a (VxA) 4moc v
A A (19.1h)
when G is spatially constant and
2(1) 4nc
v qu, Vi(V-A) (19.12)

C
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or
&  4noc
—+—b=-V-A (19.13)
c c

Equations (19.10) and (19.11) are equivalent to

9? 4nc 0A
—A=—— (19.14)

via- L2 A=
c” ot c ot

while 19.13 is a gauge condition equivalent to the Lorentz gauge in the limit
6 — 0. Equation (19.14) can be solved by standard finite difference techniques,
using a separate incident and scattered formalism, i.e., A = A™ 4 Ascat,

This vector potential formulation of the lossy dielectric problem allows the

ector potential A to be time stepped in place of the six field components E,,

E,, E,, H,, H,, H,. In the formulation, ¢ is found from A, and E and H found
from A and ¢ in separate postprocessing calculations. Because each compo-
nent of A can be solved separately, only one component at a time is treated for
a sixfold reduction in the number of components that must be treated. Once A
is known, ¢ can be found from the gauge condition, and from A and ¢ the field
quantities can be calculated, using (19.3) and (19.4).

The sixfold reduction in the storage requirements is partially offset by the
need for two prior time values of A in storage at each cell location, so that 02A/
a2 can be calculated, using the standard difference formula

A [(amt_ar) (Ar—ar )]
e N e |

:(An+1 —2A" +A"‘l)/(AI)2

In contrast, the field component formulation requires only a first derivative in
time. Therefore, only a single value of the field component a time step earlier
must be stored to evaluate

JF . le_Fn

At

it

QL

where F = E, or H; (i = x,y,z). The net result is a threefold decrease in storage
requirements.

While apparently feasible and offering the advantage of reduced storage
requirements this somewhat different approach has never been employed. A
similar alternative would be to employ the inhomogeneous wave equations for
E or H.

Alternate Formulations 363

19.4 IMPLICIT SCHEMES

When the term 0D/t in the Maxwell equations is small and can be ignored,
the resulting equations with 9D/3t = 0 are parabolic and may be solved in a
pumber of new ways. Brief mention was made of the Frankel-Dufort method
in Chapter 16, a method that can be implemented in either explicit or implicit
form. In either instance larger time steps than that allowed by the Courant
stability condition are possible, albeit with some potential problems with
oscillations in the predicted response about the true response. While we have
not encountered an implicit scheme that has proven useful for the complete
Maxwgll equations (9D/dt  0) in hyperbolic form, it is appropriate to discuss
other implicit schemes that may be applicable to the Maxwell equations in
parabolic form (9D/ot = 0).

Chief among these is the Crank-Nicholson scheme widely used in heat flow

analysis, among other applications. We briefly summarize this technique fol-
lowineg Pastar’ed sonae

¥ing rotier s treatment. The Crank-Nicholson implicit scheme for parabolic
equations is

+1 KAt
o+l _n (und

U=y (e - 2 )
KAt n

+E(uw —2uj +uj‘_l)

du  kd%u
for —+—=0 which is of the form

at  ox’
oH /u\azH N Fretln 1T £ 0 N
5 "lew) 32 -0 for the H field when dDjot = 0

This equation is always stable.

19.5 HIGH FREQUENCY APPROXIMATION

The Crank-Nicholson and the Frankel-Dufort schemes, as applied to elec-
tromagnetic problems where dD/ot = 0, are in effect low frequency approxima-
tions, which suggests that there may also be high frequency schemes that are
effective for extending FDTD filodeling capabilities to higher frequencies, We
will examine here a newly developed high frequency approach as an example.

19.5.1 TIME DOMAIN SMYTHE-KIRCHHOFF APERTURE
APPROXIMATION AND METHOD OF IMAGES FOR
HIGH FREQUENCY FDTD MODELING
The Smythe-Kirchhoff approximation for aperture coupling® can be used
above aperture cut off to obtain a time domain representation of the field
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traversing the aperture with little effort, assuming a Gaussian time domain
behavior for the incident field. The J,(x)/x part of the Smythe-Kirchhoff
expression

jkr
E(K) = ~jEq <— (cosot)(kxd) L2 16
r X
x = ka§
a = aperture radius (19.15)
%
£ = (sinES +5sin® o - 2sin Ss'macow)/‘

can be expanded in kaf. Recognizing that ® = kc and that @ represents a
derivative in the time domain, the transmitted time domain field can be written
out by inspection as

E(t) = %(cosa)(%)(fcxﬁ)

3 5 6 7 a
l i+9_ﬂ?+£_d_s+_ﬁ' 27. Ae’(ﬂ‘)“ (19.16)
21dt 8 di® 192dt” 9216 dt

and the derivatives are easily evaluated to yield the time domain field.

int nantarad in tha anartiiea and
This field appears to emanate from a point centered in the aperture and

can be imaged many times. Because the imaging is periodic in a rectangular
cavity it has proved feasible to easily generate upwards of 1 million images
with a few lines of code that also account for polarity effects of the multiple
reflections producing the components of each image. A field within the
cavity can be produced in under 3 min on a 6 MFLOP machine that
accounts for 500,000 images when it is noted that many images arrive
nearly coincidentally. In this case 8192 time bins were used so that on an
average ~60 images coalesce into a single bin. Producing on the order of
100 field points to illuminate an object within the cavity is a matter of 5 h
computer time.

The resulting field can model a field on the order of ten times higher in its
frequency limit as compared to what can be achieved with an FDTD model of
the entire cavity. It is therefore possible for the aperture rectangular cavity
geometry to model response ten times higher in frequency than a brute force
FDTD model. Recalling that a tenfold increase in frequency would require ten
times finer cells and ten times smaller time steps, or 10,000 times the resources.
this is a significant savings and clearly demonstrates the utility of high fre-
quency approximations.
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19.6 ACOUSTIC ANALOG/SCALAR EQUIVALENT

This treatment follows Reference 5. It assumes P = P, + p, where P, is the
undisturbed pressure and p is the pressure change for the sound wave, and V
=V,+ 1, where V_ is the undlsturbed volume and 7T is the volume change. The
treatment uses three parts in its development: (1) Newton's second law of
motion (f = ma), (2) gas law, and (3) conservation of mass. This treatment leads
to a wave equation, but more importantly, two linear coupled first order
differential equations

- Vp p, average density (19.17)

=¥V.q (19.18)

These equations are used instead of the Maxwell curl equations for the acoustic
analog.

The derivation is approximate and for standard temperature and pressure
(STP) air is good to about 110 dB 0.0002 pbar. It assumes Lagrangian cells but
simplifies to Eulerian cells by requiring the vector particle velocity qto be
small enough that the rate of change of momentum of the particles in a cell
(moving) can be approximated by the rate of change of momentum at a fixed
point DG/Dt = 9g/at. It also assumes p = p, + Ap = Po-

19.6.1 EQUATION OF MOTION

Define the sound pressure change in space by

_~dp -dp  -~0p
Vp=i—"+ ay+kaz (19.19)

Forces on a box of particles (accelerating the box in the positive direction) are
Just

+(d (9
F= _Ha—x Ax\AyAu_{—’y’ AyJAxAz+ k(—a—p AZJA Ay} (15.20)
so that
F__F
v maym P (19.21)
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Now note that

F_1(yDa)
v v( Dt)

= time rate of change of the momentum of the cell (acceleration)

Thus,
F MDg ,Dq
—=-Vp=——=p'— 19.22
\% Py P ( )
or approximately
Az
-, X
Vp=p, =t (19.23)

This is the first coupled partial differential equation.

19.6.2 GAS LAW

For acoustic frequencies (€20 KHz) the gas is adiabatic (thermal velocity at
10 KHz is ~1.5 m/s) and PV" = constant, where y = C/C,, where C is specific
heat, C, is constant pressure, and C, is constant volume. In differential form

dpP dv .
—=—y— and withP = P_+p,
P YV . TP

V=V0+‘r, P >>p, V >>1

—~
—
\O
)
A
o

we obtain

The time derivative of this equation gives what will become the second coupled
partial differential equation

1 dp -yor1
A (19.25)

19.6.3 CONTINUITY EQUATION
To transform 19.25 into the desired form requires the continuity equation
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[}

<

<
)

for a Lagrangian cell.
Setting (19.25) to equal (19.26) gives

ap = -
A _wv.
o RV (19.26)

the second desired coupled differential equation.
Letting E be replaced by v, i.e., v, in place of E,, etc., and letting p, a scalar,

occupy the vertex of an “acoustic” Yee cell completes the development of an
acoustic FDTD equivalent.
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OTHER COORDINATE SYSTEMS AND REDUCED
DIMENSIONS
INTRODUCTION

While a fully 3-D Cartesian coordinate FDTD computer code is generally
the most useful, there are situations in which a 2-D or even 1-D FDTD code
may also be useful. In 2-D problems there is no variation in one of the
coordinate directions, usually taken as the z direction in Cartesian coordinates
or the ¢ direction in cylindrical or spherical coordinates. If there is no z
variation, the scattering structure is infinitely long in the z direction with an
arbitrary cross section in the orthogonal directions. This geometry may be
modeled in 2-D in either Cartesian or cylindrical coordinates. The Cartesian
system is preferred because the spatial differences are uniform over the FDTD
space, while in the cylindrical system one side of the cell has ¢ 0= rAd which
varies with r. While no actual object is infinitely long, these 2-D results may
be quite useful in approximating scatiering by a finite length object. For
example, scattering by a rectangular plate illuminated by a plane wave normal
to an edge can be estimated by considering scattering by an infinitely long strip
of the same width. For a discussion of this, with formulas for converting 2-D
scattering results to 3-D objects, see Reference 1.

The other quite useful 2-D geometry is one that has no variation in the (]
variable in cylindrical coordinates. This 2-D geometry can be used to model a
wide range of actual geometries with rotational symmetry about the z axis. It
is most useful in calculating radiation patterns, impedance, and other param-
cters for antenna radiation probiems with rotational symmetry.? Such antennas
include coaxially fed monopoles, conical and biconical antennas, lens anten-
nas, and even reflector antennas. These can be directly analyzed with a 2-D
cylindrical coordinate FDTD code since not only the geometry but also the
radiated fields will have no ¢ dependence.

While body of revolution (BOR) scattering problems have ¢-independent
scattering geometries, the scattered fields are not ¢-independent, and in gen-
eral, 3-D cylindrical or spherical coordinate FDTD codes are necessary. How-
ever, in special cases coordinate transformations may be used to reduce the
dimensionality to 2-D in BOR scattering problems. For example, for a BOR
scatterer in cylindrical coordinates, with plane wave incidence along the z axis,
by symmetry the fields must vary as cos(¢) or sin(¢). With this known ¢
variation the Maxweil curi equations can be reduced to 2-D and from this an
FDTD code can be developed.’ However, this approach is not easily general-
ized to other incidence angles as the ¢ variation of the fields will be more
complicated.

An important point to remember is that Cartesian 2-D geometries and ¢-
independent cylindrical 2-D geometries are fundamentally different in an
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important way. In a 2-D Cartesian geometry the scattered fields are cylindrical
waves and vary as 1/4/r while in a cylindrical coordinate calculation with ¢
independence the radiated (scattered) fields are sphericai waves and vary as 1/
r, where r is the radial distance from the scatterer or radiator. Thus, in a 2-D
BOR antenna calculation a 3-D object with no ¢ variation is located in a 3-D
space, while in a 2-D Cartesian calculation a 2-D object is located in a 2-D
space. This distinction is important. For example, consider transforming the
near zone FDTD fields to the far zone. The far zone fields for a 2-D cylindrical
coordinate system BOR radiator can be determined by applying a 3-D trans-
formation with no ¢ variation (Section 7.2). On the other hand, the far zone
fields for a 2-D Cartesian calculation require a different far zone transforma-
tion derived specifically for 2-D with 1/+/r field variation (Section 7.3). (A
cylindrical coordinate calculation with no z variation is 2-D in the same sense
as a Cartesian coordinate calculation with no z variation.)

While the above considerations should be kept in mind, we realize that the
FDTD technigue can be applied to any orthogonal coordinate system. It is a
straightforward exercise to generate linearized FDTD equations for cylindrical
and spherical geometries as well as for other orthogonal coordinate systems,
ellipsoidal, for example. Qur discussion is limited to cylindrical and spherical
geometries. One can also consider nonorthogonal coordinate systems with
corresponding increases in complexity.

In this appendix we are primarily interested in 2-D FDTD calculations in
Cartesian and cylindrical coordinates, because these are the most useful in
practical problems. We briefly consider the simplest case, which is 1-D and is
exemplified by the telegraphy equations. Even 1-D calculations can be useful
in testing new FDTD methods, for example, extensions of FDTD capabilities
to special materials.

Even though the applications of

coordinates are somewhat limited, we will first derive the FDTD equations
for these cases for generality, then specialize them to reduced dimensions.
We also will present reduced dimension FDTD equations for Cartesian
coordinates in this appendix.

3-D FDTD in spherical and cylindrical

3-D CYLINDRICAL AND SPHERICAL

We are in general concerned with three orthogonal coordinate systems:
rectangular, cylindrical, and spherical, and treat them first in 3-D. 3-D FDTD
in rectangular coordinates was presented in Chapter 2. The finite difference
form of the Maxwell equations for the other two coordinate systems is pre-
sented here.

We start in either case with the two curl equations for the scattered fields

scat me

Vx H* = sa—%r ~+ OB + (g - e(,)a% +0E" (A
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Figure A-1. Cylindrical coordinates.

aHscal
ot

~(n —uo)a};—‘ (A2)

V x Esea = -

The key is to express the \/x operation for the particular coordinate system.
Thus, we have

f10a, oA L(0A  0A 19 1 9A
VxA=fl-—2__2 r 98,1 10 1A,
8 r[r 2L} 0z ]+¢[ oz or ]+Z[r ar(er) r 3¢J (A3)

for cylindrical coordinates (Figure A-1), where ?,q; and Z are the unit vectors in
the r, ¢, z directions and

i 9A 31, 1|
Loy _[erJJ (A4



372 The Finite Difference Time Domain Method for Electromagnetics Appendix A 373
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In linearized form, where the derivatives are approximated as differences
denoted by A, these equations can be recast as

oz or H at ‘(H‘Ho) ot

AEW‘" ) AEinc 1 AHscm AHSCN
Ol ) e—L—+0E*" = —oE™ —(g-g | ——4-—2 ___ ¢
s ac Sl e v
Ra(1),
o + Ol = -0 —le—¢ 1t
i 0 e T o) ' , VRER
Figure A-2. Spherical coordinates. At Mt Az Ar
for spherical coolrdim'nes (Figure A-2), where f,¢ and § are the unit vectors in ‘ AET AE™ A(rHsca!) AR
the r, ¢, and 8 directions. £—2— + gE** = _gEI"® _ (g —g ) P S u (A.6¢)
For cylindrical coordinates the Maxwell curl equations in component form i At : z o7 At r Ar Ad '
are
AH & AH™® 1 AES AE;CM
1 oH JH JES JEinC ® At = _(u - uo) At - ; Ad + Az (A.6d)
z 9 r scat r scat
-— =g +OE** +(e~¢ +oEX (A5 |
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s AH™ AESt  pApseat
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ror r d¢ ot At At r Ar r Ap
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+ OB + (x-: _ Eo) ai + GEiZ"C (A.5¢) i In explicitly finite differenced form they become
s scat e i e[EF H(13,K) - E§ (1,0, K)] + GAED " (1,1,K)
TOBT eT M (o) 2 (A5d) ‘
r 3 oz oz ¢ Y o ‘ = GAE}! " A(11 K) - (e — g5 JAE: " 4(1,1,K)
A‘[Hﬁ'"(I,J,K)—H';'"(I,J,K) (A.72)
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[ E5 A1, 1.K) - By (LK)
=—GAEL ™ A(LIK) - (e-g,)ME; ™ A(LIK)
H:°(L,),K) - H"(L,LK
mH »"(L,K)-H: "(L1K)

Az (A.7b)
[Hy (LK) -Hy " (1-1,0,K)
Ar
E[Ei'“*%(I.J,K)—Ei‘"'%(I,J,K)]
+OAES " A(1,1,K) = —GAtE; "A(L T, K) - (£ — £g JAEL " A(L1,K)
At [(I+1/2)ArH;'"(l,J,K)—(I-l/2)ArH;'"(I—1.J,K)
Ar
(14 (A.7c)
[ oo HEP(LIK) ~HE (LT 1K)
Ad

[Hy AL K) = Hy (LK) = == o) AHL " (11.K)
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TAr
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{Ei_myz(m']’K)_E;, n+‘/é(I,J,K)

At r(i+1)ArE;; w4
[ 5

(1+12)ar)

BT LI 1K) - B L0, K)
80

(A7)

where the I.J,K notation has been explained previously and we assume
that the equivalent to the Cartesian Yee cell is used in this coordinate
system.

These equations can in turn be solved for the latest value in time of the field
components:

Es n+/IJK ( )s,n-}/z’ LILK
K )= e+cAt) " ( )

( oAt ]E: n+/(] 1LK)- [(5_50)

€+ OAt € +0At
I Hs'"IJK—HS'"IJ,K—l
T R L USRS RN
\L-PGL\[} +l/1)ArL J
r -

l *(1,J,K)-Hy "IJK—IJ

)Ex n+k IJ K)

(A.8a)
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u Az
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Ar
HE (L3, K) = HE (17, K) - '“")AzH; "(1,1,K)
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At (I+ DAE, (1+1.J,K) - IAE, (1,7, K)
n(1+1/2)Ar Ar
(A.80)

~ Ei‘ "‘\/’/Z(I,J +1,K)— Ei‘ m\%(LJ,K)
Ap

A loop can be formed around each component with four neighboring
(H,E) components except for the E components atr = 0 or E (0,0.K).
For this component at I = 0, (A.8¢) for E is singular. Instead of using
(A.8¢) for these E field components, a loop of H with all the H_ field
components immediately about E, must be evaluated (Figure A-3). In
(A.8d) I =0 is not allowed as there will be no radial component of H_
atr =0,

A complication that arises in applying cylindrical coordinate FDTD in
3-D is that the cell size in the ¢ dimension decreases with decreasing r.
This means that very small time steps may be necessary in order to satisfy
the Courant stability criterion, unless the region in the vicinity of r = 0 is
filled with perfect conductor or otherwise excluded. This difficulty is
removed for 2-D ¢-independent calculations considered later in this ap-
pendix.

For spherical coordinates the same exercise starting with the curl equa-
tions! leads to
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Figure A-3, Field components for evaluating innermost E field component at r = 0.
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H; "(1,1,K) = Hy "(1,1,K)

¥(M—“U)Aﬁ"{i7n(i . r,)_ﬂ_l_
N ¢ R R(D)
y Ro(1+1)E§ " (1+1,1,K) - Ry(DE§ "(L,1,K)
AR,(1) (A9
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The field components are on a modified Yee cell (Figure A-2) with unit vectors
7.0 and ¢ and the corresponding indices 1.J,K. Spatial locations are given* in

terms of positions

R, (D R(1)=0and AR () =R (I+1)-Ry(D),
typically AR (I) = AR = constant so that
R(D) = (1-DR)

8, (8,(1) = 0 and A6 (J) = 8, (J+1) - 6,(J),
typically A8 (J) = A8 = constant = 2n/integer
so that OO(J) = (J-1)A6)

O(K) (@) =0 and A0, (K) = o,(K+1) - §,(K),
typically A¢ (K) = A¢ = constant = 2nt/integer
so that ¢,(K) = (K-1)A9)

Points lying midway between these locations are given by R(I), 8(J), ¢(K).

s down at the origin (r = 0) and some scheme must be

employed to span this volume. Additional problems occur where indices

overlap as for

Thig process break.

E}L).)= Ef(I‘Jvaom - 21!)

This problem can be readily overcome,* but not so the problem with the
singularity at r = 0 except by some expedient such as assuming a finite radius
perfect conductor at the center of the problem space. While effective, this does
limit the utility of the spherical coordinate treatment. The alternative we prefer
is to define cells that are not quasi-rectangular at the center, rather ones that are
pyramidal so that assuming an E field component at the center of undefined
orientation it makes no contribution to the updated neighboring fields in that
it lies on a zero length “leg™ (Figure A-4).

As with cylindrical coordinates, another limitation in applying spherical
coordinates in 3-D is caused by the changing cell size as r is increased. In the
¢ dimension the arc length of the cell side decreases with decreasing r and as
the poles (8 = 0, 180) are approached. Because, as discussed in Chapter 3, the
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Figure A-4. Vanishing E field contribution at the spherical problem space center.

Couram stability criterion requires that the time step be reduced as the cell size
is reduced, the very small cells (A¢ is tending to zero) at the poles of the
problem space force the use of very small time steps. These cells cannot be
made larger since they are geometrically related to the cells at the largest value
;{]r a(ti‘? = 90° a.nd‘these largest cells must be much smaller than a wavt;length.
o ,:zidL :;t;:llly is discussed in Reference 4 and some methods to alleviate it are
ﬂ‘We have now formulated FDTD in three different orthogonal 3-D coordi-
naie sysiems:.rectangular (in Chapter 2), cylindrical, and spherical. r
3-D formulation in the first two coordinate systems can br:: redu:eg?g Sggz
2-D formulations for a number of problems. The 2-D rectangular coordinate
s%'sterrl foqnulation applies to any problem with translational symmetry in one
dll‘f.:ctl(?n, ie., the problem remains unchanged in one direction. The 2-D
cylindrical coordinate system formulation is suitable to BOR radie;tjon prob-
lems where th.e problem geometry and radiated fields are invariant with respect
to ¢. By starting with a 3-D coordinate system formulation and orienting the
Coordinate system so that the problem is invariant in one of the dimensions it
Is easy to obtain the 2-D formulation that can solve this problem with its
gvanance or symmetry. This 2-D formulation is far more efficient than a 3-
treatment for this class of problem. In the next sections of this appendix 2-

appe

D FDTD equations for Cartesian and cylindrical coordinate systems are given.
2-D CARTESIAN

" Cor}s1der _the prob.lem of sgatteﬁng by a cylinder which is infinitely long in
the z dlmgnSIop, as discussed in Section 7.3. With no variation in the geometry
In the z direction dA/0z = 0 for all A where A is any field component. The
Maxwell equations for the six rectangular components (2.33 a-f) becom.e
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Either TE, or TM, solutions are possible with E, = 0 or H, = 0, respectively.
For TM, the governing equations are

HSLJI l aEiLa(
:‘;’“\ 3y ) (A.11a)
ot 0 g
aH;Cal 1 aEi”'
| ox (A-11b)
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Esun 1 (aH\Lax Hscal W
at :—E—L y | (Adlc)
and only E,, H,, and H, are required for a solution.
For TE, fields the governing equations are
aESCBI 1 aHSLdl
P & [ P J (A.12a)
aE:Cd‘ 1 (aHscm A
Ey - (A.12b)
a gol ox
aESLdl { ~ E,ca[ aEaral AY
= L J (A.12¢)

and only H,, E,, and E, are required for a solution.

Thus, 2-D Cartesian coordinate problems can be reduced to two separate
calculations with only three components each. More importantly the invariance
in z reduces either problem to 2-D , x and y, in which either E,, H,, and H, are
included for TM, solutions or H,, E,, and E, for TE, solutions.

In order to obtain the scattered fieid formuiation in 2-D Cartesian coordi-
nates the 3-D equations given in Chapter 2 are easily modified by eliminating
any terms involving differencing in the z dimension, and separating the three
components required for either TE, or TM, calculations.

The Courant stability criterion for 2-D Cartesian FDTD is given in Section
3.3. The Mur absorbing outer boundary conditions for 2-D Cartesian FDTD
can be easily adapted from the 3-D conditions given in Chapter 3 by elimi-
nating terms involving Az differencing, and are included in the original paper
by Mur. A far zone transformation for 2-D Cartesian FDTD is given in
Section 7.3 along with example results. Methods for approximating scatter-
ing by finite 3-D objects using 2-D scattering results are discussed in Refer-
ence .

In a Body of Revolution (BOR) radiation problem there is no variation in
¢ and dA/9¢ = O for all field components A. In cylindrical coordinates, then,
the FDTD equations (A.5a through f) become
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Here, 100, it is possible to obtain two sets of three equations, each of which
uniquely describe the behavior of three components each. These sets of equa-

tions are

_aHSCal EaEscal aE inc
: 0 - fa' +oE*™ +(e—so)——~al’—+oE‘r"C (A.14a)
Z
13 tscat inc ,
—a—(rH;“") = -—az +OEX™ + (s - so) al’ +oE]°  (A.14b)
ror t
scat st _y9H gH e
oE} _ 9E; _ Moy —(M*M ) ¢ (A.14c)
0z or ot oF ot

where only H, and E, and E, are required and the remaining three equations
whare anlv B H  and H_ are required,
where only E,, H,, and H, are require . .
The first set of three equations is most useful for modeling antenna-like
problems where the BOR is small compared to the shortest wavelength of
interest and the incident field can be treated as arriving simultaneously at all
parts of the antenna surface (Figure A-5).
As discussed previously one important area of application is antenna radia-

tion and impedance calculations for BOR antennas with cylindrical symmetry. I l

Appendix A 385

In Reference 2 results were given for coaxially fed monopole and conical
monopole antennas. For these geometries only the H,, E,, and E, field compo-
nents are required and (A.14) serves as the basis for the FDTD equations. For
antenna calculations it is preferable to directly compute total fields (see discus-
sion in Section 3.6), and with our usual notation of t = n At,r=TAr,and z =
J Az, we readily obtain the total field FDTD equations as

R (L) =1y (1,3)

At . ,
+QX[EZ(IW»1/2,])—EZ(I+1/2,J)] (A.152)

0

At
——JE"(I,J +1 -E" ~1/2
“OAZ[ M(LI+1/2) - B2 (LI~ 1/2)]

1
EM(LI-12)=EN(1I-172)
At
EOAz

[H;*%(I,J) ~HIH(LT- 1)]
(A.15b)

At
E"(1 —E" -
HOAZ[ LI +172) - ENLI-172)]

ENM(I+1/2,)=E"(1+1/2,])

P — [(l+1)H"*”2(1+1J)—IH““”(IJ)] AlS
gar (1+1/2)11 o V7D o b (A.150)

At
- = [E"1] —E"(LJ -
ey F(LI+1/2)-EN(1,) 1/2)]

with the field components located in a Yee grid as shown in Figure A-6. In this
set of equations we explicitly locate the field components in the grid with the

LJ notation by adding !/, as necessary. Bv locating the field commananic i 1bic
Y g/ ary. By 1ocating in€ 1icia components in this

wziy there is no E, component at r = 0, so that for all values of I, including I
=0, (A.15c) can be evaluated, In (A.15a) and (A.15b) we constrain I > 1 so that
the E, components necessary to evaluate H, in (A.15a) and the H, components
needed for E, are available. This implies that H,=E, = 0 along the z axis at
r = 0, a reasonable assumption. We thus exclude from our calculations a
cylindrical region along the z axis of radius Ar/2, and locate a z component of
electric field on the surface of this cylindrical region.
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Figure A-5. An antenna-like problem where the BOR is small compared to the shortest wave-
length of interest and the incident field can be treated as arriving simultaneously at all parts of the
antenna surface.

The Courant stability condition for this calculation is the same as for a 2-
D Cartesian grid calculation,

cAtS/v/(iY+( ’ (A.16)

1)
Ar) \Az)

assuming that the maximum velocity in the FDTD space is the speed of light
¢, and with Ar and Az constrained as usual to be much smaller than a wave-
length. The 2-D Mur absorbing boundary can be applied directly to this FDTD
space, with E, and E, components located tangentially on the appropriate free
space surfaces.

If we wish to transform our results to the far zone to compute antenna
patterns, for example, we must remember that while this is a 2-D calcula-
tion the actual geometry and fields are in a 3-D space with no ¢ variation.
Therefore, we must apply a 3-D far zone transformation, The required
transformation can be adapted from the Cartesian coordinate 3-D transfor-
mation given in Section 7.2. This will involve converting this transforma-
tion to cylindrical coordinates and integrating the ¢ dependence from the

equations.

1-D CARTESIAN AND CYLINDRICAL

Just as 2-D FDTD formulations arise from eliminating variations in 1-D ,
1-D formulations arise from eliminating variations in 2-D. We can obtain 1-D
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Figure A-6. Total field FDTD with the field components located in a Yee grid.

coordinate system FDTD formulations from the 2-D formulations quite simply
by eliminating variations in one additional coordinate. The resulting 1-D
formulations will, of course, depend on only a single spatial coordinate, but
that coordinate will differ between formulations derived from a rectangular
coordinate system vs. a cylindrical coordinate system. The field components
will also differ.

In Cartesian coordinates with no variations in two coordinate directions, the
problem that can be described is transverse electromagnetic (TEM) plane wave
propagation through a planar stratified medium. While this geometry can be
handled quite easily by other methods, it still can be useful for testing new
FDTD formulations. For example, in this book 1-D tests of FDTD formulations
for frequency-dependent materials are presented in Chapter 8. Also, 1-D
demonstrations of FDTD for educational purposes have been used with some
success.’

The TEM solutions can be separated into two parts, depending on the
polarization of the fields. If we assume propagation (variation) in the z dimen-

sion, ihen the iwo sets of TEM solutions in free space are

scal
M _ [

d p| o2 (A.17a)
L N
a e, oz (A.17b)
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for E, polarization and

aEicar B i(aH;Cﬂ‘ \

at 7£0L dz J (A.182)

aHiDM _1 aEscal
y _~t x
dt Ho\ 9z

(A.18b)

for E, polarization. Each pair of equations tracks two field components in the
x and y direction that vary only in the z direction. Either formulation can be
employed for a linearly polarized 1-D problem, both will be needed for other
polarizations, circular or elliptical, for examnple. These equations are the same
as the telegraphy equations where V replaces E and I replaces H and L and C
appear instead of €, and p,.

Now let us consider a 1-D problem in cylindrical coordinates. The 2-D
cylindrical representation was obtained by assuming an azimuthal symmetry or
invariance in the ¢ direction. The additional symmetry leading to a 1-D
formulation chosen here is a translational invariance in the z direction, i.e., A/
dz=0 for all A where A may be any field component. This will allow modeling
the propagation of cylindrical waves through a cylindrically stratified medium.

The 1-D cylindrical FDTD equations arising from the three 2-D equations
in H,, E,, and E, are

lai(r}};”‘} = __sal;i"’ +GE* + (z - 20} a[;llnc + GE‘Z"C (A.19a)
ror t t
QRS —].laH aHinc
z ) ]
— ___ar = ___al - (p — HO) % (A.19b)

Note that there are only two components, H, and E,, and that they vary only
in r. Because of the %%(quis““) term the fields have a 1//; variation. This
geometry is actually closely related to the 2-D rectangular geometry, because
both have no z variation and the fields in both have the same 1/+r variation.
The field components are also related to the TM, fields in the Cartesian 2-D
component equivalent to the combination of the H, and H, components in the
Cartesian geometry. In this geometry a cylindrical coordinate absorbing boundary
condition would be required, taking into account the 1/ Jr variation in the
fields. While it is unlikely that a far zone transformation would be desired for
this geometry, one could be adapted from the 2-D Cartesian coordinate far zone

transformation of Section 7.3.
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Appendix B
FORTRAN LISTINGS
DESCRIPTION

This Appendix contains FORTRAN listings for an FDTD computer code.
The code is 3-D. It is capable of including perfect conductors and lossy
dielectric materials. The IDXXX arrays described in Chapters 2 and 3 are used
to describe the geometry,

The example geometry is a sphere composed of lossy dielectric with relative
permittivity 4 and conductivity 0.005 S/m. A Gaussian pulse plane wave is
incident on the sphere. The B value for the Gaussian pulse (see Chapter 3) is
set at 64 to compensate for the shorter wavelengt
The sphere has a radius of eight cells and is centered ina34 x 34 x 34 cell
problem space.

There are four separate listings. The first is the main program, FDTDA.FOR,
with contains the actual FDTD calculation code. This program requires the
include file COMMONA.FOR. This file contains the arrays and COMMON
files that are included in the MAIN section and the subroutines in FDTDA.FOR.
The file DIAGS3D.DAT is a diagnostics file that contains the pertinent calcu-
lation parameters. Finally, the file NZOUT3D.DAT contains the time domain
scattered electric and magnetic fields sampled at two locations (each) in the
FDTD space for 256 time steps.

The listings are liberally commented. The basic organization of the program
is modular, with the MAIN section of FDTDA FOR calling subroutines o
perform all the actual calculations.

o dialantoin orla
e the dielectric Spnere.

FDTDA.FOR
C
PROGRAM FDTDA
C
C  PENN STATE UNIVERSITY FINITE DIFFERENCE TIME DO-
MAIN ELECTROMAGNETIC ANALYSIS COMPUTER CODE
C  —VERSION A
C
C  THIS CODE IS A SCATTERED FIELD FORMULATION
C
C  VERSION A: August 25, 1992
C
C  TO REPORT ANY CODE ERRORS OR FOR ADDITIONAL
C  INFORMATION CONTACT:
C
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DR. RAYMOND J. LUEBBERS

ELECTRICAL ENGINEERING DEPARTMENT
THE PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
INTERNET: LU4@PSUVM.PSU.EDU;  BITNET:

LU4@PSUVM.BITNET

THIS VERSION INCLUDES:

1.) 1ST ORDER E FIELD OUTER RADIATION BOUNDARY
CONDITION  (ORBC)

2.) 2ND ORDER E FIELD OUTER RADIATION BOUNDARY
CONDITION C (ORBC)

3.) CAPABILITY TO SPECIFY DIRECTION AND POLARIZA-

TION OF INCIDENT PLANE WAVE

4. ERROR CHECKING FOR NTYPE AND IOBS, JOBS AND
KOBS FOR NEAR ZONE FIELD SAMPLING IN SUBROUTINE
DATSAV

5.) ERROR CHECKING OF IDONE, IDTWO AND IDTHRE

VALUES

COMMONA.FOR:

NX, NY, NZ DETERMINE NUMBER OF CELLS IN PROBLEM
SPACE NTEST IS NUMBER OF QUANTITIES SAMPLED AND
WRITTEN VS TIME TIME VARIABLE IS NSTOP.

E QUANTITIES TO BE SAMPLED (NEAR ZONE COMPUTA-

1 U AL O S5 SAMPLED L LUND

TIONS) ARE TO BE SET IN SUBROUTINE DATSAV

- =3

DEFINE OUTPUT FILES

DIAGS3D.DAT => DIAGNOSTICS OF SOME SETUP
PARAMETERS

NZOUT3D.DAT => NEAR-ZONE FIELDS OR CURRENTS AS
DEFINED IN DATSAV

WARNING: PLEASE READ THE FOLLOWING COMMENTS
REGARDING THE INCLUDE STATEMENT!

INCLUDE COMMON FILE (STATEMENT APPEARS IN EVERY
FUNCTION SUBPROGRAM AND SUBROUTINE). THIS IN
CLUDE STATEMENT IS APPROPRIATE FOR MOST MACHINES
(LE. VAX, SILICON GRAPHICS, 386/486 PC’S WITH LAHEY
COMPILER). THE WATFOR (PC WATFOR) VERSION OF THE
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C
C
C
C
C
C
C
C
C
C
C
C
C
C

9]
2
Z
arx
c
<
m

[eReNoNeNoNaNo e

Cits OPEN (UNIT=17,FILE="/DIAGS3D DATA El

CHit OPEN (UNIT=10,FILE="/NZOUT3D DATA E|

[oNoNoNe)

[eNoNeNoNoNs)

INCLUDE STATEMENT IS DIFFERENT AND IS INCLUDED
IMMEDIATELY AFTER THE NORMAL INCLUDE STATEMENT.
IF USING THE WATFOR COMPILER, DELETE THE NORMAL
INCLUDE STATEMENTS OR COMMENT THEM OUT. THE
INCLUDE STATEMENT FOR IBM VS FORTRAN IS DIFFERENT
ALSO. THE INCLUDE STATEMENT FOR AN IBM VS FORTRAN
COMPILER MUST BE CHANGED TO: INCLUDE ‘COMMONA
FORTRAN A1’ THE INCLUDE STATEMENT MUST BE
CHANGED IN EVERY SUBROUTINE AND FUNCTION SUBPRO
GRAM AND IS MOST EFFICIENTLY DONE USING A GLOBAL
SEARCH AND REPLACE WITH AN EDITOR. IF YOU ARE
USING THE WATFOR COMPILER, MAKE SURE THE COMMON
FILE HAS EXTENSION ‘. FOR".

™,

NCLUDE *COMMONA.FOR’

COMMONA

@)
!

OPEN DATA FILES. THE OPEN STATEMENTS SHOWN BE
LOW ARE APPROPRIATE FOR MOST MACHINES (LE. VAX
SILICON GRAPHICS, 386/486 PC’S). HOWEVER, THE IBM ‘
VERSION OF THE OPEN STATEMENTS ARE DENOTED BY
LINES WITH C###. UNCOMMENTAPPROPRIATE LINES FOR
IBM VERSION AND COMMENT OUT OTHER LINES.

OPEN(UNIT=17FILE="DIAGS3D.DAT’ STATUS="UNKNOWN" )
STATUS="UNKNOWN") '
OPEN(UNIT=10,FILE="NZOUT3D.DAT’ ST A TUS="UN%

LOVIOLDATL.STATUS="UNKNOWN’)

[}

STATUS="UNKNOWN’)

ZERO PARAMETERS, GENERATE PROBLEM SPACE, INTER
ACTION OBJECT, AND EXCITATION

CALL ZERO
CALL BUILD
CALL SETUP

5**********************************************’k***********

MAIN LOOP FOR FIELD COMPUTATIONS AND DATA SAVING

***********************************************************

T=0.0
DO 100 N=1,NSTOP
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WRITE (*,*) N

ADVANCE SCATTERED ELECTRIC FIELD

CALL EXSFLD
CALL EYSFLD
CALL EZSFLD

APPLY RADIATION BC (SECOND ORDER)

CALL RADEYX
CALL RADEZX
CALL RADEZY
CALL RADEXY
CALL RADEXZ
CALL RADEYZ

ADVANCE TIME BY 1/2 TIME STEP

T=T+DT/2.

ADVANCE SCATTERED MAGNETIC FIELD

CALL HXSFLD
CALL HYSFLD
CALL HZSFLD

ADVANCE TIME ANOTHER 1/2 STEP

T=T+DT/2.

SAMPLE FIELDS IN SPACE AND WRITE TO DISK

[eNeNe]

CALL DATSAV
c
100 CONTINUE
=NSTOP*DT
WRITE (17,200) T,NSTOP
200 FORMAT(T2," EXIT TIME= * E1

STEP’, 16,))

C
C  CLOSE DATA FILES
C

CLOSE (UNIT=10)
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C

C

CLOSE (UNIT=17)
STOP

BENLD
**************************************************%****1\

SUBROUTINE BUILD

INCLUDE ‘COMMONA.FOR’

C$INCLUDE COMMONA

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

THIS SUBROUTINE IS USED TO DEFINE THE SCATTERING
OBJECT WITHIN THE FDTD SOLUTION SPACE. USER MUST
SPECIFY IDONE, IDTWO AND IDTHRE AT DIFFERENT CELL
LOCATIONS TO DEFINE THE SCATTERING OBJECT. SEE THE
YEE PAPER (IEEE TRANS. ON AP, MAY 1966) FOR A DE-
SCRIPTION OF THE FDTD ALGORITHM AND THE LOCATION
OF FIELD COMPONENTS,

GEOMETRY DEFINITION

IDONE, IDTWO, AND IDTHRE ARE USED TO SPECIFY MATE
RIAL IN CELL IJ K. IDONE DETERMINES MATERIAL FOR X
COMPONENTS OF E IDTWO FOR Y COMPONENTS, IDTHRE
FOR Z COMPONENTS THUS ANISOTROPIC MATERIALS WITH
DIAGONAL TENSORS CAN BE MODELED

SET IDONE,IDTWO, AND/OR IDTHRE FOR EACH LJK CELL =
0 FOR FREE SPACE
1 FOR PEC
2-9  FOR LOSSY DIELECTRICS

SUBROUTINE DCUBE BUILDS A CUBE OF DIELECTRIC
MATERIAL BY SETTING IDONE, IDTWO, IDTHRE TO THE
SAME MATERIAL TYPE. THE MATERIAL TYPE IS SPECIFIED
BY MTYPE. SPECIFY THE STARTING CELL (LOWER LEFT
CORNER (LE. MINIMUM 1,],K VALUES) AND SPECIFY THE
CELL WIDTH IN EACH DIRECTION (USE THE NUMBER OF
CELLS IN EACH DIRECTION). USE NZWIDE=0 FOR A INFI-
NITELY THIN PLATE IN THE XY PLANE. FOR PEC PLATE
USE MTYPE=!. ISTART, JSTART, KSTART ARE USED TO
DEFINE THE STARTING CELL AND NXWIDE, NYWIDE AND
NZWIDE EACH SPECIFY THE OBJECT WIDTH IN CELLS IN
THE X, Y AND Z DIRECTIONS. INDIVIDUAL IDONE, TWO OR
THRE COMPONENTS CAN BE SET MANUALLY FOR WIRES,
ETC. DCUBE DOES NOT WORK FOR WIRES (L.E. NXWIDE=0
AND NYWIDE=0 FOR EXAMPLE)!
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C
C Build sphere with center at (SC,SC,SC) and radius RA.
MTYPE=2
RA=82
SC=17.5
DO 100 I=1,NX
DO 200 J=1,NY
DO 300 K=1,NZ
R=SQRT((I-SC)**2+(J-SC)**2+(K-SC)**2)
IF (R.LT.RA) CALL DCUBE (L1K,1,1,, MTYPE)
300 CONTINUE
200 CONTINUE

100 CONTINUE
C
C THE FOLLOWING SECTION OF CODE IS USED TO CHECK IF
C  THE USER HAS SPECIFIED THE PROPER MATERIAL TYPES
C  TO THE PROPER IDXXX ARRAYS.
C
C FOR MATERIAL TYPE =?
C 0 FOR FREE SPACE USE IDONE-IDTHRE ARRAYS
C 1 FOR PEC USE IDONE-IDTHRE ARRAYS
C 2.9 FOR LOSSY DIELECTRICS USE IDONE-IDTHRE ARRAYS
C
DO 1000 K=1,NZ
DO 900 J=I,NY
DO 800 I=1,NX

IF(IDONE(1,J.K).GE.10).0R.(IDTWO(LJ K).GE. 10).0R.
$(UDTHRE(L,L,K).GE.10)) THEN
WRITE (17,*)’ERROR OCCURED. ILLEGAL VALUE FOR’
WRITE (17,%)’DIELECTRIC TYPE (IDONE-IDTHRE) *
WRITE (17,%)’AT LOCATION:"I,","J,"," K
WRITE (17,%)EXECUTION HALTED.’
STOP
ENDIF
800  CONTINUE
900 CONTINUE
1000 CONTINUE
RETURN
END

..,J.¢..,...********4.******************:k***********************

C Fokdokk

SUBROUTINE DCUBE
(ISTART.J START,KSTART,NXWIDE,NYWIDE,NZWIDE,MTYPE)

C
INCLUDE ‘COMMONA.FOR’

C$INCLUDE COMMONA

7Y
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THIS SUBROUTINE SETS ALL TWELVE IDXXX COMPONENTS
FOR ONE CUBE TO THE SAME MATERIAL TYPE SPECIFIED
BY MTYPE. IF NXWIDE, NYWIDE, OR NZWIDE=0, THEN
ONLY 4 IDXXX ARRAY COMPONENTS WILL BE SET CORRE-
SPONDING TO AN INFINITELY THIN PLATE. THE SUB-
ROUTINE IS MOST USEFUL CONSTRUCTING OBJECTS

WITH MANY CELLS OF THE SAME MATERIAL (LE. CUBES,
PEC PLATES, ETC.). THIS SUBROUTINE DOES NOT AUTO-
MATICALLY DO WIRES!

IMAX=ISTART+NXWIDE-1
JMAX=JSTART+NYWIDE-1
KMAX=KSTART+NZWIDE- 1

IF (NXWIDE.EQ.0) THEN
DO 20 K=KSTART KMAX
DO 10 J=JSTART,JMAX
IDTWO(ISTART,J,K)=MTYPE
IDTWO(ISTART,J,K+1)=MTYPE
IDTHRE(ISTART J,K)=MTYPE
IDTHRE(ISTART,J+1,K)=MTYPE
CONTINUE
CONTINUE
ELSEIF (NYWIDE.EQ.0) THEN
DO 40 K=KSTART,KMAX
DO 30 I=ISTART,IMAX
IDONE(I,JSTART K)=MTYPE
IDONE(IJSTART,K+1)=MTYPE
IDTHRE(I,JSTART K)=MTYPE
IDTHRE(I+1,JSTART,K)=MTYPE
CONTINUE
CONTINUE
ELSEIF (NZWIDE.EQ.0) THEN
DO 60 J=ISTART,JMAX
DO 50 I=ISTART,IMAX
IDONE(LJ, KSTART)=MTYPE
IDONE(LJ+1,KSTART)=MTYPE
IDTWO(LJ,KSTART)=MTYPE
IDTWO(I+1,JKSTART)=MTYPE
CONTINUE
CONTINUE
ELSE
DO 90 K=KSTART,KMAX
DO 80 J=ISTART,JMAX
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70
80
90

C

C
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DO 70 [=ISTART,IMAX
IDONE(L,J,K)=MTYPE
IDONE(I,J,K+1)=MTYPE
IDONE(IJ+1.K+1)=MTYPE
IDONE(IJ+1,K)=MTYPE
IDTWO(1,J,K)=MTYPE
IDTWO(I+1,] K)=MTYPE
IDTWO(I+1,J,K+1)=MTYPE
IDTWO(,J.K+1)=MTYPE
IDTHRE(LJ,K)=MTYPE
IDTHRE(I+1,J, K)=xMTYPE
IDTHRE(I+1,J+1,K)=MTYPE
IDTHRE(1,J+1, K)=MTYPE
CONTINUE
CONTINUE
CONTINUE
ENDIF
RETURN
END

sfesfesfe sk sk sfe sk ofe ke ook sk ok ook s s ok e ke ok s sk ok ok e ok sk sk ok e sk e sk ok e ok sk ok ok ok ok ok ok ok ok sk ok ok sk e okok

SUBROUTINE SETUP

INCLUDE ‘COMMONA FOR’

C$INCLUDE COMMONA

C
C  THIS SUBROUTINE INITIALIZES THE COMPUTATIONS
C
C DEFINE Pl AND C
c
C=1.0/SQRT(XMUO*EPS0)
PI=4.0*ATAN(1.0)
C
C  CALCULATE DT—THE MAXIMUM TIME STEP ALLOWED BY
THE
C  COURANT STABILITY CONDITION
C
DTXI=C/DELX
DTYI=C/DELY
DTZI=C/DELZ

@]

aoon

DT=1./SQRT(DTXI**2+DTY[**2+DTZI**2)

PARAMETER ALPHA IS THE DECAY RATE DETERMINED BY

BETA.
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ALPHA=(1./ABETA*DT/4.0)y**2

BETADT = BETA*DT
PERIOD = 2.0*BETADT

SET OFFSET FOR COMPUTING INCIDENT FIELDS
OFF=1.0

THE FOLLOWING LINES ARE FOR SMOOTH COSINE INCI-
DENT FUNCTION

W1 = 2.0PI/PERIOD
W2 = 2.04W1
W3 =3.0tW1

FIND DIRECTION COSINES FOR INCIDENT FIELD

COSTH=COS(PI*THINC/180.)
SINTH=SIN(PI*THINC/180.)
COSPH=COS(PI*PHINC/180.)
SINPH=SIN(PI*PHINC/180.)

FIND AMPLITUDE OF INCIDENT FIELD COMPONENTS

AMFX:AMP*(ETHINC*COSTH*COSPH—EPHINC*SINPH)
AMPY:AMP*(ETH!NC*COSTH*S!NPH+EPHEI‘JC*COSPH)
AMPZ=AMP*(-ETHINC*SINTH)

FIND RELATIVE SPATIAL DELAY FOR X, Y, Z CELL DIS
PLACEMENT

XDISP=-COSPH*SINTH
YDISP=-SINPH*SINTH
ZDISP=-COSTH

DEFINE CONSTITUTIVE PARAMETERS—EPS,SIGMA

THIS CODE ASSUMES THAT THE DIELECTRIC MATERIALS
ALL HAVE A PERMEABILITY OF MUOG. IF YOU NEED A
MATERIAL WITH MAGNETIC PROPERTIES, USE ANOTHER
FDTD CODE SUCH AS FDTDC, FDTDD, FDTDG OR FDTDH.

THESE CORRESPOND TO MATERIAL TYPES IN IDONE,
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IDTWO, AND IDTHRE ARRAYS. SEE COMMENTS IN SUB-
ROUTINE BUILD

VALID CASES: IDXXX(I,J,K) =0 FOR FREE SPACE IN CELL
LIK
=1 FOR PEC
= 2-9 FOR LOSSY DIELECTRICS
FOR PARTICULAR COMPONENTS OF FIELDS AS DETER
MINED BY XXX

IF IDONE (10,10,10) = 3 THEN THE USER MUST SPECIFY AN
EPSILON, MU AND SIGMA FOR MATERIAL TYPE 3. THAT IS,
EPS(3)=EPSILON FOR MATERIAL TYPE 3 AND SIGMA(3)=
CONDUCTIVITY FOR MATERIAL TYPE 3. ALL PARAMETERS
ARE DEFINED IN MKS UNITS.

DO 10 I=1,9
EPS(I)=EPSO
SIGMA(D=0.0
CONTINUE

DEFINE EPS AND SIGMA FOR EACH MATERIAL HERE

EPS(2)=4.0*EPSO
SIGMA(2)=0.005

GENERATE MULTIPLICATIVE CONSTANTS FOR FIELD
UPDATE EQUATIONS

FREE SPACE

DTEDX=DT/(EPS0*DEI .X)
DTEDY=DT/(EPSO*DELY)
DTEDZ=DT/(EPS0*DELZ)
DTMDX=DT/(XMUO*DELX)
DTMDY=DT/(XMUO*DELY)
DTMDZ=DT/(XMUQ*DELZ)

LOSSY DIELECTRICS

DO 20 1=2,9
ESCTC(I)=EPS(I/(EPS()+SIGMA(I) *DT)
EINCC(D)=SIGMA(I) *DT/AEPS(I)+SIGMA(I) *DT)
EDEVCN(I)=DT*(EPS(1)-EPS0)(EPS(I)+SIGMA(l) *DT)
ECRLX(I)=DT/((EPS(I)+SIGMA(I) *DT)*DELX)

Appendix B
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ECRLY()=DT/((EPS(1)+SIGMA(I) *DT)*DELY)
ECRLZ(I)=DT/(EPS(l)+SIGMA(]) *DT)*DELZ)

CONTINT T
LUINTLNUE

FIND MAXIMUM SPATIAL DELAY TO MAKE SURE PULSE
PROPAGATES INTO SPACE PROPERLY.

DELAY=0.0

IF (XDISP.LT.0.) DELAY=DELAY-XDISP*NX 1*DELX
IF (YDISP.LT.0.) DELAY=DELAY-YDISP*NY 1*DELY
IF (ZDISP.LT.0.) DELAY=DELAY-ZDISP*NZ1*DELZ

COMPUTE OUTER RADIATION BOUNDARY CONDITION
(ORBC) CONSTANTS

CXD=(C*DT-DELX)/(C*DT+DELX)
CYD=(C*DT-DELY)/(C*DT+DELY)
CZD=(C*DT-DELZ)/(C*DT+DELZ)

CXU=CXD
CYU=CYD
CZU=CZD

COMPUTE 2ND ORDER ORBC CONSTANTS

CXX=2*DELX/(C*DT+DELX)

OVV_9 *NET V//OsnT, ney vy
CYY=2*DELY/(C*DT+DELY)

CZZ=2*DELZ/(C*DT+DELZ)

CXFYD:DELX*C*DT*C*DT/(2.*DELY*DELY*(C*DT+DELX))
CXFZD:DELX*C*DT*C*DT/(2.*DELZ*DELZ*(C*DT+DELX))
CYFZD:DELY*C*DT*C*DT/(Z.*DELZ*DELZ*(C*DT+DELY))
CYFXD:DELY*C*DT*C*DT/(Z.*DELX*DELX*(C*DT+DELY))
CZFXD=DELZ*C*DT*C*DT/(2 *DELX*DELX*(C*DT+DELZ))
CZFYD:DELZ*C*DT*C*DT/(Z.*DELY*DELY*(C*DT+DELZ))

WRITE SETUP DATA TO FILE DIAGS3D.DAT
WRITE (17,400) NX,NY,NZ
WRITE (17,500) DELX,DELY,DELZ
WRITE (17,600) DT,NSTOP
WRITE (17,700) AMP,ALPHA BETA
WRITE (17,800) ETHINC,EPHINC
WRITE (17,900) THINC,PHINC
WRITE (17,1000) ‘'THE INCIDENT EX AMPLITUDE = *,
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AMPX,'V/M’
WRITE (17,1000) ‘THE INCIDENT EY AMPLITUDE = °,
AMPY,"V/M’
WRITE (17,1000) ‘THE INCIDENT EZ AMPLITUDE = *,
AMPZ;'V/M’
WRITE (17,1100) ‘RELATIVE SPATIAL DELAY = ‘ DELAY
C
100 FORMAT (T2,A26./)
200 FORMAT (T2,A25,))
300 FORMAT (T2,A34,))
400 FORMAT (T2, ‘THE PROBLEM SPACE SIZE IS’, 14, BY" 14,
BY’ 14,
$' CELLS IN THE X. Y, Z DIRECTIONS" /)
500 FORMAT (T2,’CELL SIZE: DELX="F10.6,” DELY="F10.6,’,
DELZ=’,

600 FORMAT (T2, TIME STEP IS *E12.6,” SECONDS, MAXIMUM
OF" 16,
$" TIME STEPS’ )
700 FORMAT (T2, INCIDENT GAUSSIAN PULSE
AMPLITUDE=",F6.0,” V/M’,
$/,T2, DECAY FACTOR ALPHA='E12.3,/,T2,WIDTH
BETA=",F6.0,))

800 FORMAT (T2, INCIDENT PLANE WAVE POLARIZATION:’ /T2,
$ ‘RELATIVE ELECTRIC FIELD THETA COMPONENT=",F4.1/.T2,
$ ‘RELATIVE ELECTRIC FIELD PHI COMPONENT=", F4.1,)

900 FORMAT (T2,’PLANE WAVE INCIDENT FROM THETA=",F8.2,"

PHI="F8.2,
$' DEGREES’,)
1000 FORMAT (T2,A28,F12.5,2X,A3)
1100 FORMAT (/,T2,A25,F10.7,))
RETURN
END

s sk ok ok sk ok o ok sk e o s ok sk ook ok ok sk ke ok sk sk o skesk ok ke sk ook sk ok ok sk o sk sk o stk skok sk sfokokokok okok

SUBROUTINE EXSFLD

C

C
INCLUDE ‘COMMONA FOR’

CS$INCLUDE COMMONA

DO 30 K=2,NZ1
KK =K
DO 20 J=2,NY1
=7

4
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IF(IDONE(I,] K).EQ.0) GO TO 100
IF(IDONE(L,J,K).EQ.1) GO TO 200
GO TO 300

FREE SPACE

oo Ne!

o @

EXS(LJ,K)=EXS(LJ K)+(HZS(LJ K)-HZS(J-1,K)*DTEDY
-(HYS(LJ,K)-HYS(1,J K-1))*DTEDZ

@]

GO TO 10

PERFECT CONDUCTOR

“NeoNeoNe!

00 H=1
EXS(LJK)=-EXI(I1JJ KK)

@]

GO TO 10

LOSSY DIELECTRIC

wOOn

00 =1
EXS(LJ.K)=EXS(1J K)*ESCTC(IDONE(LJ,K))
-EINCC( IDONE(1,,K))*EXI(ILIJ KK)
-EDEVCN(IDONE(LIK)*DEXI(IL 11 KK)

+(HZS(LK)-HZS(1J-1 K))*ECRLY(IDONE(I,] X))
(HYS(LJK)-HYS(LIK-1)*ECRLZ(IDONE(L,] K))

B B A

C

10 CONTINUE
20  CONTINUE
30 CONTINUE
C

C ********************************************************

QITRRATITINT v ar

SUBROUTINE EYSFLD
C

INCLUDE ‘COMMONA FOR’
C$INCLUDE COMMONA
C
C  THIS SUBROUTINE UPDATES THE EY SC :

N AT

C  COMPONENTS TERED FIELD
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C INCLUDE ‘COMMONA .FOR’
DO 30 K=2,NZ1 C$INCLUDE COMMONA
KK=K c
DO 20 J=1,NY! C  THIS SUBROUTINE UPDATES THE EZ SCATTERED FIELD
=17 C  COMPONENTS
DO 10 I=2,NX1 C
C DO 30 K=I,NZ1
C DETERMINE MATERIAL TYPE KK =K
C DO 20 J=2,NY1
IF(IDTWO(I,J.K).EQ.0) GO TO 100 =7
IFADTWO(I,J,K).EQ.1) GO TO 200 DO 10 I=2,NX1
GO TO 300 C
C C DETERMINE MATERIAL TYPE
C FREE SPACE C
C IF(IDTHRE(L],K).EQ.0) GO TO 100
100 EYS(LJ,K)=EYS(I,J,K)}+(HXS(I,J K)-HXS(LJ.K-1))*DTEDZ IF(IDTHRE(LJ.K).EQ.1) GO TO 200
$ ~(HZS(1,J K)-HZS(I-1 1. K))*DTEDX . GO TO 300
C
GO TO 10 C FREE SPACE
C | C
C PERFECT CONDUCTOR J‘ 100 EZS(LJK)=EZS(LJ,K)+(HYS(LJ K)-HYS(I-1,J K))*DTEDX
C ‘ $ -(HXS(LJK)-HXS(LJ-1,K))*DTEDY
200 H=1 | C
EYS(LJ,K)=-EYI(ILJJ,KK) c GO TO 10
C
GO TO 10 ‘ S PERFECT CONDUCTOR
C “
c LOSSY DIELECTRIC ' 200 =1
C EZS(1,J K)=-EZI(IL,J] KK)
300 = c
EYS(IJ,K)=EYS(LJ,K)*ESCTC(IDTWO(LJ K)) GO TO 10
$  -EINCC( IDTWO(LJ,K)*EYI(IL,JJ,KK) C
$  -EDEVCN(IDTWO(J.K)*DEYI(IIJJ,KK) ! C LOSSY DIELECTRIC
$  +(HXS(J,K)-HXS(,JK-1))*ECRLZ(IDTWO(LJ,K)) C
$  -(HZS(J,K)-HZS(-1,J K)*ECRLX(IDTWO(LJ K)) 300 m=1
c EZS(LJ,K)=EZS(1J K)*ESCTC(IDTHRE(LJ K})
10 CONTINUE $  -EINCC(IDTHRE(LJ,K)*EZI(I111,KK)
20 CONTINUE § -EDEVCN(IDTHRE(LJ K))*DEZI(ILJJ KK)
30 CONTINUE $  +(HYSIIK)-HYS(I-1,] K))*ECRLX(IDTHRE(LJ K))
c $  -(HXS(LLK)-HXS(IJ-1 K)*ECRLY(IDTHRE(L}.K))
RETURN c
END 10  CONTINUE
C sk o o s s o o o o o ok ok o Sk sk sk ke ke e ok ke ok o sk sk sk sk sk ek ek ok R ok skok ek ke ke ke e ok ok ok sk ok ko sk ok ko 20 CONTINUE
SUBROUTINE EZSFLD C30 CONTINUE

C 4
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RETURN
END

O dokiokiopokiok ioiokiok ootk ok ok ook ool ook ool ot kool ok ook

CIIRDRNOIITINE DANDE7ZY
SUDRUU 1UNE RAUDLA

C
INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA
C
C DO EDGES WITH FIRST ORDER ORBC
C
DO 10 K=1,NZ1
J=2
EZS(1,J,K)=EZSX1(2.J K)+CXD*(EZS(2,J K)-EZSX1(1,1.K))
EZS(NX,J.K)=EZSX1(3,], K)+CXU*(EZS(NX1,J K)-EZSX1(4,].K))
J=NYI
EZS(1,J K)=EZ5X1(2,J,K)+ 2], XI(1LLK)
EZS(NX,J,K)=EZSX1(3,J,K)+CXU*(EZS(NX1,],K)-EZSX1(4,J.K))
10 CONTINUE
C
DO 20 J=3,NY1-1
K=1
EZS(1,J K)=EZSX1(2,J K)+CXD*(EZS(2,] K)-EZSX1(1,J.K))
EZS(NX,J K)=EZSX 1(3,] K)}+*CXU*(EZS(NX1,J,K)-EZSX1(4,J K))
K=NZI
EZS(1,],K)=EZSX1(2,J,K)+CXD*(EZS(2,J K)-EZSX1(1,] K))
EZS(NX.J. K)=EZSX1(3,] K)+CXU*(EZS(NX1,J K)-EZSX1(4.J.K))
20 CONTINUE

NOW DO 2ND ORDER ORBC ON REMAINING PORTIONS OF
FACES

anaan

DO 40 K=2,NZ1-1
DO 30 J=3,NY1-1
EZS(1,J.K)=-EZSX2(2,] K)+CXD*(EZS(2,J K)+EZ5X2(1,J.K))
+CXX*EZSX1(1,J K)+EZSX1(2,] K))
+CXFYD*EZSX1(1,J+1,K)-2*EZSX1(1,J K)+EZSX1(1,J-1,K)
+EZSX1(2,J+1,K)-2.¥EZSX1(2,J K)+EZSX1(2J-1,K))
+CXFZD*(EZSX1(1.J K+ 1)-2.#EZSX1(1,J K)+EZSX1(1,JK-1)
+EZSX1(2,J, K+1)-2.¥EZSX1(2,J K)+EZSX1(2J K-1))
EZS(NX,J,K)=-EZSX2(3,] K)+CXD*(EZS(NX1,J K)+EZSX2{4,.K))
+CXX*(EZSX1(4,J, K)+EZSX1(3,J,K))
+CXFYD*EZSX1(4,J+1,K)-2*EZSX1(4,] K)+EZSX1(4,J-1,K)
+EZSX1(3,J+1,K)-2.¥EZSX1(3,] K)+EZSX1(3,J- 1 K))
+CXFZD*(EZSX1(4,], K+1)-2.*EZSX1(4,] K)+EZSX1(4,J K-1)
+EZSX1(3.J K+1)-2.*EZSX1(3,J,K)+EZSX1(3,J K-1))

@ AP B
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30 CONTINUE
40 CONTINUE
C
g NOW SAVE PAST VALUES
DO 60 K=1,NZ1
DO 50 J=2,NY1
EZSX2(1,J,K)=EZSX1(1,J,K)
EZSX2(2,J K)=EZSX1(2,J.K)
EZS5X2(3,JK)=EZSX1(3,J K)
EZSX2(4,] K)=EZSX1(4,] K)
EZSX1(1,J K)=EZS(1,] K)
EZSX1(2J.K)=EZS(2,J.K)
EZSX1(3,J K)=EZS(NX1,J,K)
EZ5X1(4,],K)=EZS(NX,i.K)
50 CONTINUE
60 CONTINUE
C
RETURN
END
C ikl dolo sk ok ot ok otk s ok ok sl ok ok ok sk ek ok ok ok o o
SUBROUTINE RADEYX
C
INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA

DO EDGES WITH FIRST ORDER ORBC

oNeNe!

DO 10 K=2,NZ1
=1
EYS(I.J K)=EYSX1(2.J.K)+CXD*(EYS(2,] K)-EYSX1(1JK))
f\;\f(NX.J.KFEYSXI(3,J,K)+CXU*(EYS(NX 1.1K)-EYSX1(4J.K))
=NY!I ”
gg( rl\f] K)=EYSX1(2,J K)+CXD*EYS(2,J K)-EYSX1(1,J,K))
(NX,J,K)=EYSX1(3,],K)+CXU*EYS(NX1,],K)-EY
10 CONTINUE (EYS(NXLIK)-EYSX1(4,] K))
c
DO 20 J=2,NYI-1
K=2
EYS(1JK)=EYSX1(2J K)+CXD*(EYS (2,1 K) EYSXI(1,J.K))
Il?(;(zmlx,J,1<)=Eysx1(3,J,K)+CXU"‘<EYS(NX1,J,K)-Eysm(4,1,1())
EYS(I‘J‘K)=EYSX1(2’J‘K)+CXD*(EYS(2,J,K)—EYSX](] 0] K))
EYS(NX,J,K)=EYSX1(3,] K)+CXU*(EYS(NX1.J.K)-EYSX
20 CONTINUE (EYS(NX1,JK)-EYSX1(4,] K))
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C

C  NOW DO 2ND ORDER ORBC ON REMAINING PORTIONS OF

C  FACES

C

DO 40 K=3,NZ1-1
DO 30 J=2,NY1-1
EYS(1,J,K)=-EYSX2(2,J K}+CXD*(EYS(2,J, K)+EYSX2(1,J K))
+CXX*(EYSX1(1,J K)+EYSX1(2,J K))
+CXFYD*EYSX1(1,J+1,K)-2.*EYSX1(1,J K}+EYSXI(1,J-1,K)
+EYSX1(2J+1,K)-2.*EYSX1(2,J K)+EYSX1(2,J-1,K))
+CXFZD*(EYSX1(1,J,K+1)-2.*EYSX1(1,JK)+EYSX1(1,J K-1)
+EYSX1(2,J,K+1)-2*EYSX1(2,J K)+EYSX1(2,J K-1))
EYS(NX,J,K)=-EYSX2(3,JK)+CXD*EYS (NXI. J K)
+EYSX2(4.J,K))
+CXX*EYSXi(4,J K)+EYSXi(3,J,K)
+CXFYD*EYSX1(4,J+1,K)-2.*EYSX1(4,JK)+*EYSX1(4,J-1,K)
+EYSX1(3,J+1,K)-2*EYSX1(3,J,K)+EYSX1(3,J-1.K))
+CXFZD*(EYSX1(4,J K+1)-2*EYSX1(4,J K)+EYSX1(4,J K-1)
+EYSX1(3,J,K+1)-2.*EYSX1(3,J],K)+EYSX1(3,J.K-1))
30 CONTINUE
40 CONTINUE

® P BB
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C
C  NOW SAVE PAST VALUES
C
DO 60 K=2,NZ1
DO 50 J=1,NY1

EYSX2(1,JK)=EYSX1(1JK)
EYSX2(2,JK)=EYSX1(2,J K)
EYSX2(3,J.K)=EYSXI(3,J K)
EYSX2(4,J K)=EYSX1(4,J K)
EYSX1(1,J,K)=EYS(1,,K)
EYSX1(2,J K)=EYS(2,J K)
EYSX1(3,J,K)=EYS(NX1,J K)
EYSX1(4,],K)=EYS(NX,J,K)
50 CONTINUE
60 CONTINUE
C
RETURN
END

sk sk ke S e sk ok Sk sk e sk sk s sk ke ok S sk e ok ok ke s ek ok S o K sk ke ok ok ok ke sk ok ek ok ok ok s ok sk sk ok skokok

SUBROUTINE RADEZY

C

C

INCLUDE ‘COMMONA.FOR’
CS$SINCLUDE COMMONA
C

4
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g DO EDGES WITH FIRST ORDER ORBC

‘ DO 10 K=I NZ
I=2
EZS(1,1K)=EZS Y 1(1,2,K)+CYD*EZS(1,2 K)-EZSY1(1,1.K))
IEZNS(LNY,KFEZSY1(1,3,K)+CYD*(EZS(I,NYI,K)-EZSY](I,4,K))
=NX1
EZS(1,1,K)=EZSY I(1,2,K)+CYD*EZS(1,2,K)-EZSY I(1,1.K))
EZS(IL,NY,K)=EZSY 1(1,3,K)+CYD*(EZS(I,NY 1 K)-EZSY (I

10  CONTINUE NYLK) (1,4.K))

DO 20 I=3NX]-1

K=1

EZS(11 K)=EZSY 11,2, K)}+CYD*(EZS(1,2,K)-EZS Y 1(1,1.K))

EZS(LNY K)=EZSY 1{1,3,K)}+CYD*EZS(i,NY 1,K)-EZSY 1(14.K))

K=NZ1 '

EZS(L,1,K)=EZSY1(1,2 K)+CYD*(EZS(1,2 K)-EZS Y I(L 1 K))

EZS(LNY K)=EZSY (1,3, K)+CYD*EZS(,NY 1 .K)-EZSY (1 4.K

3, NY1K)-EZ 4K

0 CONTINUE ) A5

I;;)é\[/aé)o 2ND ORDER ORBC ON REMAINING PORTIONS OF

anAaa,

DO 40 K=2,NZ1-1

DO 30 [=3,NXi-1
EZS(1,1,K)=-EZSY2(1,2 K)+CYD*(EZS(1,2 K)}+EZSY2(1,1 K))
+CYYHEZSY1(1,1,K)+EZSY1(1,2.K))
+CYFXD*(EZSY1(1+1,1 K)-2¥EZS Y I(L1 K)+EZS Y 1(I-1,1 K)
+EZSY1(1+1,2,K)-2 ¥EZS Y 1(1,2,K)+EZS Y 1(I-1,2.K)) ’
+CYFZD*EZSY1(I,1,K+1)-2.*EZS Y 1(1,1 KWEZSY1(I,1.K-1)
+EZSY1(L2K+1)-2*EZSY 1(1,2,K)+EZS Y1(1,2,K-1))
EZS(LNY K)=-EZSY2(1,3 K)+CYD*(EZS(LNY 1 K)}+EZS Y2(1.4,K))
+CYY*EZSY (1,4 K)+EZSY1(1,3,K)) T
+CYFXD*(EZSY1(I+1,4,K)-2*EZS Y 1 (1.4 K)+EZS Y 1 (I-1,4.K)
+EZSY1(1+1,3,K)-2 *EZSY 1(1,3,K)+EZSY1(I-1,3 K)) '
+CYFZD*(EZSY (1,4 K+1)-2*EZSY | (1,4 K)+EZSY 1(14.K-1)
+EZSY (L3 K+1)-2.*EZSY (1,3, K)+EZS Y I(1,3,K-1)) '

30 CONTINUE

0 CONTINIIR
U LUNIINULE

PP P

AR AR Y

NOW SAVE PAST VALUES

naAa,

DO 60 K=1,NZ1
DO 50 I=2,NX1
EZSY2(I,1,LK)=EZSY (1,1 K)
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EZSY2(1,2,K)=EZSY1(1,2,K)
EZSY2(1,3,K)=EZSY1(1,3,K)
EZSY2(1,4,K)=EZSY1(1,4,K)
EZSY1(1,1,K)=EZS(1,1,K)
EZSY1(1,2,K)=EZS(1,2,K)
EZSY1(1,3,K)=EZS(INY1,K)
EZSY1(1,4 K)=EZS(I,NY K)

50 CONTINUE

60 CONTINUE

C

RETURN

END

stk ok ok ks ok ke sk ok ok ke sk ok ok ks ok ok sk kot ook sk ok kot ko ok sk ok ok ok

SUBROUTINE RADEXY

C

C
INCLUDE ‘COMMONA.FOR’
CSINCLUDE COMMONA
C
C DO EDGES WITH FIRST ORDER ORBC
C
DO 10 K=2,NZ1
I=1
EXS(I1,1,K)=EXSY1(1,2,K)+CYD*(EXS(,2,K)-EXSY1(I,1,K))
EXSINY,K)=EXSY1(I,3,K)+CYD*(EXS(LNY1,K)-EXSY1(1,4,K))
I=NX1
EXS(I,1,K)=EXSY1(I,2,K)+CYD*(EXS(I,2,K)-EXSY1(I,1,K))
EXS(I,NY,K)=EXSY1(1,3,K)+CYD*EXS(ILLNY1,K)-EXSY I(I1,4,K))
10 CONTINUE
C
DO 20 I=2,NX1-1
K=2
EXS(,1,K)=EXSY1(1,2,K)+CYD*(EXS(1,2,K)-EXSY1(I,1,K))
EXS(LNY ,K)=EXSY1(1,3,K)+CYD*(EXS(INY1,K)-EXSY1(I,4,K))
K=NZ1
EXS(I,1,K)=EXSY1(I,2, K)+CYD*(EXS(,2,K)-EXSY1(I,1,K))
EXS(INY,K)=EXSY1(I,3,K)+CYD*EXS(ILNY!,K)-EXSY1(1.4,K))
20 CONTINUE

NOW DO 2ND ORDER ORBC ON REMAINING PORTIONS OF
FACES

anann

DO 40 K=3NZ1-1
DO 30 1=2,NXI-1
EXS(I,1,K)=-EXSY2(1,2,K)+CYD*EXS(I,2,K)+EXS Y2(1,1,K))
$  +CYY*EXSYI(,1K)+EXSY(I2K))

Appendix B a

$ +CYFXD*(EXSY]([+I,I,K)—24*EXSYI(I,I,K)+EXSYI([-I,I,K)

$ +EXSYI(I+1,2,K)—2.*EXSY](1,2,K)+EXSY1(I-1,2,K))

$ +CYFZD*(EXS‘{1(1.],K+I)-Z*EXSYI(i,l,K)+EXSYl(I.I K-1)

$ +EXSY1(I,2,K+l)~2.*EXSYl(I.2.K)+EXSYI(!,Z,K-1)) ’
EXS(I,NY,K)=—EXSY2(I,3,K)+CYD*(EXS(I,NY1,K)+EXSY2(I 4K))

$ +CYY*(EXSYI(I,4,K)+EXSY1(I,3,K)) v

$ +CYFXD*(EXSYl(I+1,4,K)—2.*EXSY](I,4,K)+EXSY1([—1 4,K)

$ +EXSYl(I+l.3,K)—2.*EXSYI(I,3,K)+EXSY1(I-1,3,K)) v

$ +CYFZD*(EXSY1(I,4,K+1)AZ,*EXSYI(I,4,K)+EXSY1(I 4K-1)

$ +EXSYl([,3,K+1)»2.*EXSYI(I,3,K)+EXSY1(I,3,K-l)) v

30 CONTINUE
40 CONTINUE

a

C  NOW SAVE PAST VALUES
C

DO 60 K=2NZ]
DO 50 I=1,NX1
EXSY2(1,1 K)=EXSY1(L1,K)
EXSY2(1,2,K)=EXSY1(I,2.K)
EXSY2(1,3 K)=EXSY I(13K)
EXSY2(1.4,K)=EXSY1(I,4,K)
EXSYI(L1,K)=EXS(1, 1,K)
EXSY1(1,2,K)=EXS(1,2 K)
EXSY1(1,3 K)=EXS(LNY1 K)
EXSY1(1,4,K)=EXS(LNY,K)
50 CONTINU

60 CONTINUE

C
RETURN
END

C Hkkk K AR ARk o oK ok ok koK o koo ook sk ok
SUBROUTINE RADEXZ

C

INCLUDE ‘COMMONA.FOR’
CSINCLUDE COMMONA
C
C DO EDGES WITH FIRST ORDER ORBC
C

DO 10 J=2NY1
I=1
EXS(LL,D=EXSZ1(1).2)+CZD*EXS(1),2)-EXSZ (L], 1))
If;);S)gt,J,NZ):EXSZI(LJ,3)+CZD*(EXS(1,J,NZI )-EXSZ1(1,J,4))
XS g,
EXS(LJ,)=EXSZ1(L).2)+CZD*(EXS(1,] 2)-EXSZI(L].1))
EXS(LJNZ)=EXSZI(LJ 3)+CZD*EXS(LJ,NZ1)-EXSZ1(1].4))

@]
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10 CONTINUE
DO

EXS(LJ,1)=EXSZI(1],2)+CZD*(EXS(LJ,2)-EXSZ1(LJ,1))
EXS(IJ NZ)=EXSZ1(I,],3)+CZD*(EXS(I,J,NZ1)-EXSZ1(1,} 4))
J=NYI
EXS(LJ,1)=EXSZ1(I],2+CZD*(EXS(1J,2)-EXSZ (L], 1))
EXS(LJ,NZ)=EXSZ1(IJ,3)+CZD*(EXS(I,},NZ1)-EXSZ1(1,],4))

20 CONTINUE

NOW DO 2ND ORDER ORBC ON REMAINING PORTIONS OF
FACES

anaan

N
DO 40 J=3,NYi-1

DO 30 [=2,NX1-1
EXS(LJ,1)=-EXSZ2(1J,2)+CZD*(EXS(LJ,2)+EXSZ2(1J,1))
+CZZ*EXSZ1(LJ,)+EXSZ1(LJ,2))
+CZFXD*EXSZ1(I+1.J,1)-2EXSZ1(LJ,1)+EXSZ1(I-1,J,1)
+EXSZ1(1+1,],2)-2*EXSZ1(LJ 2)+EXSZ1(I-1,J,2))
+CZFYD*EXSZI(LI+1,1)-2.EXSZ1(1J, N+EXSZ (L J-1.1)
+EXSZ1(1,J+1,2)-2.¥EXSZ1(1,J, 2)+EXSZ1(1J-1,2))
EXS(LJ,NZ)=-EXSZ2(1,],3)+CZD*(EXS(I,J,NZ1)+EXSZ2(1,] 4))
+CZZ*EXSZ1(1,] 4)+EXSZ1(1,J,3))
+CZFXD*(EXSZ1(1+1,J 4)-2.*EXSZI(I,] 4+EXSZ1(1-1,J,4)
+EXSZ1(I+1,7,3)-2.*EXSZ1(1J 3)+EXSZ1(I-1,,3))

R R

+CZFYD*(EXSZI(1,j+1,4)-2*EXSZ1(1,J,4)+EXSZ1(1,J-1,4)
+EXSZ1(1,J+1,3)-2.*EXSZ1(L1.3)+EXSZ1(1,J-1.3))
30 CONTINUE

40 CONTINUE

B H LB

C
C NOW SAVE PAST VALUES
C
DO 60 J=2NYI
DO 50 I=1,NX1

EXSZ2(1J,1)=EXSZ1(1J,1)
EXSZ2(1,1,2)=EXSZ1(1,1,2)
EXSZ2(1,J,3)=EXSZ1(1,],3)
EXSZI(LJ,N=EXS(,J,1)
EXSZI(1,J,2)=EXS(L,},2)
EXSZ1(1,J,3)=EXS(1],NZ1)
EXSZI(1,]4)=EXS(LI,NZ)

50  CONTINUE

60 CONTINUE
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C
RETURN
END
C **************************u*********H*****************
c SUBROUTINE RADEYZ
INCLUDE ‘COMMONA.FOR’
CSINCLUDE COMMONA

C
g DO EDGES WITH FIRST ORDER ORBC
DO 10 J=1NY1
=2

EYS(LJD=EYSZI(L),2)+CZD*EYS(LI.2)1EYSZI(L1 1),
EISLI,NZ)=EYSZ1(L,J,3)+CZD*(EYS, EVQT
I=NX1 (BYS(LINZ1)-EYSZ1(1J,4))
ggﬁ; llv );EYSZI(LJ.Z)+CZD*(EYS(I,J.2)»EYSZ1(] 11y
SYS(LLNZ)=EYSZ1(1] 3+ CZD*(EYS(LI NZ1)-EYS7

10 CONTINUA (EYS(LINZI1)-EYSZI(L) 4))

DO 20 =3NX].|
J=1
EYS(LJ,D=EYSZI(LJ,2)+CZD*(EYS(L1 2)-E
g, J2-EYSZI(LL.1)
EYS(LINZ)=EYSZI(L) 3)+CZD*Ey 7
EYS(. (EYS(LINZI)}EYSZI(1]4))
EYS(LJ,1)=EYSZI(1,1.2)+CZD*EYS(LJ 2} EYSZI(L1. 1
EYS(LJNZ)=EYSZI(LJ,3)+CZD*EYS(] EYSZ1(]
o XN EYSULINZI)-EYSZI(L)4))

I:[:)g\é;)() 2ND ORDER ORBC ON REMAINING PORTIONS OF

aOnNnn

DO 40 J=2,NY1-1

DO 30 1=3,NX1-]
EYS(LJ,D="EYSZ2(1J,2)+CZD*EYS (L] 2

, g, J2+EYSZ2(1),1

+CZZXEYSZI(1I,+EYSZ1(1,],2)) i
+CZFXD*(EYSZI(I+!,J,1)-2.*EYSZI(I,J,I)+EYSZ1(I-I,J,1 )
FBYSZI(4+1.0,2)-2 *BYSZI(LI 24EYSZ 1(1-1,1.2))
+CZFYD*EYSZI(LJ+1,| -2 *EYSZILL,)+EYSZI(1J-1,1)
FEYSZULI+1.2) 2 BYSZ1(1,1 2)+EYSZ1(1)-1.2)) ’
EYS(LJNZ)=-EYSZ2(1,),3)+CZD*EYS(LI Nz WEYSZ2(1,],4))
+CZZ*(EYSZI(LJ4)+EYSZI(L) 3)) "
+CZFXD*(EYSZI(I+1,J,4)-2‘*EYSZ1(I,J,4)+EYSZI(I-I J14)
*EYSZU(I+1.0.3) 2. *EYSZ1(1,1 34EYSZ1(1-1.1.3)) ’
+CZFYD*(EYSZI(I,J+I,4)-2,*EYSZI(I,J,4)+EYSZ](I,J-I,4)

S F s

PP »
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$  +EYSZI(IJ+1,3)-2*EYSZI(1,J3)+EYSZI(1,J-1,3))
30 CONTINUE

AN IR

40 CONTINUE

C

C  NOW SAVE PAST VALUES
C

DO 60 J=1,NY!
DO 50 1=2,NX1
EYSZ2(LJ,1)=EYSZ1(LJ,1)
EYSZ2(1J,2)=EYSZ1(1,J,2)
EYSZ2(1J,3)=EYSZ1(1,J,3)
EYSZ2(1,J4)=EYSZ1(1J.4)
EYSZI(LL.1)=EYS(L],1)
EYSZ1(LJ,2)=EYS(L],2)
EYSZ1(1.1,3)=EYS(L,J,NZ1)
EYSZI(LJ,4)=EYS(LJ,NZ)
50 CONTINUE
60 CONTINUE
c
RETURN
END
c

* Kkkokk

SUBROUTINE HXSFLD

a

INCLUDE ‘COMMONA FOR’
C$INCLUDE COMMONA

c
C  THIS SUBROUTINE UPDATES THE HX SCATTERED FIELD
C  COMPONENTS
C
DO 30 K=1,NZ1
DO 20 J=1,NY1
DO 10 [=2,NX1
HXS(1J,K)=HXS(LJ,K)-(EZS(1,J+1,K)-EZS(1.J K))*DTMDY
$ +EYST,JK+1)-EYS(,],K))*DTMDZ

10 CONTINUE
20 CONTINUE
30 CONTINUE
C
RETURN
END
O wkksskokkokookokdor ok oo ook ok doolokdolofoolofofol ook ok ook ok ook

SUBROUTINE HYSFLD
C

Appendix B

INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA
C
C  THIS SUBROUTINE UPDATES THE
C  COMPONENTS
C

DO 30 K=1 NZ1
DO 20 J=2NY|
DO 10 I=1,NX]

HYSILLK)=HYS(LIK)-(EXS(1IK+1)-EXS(L1K)*DTMDZ

" CONTINUE +(EZS(I+1,J,K)-EZS(I,J,K))*DTMDX
20 CONTINUE
30 CONTINUE
~
o
RETURN
END
C **************************************
SUBROUTINE HZSFLD

******************

C
INCLUDE ‘COMMONA.FOR’
i CSINCLUDE COMMONA
C

C

DO 30 K=2.NZ1
DO 20 J=1 NY1
DO 10 I=1.NX1
HZS(L1K)=HZS(LLK)-EYS (141 K)-EYS(LI K)y*DTMDX
o' conmmun T EXSUIHLKEXS1IK)DTMDY
20 CONTINUE
30 CONTINUE
C
f RETURN
END
C

SUBROUTINE DATSAV
C

INCLUDE ‘COMMONA.FOR*
C$INCLUDE COMMONA
C

CW
-
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To completely specifiy a sampling point, the user must specify
4 parameters: NTYPE, JIOBS, JOBS, and KOBS.
NTYPE for point L is specified by NTYPE(L).
NTYPE controls what quantities are sampled as follows:
1 = EXS (scattered x-component of electric field)
2 = EYS (scattered y-component of electric field)
3 = EZS (scattered z-component of electric field)
4 = HXS (scattered x-component of magnetic field)
5 = HYS (scattered y-component of magnetic field)
6 = HZS (scattered z-component of magnetic field)
7 = IX (x-component of current through rectangular loop of H)
8 = 1Y (y-component of current through rectangular loop of H)
9 = IZ (z-component of current through rectangular loop of H)
IOBS(L), JOBS(L) AND KOBS(L) specify the I, J and K coordi-
nates of the point L. Thus for point i, the user wouid specify
NTYPE(1), IOBS(1), JOBS(1) and KOBS(1). For point 2, the
user would specify NTYPE(2), IOBS(2), JOBS(2), KOBS(2).
The exact locations of a component within a cell follows that
of the Yee cell.
As an example, the following 4 lines save EYS at the point
(33,26,22):
NTYPE(1)=2
I0BS(1)=33
JOBS(1)=26
KOBS(1)=22

To sample total field, issue a statement to add in the appropriate
incident field. These total field save statements should be added
directly after the “3000 CONTINUE” statement near the end of this
SUBPROGRAM to override any previous assignment to
STORE(NPT). Make certain to back up the incident field by 1 time

step (DT) for sampling total E fields and by 1/2 time step (DT/2.0)

for sampling total H fields. For example, to store total EX field at
sample point 3, issue the following 3 statements:

T=T-DT

STORE(3)=EXS(I0BS(3),JOBS(3),KOBS(3))+
2 EXI(IOBS(3),JOBS(3),KOBS(3))

T=T+DT

oEeEeoNesEoNoEololoRoloRoRoRo oo Ro koo e NeNo Ko No ko ReRoRolo ke oo No Koo RoRe o NoRoKe!

loReNe!

For the first time through (N=1), do some initializations...
IF (N.NE.1) GO TO 10

User-defined test point cell location(s). There should be NTEST
occurences of NTYPE and {I,J,LK]JOBS defined. Unless total fields

Appendix B

C  are desired, this is i

8 probably the only part of this SUBR )
S the user will need to change. OUTING
C
C

NTYPE(1)=1
NTYPE(2)=1
NTYPE(3)=5
NTYPE(4)=5

DEFINE NTEST TEST POINT CELL LOCATION(S) HERE

[eNeNe!

10BS(1)=17
JOBS(1)=18
KOBS(1)=25
iOBS(2)=17
JOBS(2)=18
KOBS(2)=18
10BS(3)=17
JOBS(3)=18
KOBS(3)=24
10BS(4)=17
JOBS(4)=18
KOBS(4)=17
C
C Initialize some variables,
DO 5 1I=1,NTEST
STORE (I1)=0.
5 CONTINUE
NPTS=NTEST
C

C‘ Print head'er info and check [LLK]OBS to see that they are in
C r‘a;é;.ere header to data file and to DIAGS3D.DAT.
E (10,1400) DELX,DELY,DELZ DT,NS . :
WRITE (17,1500) NPTS PHSTORNETS
1400 FORMAT (T2,E] 2.5,2X,EI2.5,2X,E12‘5,3X,E14.7,3X,16,3X 13)

( PLED AND VED AT’ 14

DO 1700 NPT = 1,NPTS
WRITE (17,1800) NPT )
KOBS (NPT) ) , NTYPE (NPT), I0BS (NPT), JOBS (NPT),
IF (IOBS(NPT).GT.NX) GO TO 1600
IF (IOBS(NPT).LT.1) GO TO 1600
IF (JOBS(NPT).GT.NY) GO TO 1600
IF JOBS(NPT).LT.1) GO TO 1600
IF (KOBS(NPT).GT.NZ) GO TO 1600

417
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IF (KOBS(NPT).LT.1) GO TO 1600
GO TO 1700

1 xr ey o \ n
1600 WRITE (i17,*) ‘ERROR IN 10BS, JOBS OR KOBS FOR SA

LING’
WRITE (17,%) ‘POINT ‘NPT

WRITE (i7,%) ‘EXECUTION HALTED.’
CLOSE (UNIT=10)

CLOSE (UNIT=17)

CLOSE (UNIT=30)

STOP

1700 CONTINUE
1800 FORMAT (T2,'SAMPLE: 14,", NTYPE=",14,", SAMPLED AT

C
C

CELL I=’,
2 14, 1="14,, K="14.))

Check for ERROR in NTYPE specification.
DO 20 NPT=1,NTEST

IF (NTYPE(NPT).GE.10).OR(NTYPE(NPTS).LE.0)) THEN

WRITE (17,%) ‘ERROR IN NYPE FOR SAMPLING POINT ‘,NPT

WRITE (17,*) ‘EXECUTION HALTED.’
CLOSE (UNIT=10)
CLOSE (UNIT=17)
CLOSE (UNIT=30)
STOP
ENDIF

20 CONTINUE

C
C
C

Finished with initialization.

Cycle through all NTEST sample locations.

10 DO 3000 NPT=1,NTEST

C

C Put desired quantity for this sample location into STORE(NPT).

I=IOBS(NPT)
J=IOBS(NPT)
K=KOBS(NPT)
Scattered fields
IF (NTYPE(NPT).EQ.1) STORE(NPT)=EXS(1J,K)
IF (NTYPE(NPT).EQ.2) STORE(NPT)=EYS(I,J.K)
IF (NTYPE(NPT).EQ.3) STORE(NPT)=EZS(1,].,K)
IF (NTYPE(NPT).EQ 4) STORE(NPT)=HXS(I ] K)
IF (NTYPE(NPT).EQ.5) STORE(NPT)=HYS(I,J.K)
IF (NTYPE(NPT).EQ.6) STORE(NPT)=HZS(1,J K)
Current loops

X-directed current

IF (NTYPE(NPT).EQ.7) THEN

C

Appendix B

STORE(NPT)=0),
DO 711 KK=K K+1

2
710
711

DO 710 J1=J J+1

419

STORE(NPT)=STORE/NDT L/ T1ver 15 i
VLSS UREINET)+H-HYS(LILKK)+HYS(1J] KK-1))

*DELY+ (HZS(1,JJ KK )-HZS

7S(1,0J, (LIJ-1,KK))*DE
CONTINUE PRz
CONTINUE

ENDIF

IF

Y-directed current

(NTYPE(NPT).EQ‘S) THEN

STORE(NPT)=0,
DO 811 KK=K.K+1

2

810
811

DO 810 Ii=11+1
§TOBE(NPTJ:S’I‘ORE(NPTM~HZS([U,KK)+H7Q
UI-1,JLKK))*DELZ+ T
(HXS(II.J,KK)—HXS(H.J‘,KK-1‘1)*DELX
CONTINUE

CONTINUE

ENDIF
c z
IF (NTYPE(NPT).EQ.9) THEN
STORE(NPT)=0).
DO 911 JJ=J J+1
DO 910 H=L]+1

(II
2z

910

911

GOF)OOOQOOWQ

(o}

directed current

STORE(NPT)=STORE(NPT)+(.H

-HXS
SToRErT=S )+(-HXS(ILILK )+ HXS
(HYS(ILILK)-HYS(IL | JJ.K )y

CONTINUE HOTPELY

CONTINUE

ENDIF

000 CONTINUE

If total fields are desired, place total field save statements

here. Example for saving total EX field at sample point 3:

T=T-DT
STORE(3)=EXS(10BS(3) JOBS(3), KOBS 3))+

2 E

XI(IOBS(3),J()BS(3),](()BS(3))

T=T+DT

Write sampled values to disk

WRI

TE (10,*) (STORE(IL),li=1 NPTS)

RETURN

END
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FUNCTION EXI(L,J,K)
C

INCLUDE ‘COMMONA.FOR’
CS$INCLUDE COMMONA
C
C  THIS FUNCTION COMPUTES THE X COMPONENT OF THE
C  INCIDENT ELECTRIC FIELD
C

DIST=((I-1)*DELX+0.5*DELX*OFF)*XDISP+((J-1)
*DELY)*YDISP+
$((K-D*DELZ)*ZDISP + DELAY
EXI = AMPX*SOURCE(DIST)
RETURN
END
C
koo ok etk ool ok sk oo kol ko ok stk eskok ks ko sk sk ok o skok sk ok s ok sk ok ek ok ok ok
FUNCTION EYI(I,JK)
C
INCLUDE ‘COMMONA.FOR”’
CSINCLUDE COMMONA
C
C  THIS FUNCTION COMPUTES THE Y COMPONENT OF THE
C  INCIDENT ELECTRIC FIELD
C

DIST=((I-1)*DELX)*XDISP+((J-1)*DELY+0.5*DELY*OFF)*

$YDISP+((K-1)*DELZ)*ZDISP + DELAY

EYI = AMPY*SOURCE(DIST)
RETURN
END
C
ok sk skt ok ok ok ok ks sk kot ok ool koo ook ok ok sk el ok sk ook ok ok ok
FUNCTION EZI(1,J K)
C
INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA

NT LT BOTRIC TTRT
NCIDENT ELECTRIC FIELD

C
C  THIS FUNCTION COMPUTES THE Z COMPONENT OF THE
TN
1l
C

DIST=((I-1)*DELX)*XDISP+((J-1 *DELY)*YDISP+((K-1)*DELZ+

$0.5%DELZ*OFF)*ZDISP + DELAY

EZI = AMPZ*SOURCE(DIST)

RETURN
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C
FUNCTION SOURCE(DIST)
C
INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA

a

C  THIS FUNCTION DEFINES THE FUNCTIONAL FORM OF THE
C  INCIDENT FIELD
C

SOURCE = 0.0

EXECUTE FOLLOWING FOR INCIDENT E FIELD

ann

TAU=T-DIST/C
IFTAU.LT.0.0) GO TO 10
IF (TAU.GT.PERIOD) GO TO 10
C
C
SOURCE=EXP(-ALPHA*((TAU-BETADT)**Z))
C
C
10  RETURN
END
C
okt koot ol kool ook ok kool ok ok sk o e s
FUNCTION DEXI(I,J K)
C
INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA

a

C  TIME DERIVATIVE OF INCIDENT EX FIELD FOR DIELEC
C  TRICS
C

DIST=((I-1 )*DELX+O.5*DELX*OFF)*XDISP+((J -1)*DELY)*YDISP+
$((K-1*DELZ)*ZDISP + DELAY
DEXI=AMPX*DSRCE(DIST)

RETURN
END

C

ks kol ook sk skl ook ok ok ok ok ok ok sk sk ok ok ok s
FUNCTION DEYI(1,J K)

C
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INCLUDE ‘COMMONA.FOR’
C$INCLUDE COMMONA

TIME DERIVATIVE OF INCIDENT EY FIELD FOR DIELEC-
TRICS

anan

DIST=((I-1)*DELX)*XDISP+((J-1)*DELY+0.5*DELY*OFF)*YDISP+
$((K-1)*DELZ)*ZDISP + DELAY
DEYI=AMPY*DSRCE(DIST)
RETURN
END
C Rk ook ook ok o ok ook ok ok ok ok ook ko ko ok ok
FUNCTION DEZI(LJ K)
C
INCLUDE *COMMONA.FOR’
CSINCLUDE COMMONA
C
C  TIME DERIVATIVE OF INCIDENT EZ FIELD FOR DIELEC-
C TRICS
C

DIST=((I-1)*DELX)*XDISP+((J-1)*DELY)*YDISP+((K-1)*DELZ+
$0.5*DELZ*OFF)*ZDISP + DELAY

DEZI=AMPZ*DSRCE(DIST)

RETURN

END

ek ok ke ok ok kKK EELET B LY

FUNCTION DSRCE(DIST)

C

INCLUDE ‘COMMONA FOR’
CSINCLUDE COMMONA
C
C  TIME DERIVATIVE OF INCIDENT FIELD FOR DIELECTRICS
C

DSRCE=0.0
C

TAU=T-DIST/C

IF(TAU.LT.0.0) GO TO 10

IF (TAU.GT.PERIOD) GO TO 10

@]

DSRCE=EXP(-ALPHA*((TAU-BETADT)**2))*(-2.*ALPHA*(TAU-
BETADT))
C
C
10 RETURN
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END
C
sttt de st ottt st ootk ok ok o e R ok oK o ok e e ok sk ko ke e o
SUBROUTINE ZERO
C
INCLUDE ‘COMMONA FOR’
C$INCLUDE COMMONA
C
C  THIS SUBROUTINE INITIALIZES VARIOUS ARRAYS AND
C  CONSTANTS TO ZERO.
C
T=0.0
DO 30 K=1,NZ
DO 20 J=1,NY

DO 10 1=1 NY
DU IV I=1LINA

EXS(I],K)=0.0
EYS(L1,K)=0.0
EZS(1,],K)=0.0
HXS(I,J,K)=0.0
HYS(1,1.K)=0.0
HZS(1,J,K)=0.0
IDONE(L],K)=0
IDTWO(LJ K)=0
IDTHRE(LJ K)=0

10 CONTINUE

20  CONTINUE

W CONTINTIE
SU LUNTIINUD

DO 60 K=1,NZ1
DO 50 J=1,NY1
DO 40 I=14
EYSXI(I],K)=0.0
EYSX2(L,J,K)=0.0
EZSX1(I.J K)=0.0
EZSX2(LJ,K)=0.0
40  CONTINUE
50 CONTINUE
60 CONTINUE
DO 90 K=1,NZ1
DO 80 J=i,4
DO 70 I=1 NX1
EXSYI(LJ,K)=0.0
EXSY2(LJ,K)=0.0
EZSY1(LJ.K)=0.0
EZSY2(,},K)=0.0
70  CONTINUE
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80 CONTINUE
90 CONTINUE
DO 120 K=14
DO 110 J=1,NY1
DO 100 I=1,NX1
EXSZ1(LJ,K)=0.0
EXSZ2(1,,K)=0.0
EYSZI(I,],K)=0.0
EYSZ2(I,1,K)=0.0
100 CONTINUE
110 CONTINUE
120 CONTINUE
DO 130 L=1,9
ESCTC(L)=0.0
EINCC(L)=0.0
EDEVCN(L)=0.0
ECRLX(L)=0.0
ECRLY(L)=0.0
ECRLZ(L)=0.0
130 CONTINUE
RETURN
END

COMMONA.FOR

SPECIFY THE PROBLEM SPACE SIZE HERE. NX, NY AND NZ
\'

M SDACE T
SPECIFY THE SIZE OF THE PROBLEM SPACE IN THE X,

AND Z DIRECTIONS.

aacanaan

PARAMETER (NX=34,NY=34,NZ=34 NX1=NX-1 NY1=NY-1,
NZI=NZ-1)

DEFINE THE FIELD OUTPUT QUANTITIES HERE. NTEST
SPECIFIES THE NUMBER OF FIELD SAMPLE LOCATIONS FOR

NEAR ZONE FIELDS.

[eEeoNeKeKe!

PARAMETER (NTEST=4)

anon
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PARAMETER (NSTOP=256)

(@}

C  DEFINE CELL SIZE (DELX, DELY, DELZ, IN METERS) HERE.
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C
PARAMETER (DELX=1./17.,DELY=1./17..DELZ=1./17.)
C
C  SET INCIDENCE ANGLE OF INCIDENT PLANE WAVE HERE
C
C  SINCE THIS IS A SCATTERING CODE, ONE MUST BE CARE
C  FUL IN SPECIFYING THE INCIDENCE ANGLES, THINC AND
C  PHINC. THE INCIDENCE ANGLES (ACCORDING TO SCAT-
C  TERING CONVENTION) ARE TAKEN AS THE ANGLES THE
C  INCIDENT WAVE COMES FROM AND NOT THE ANGLES THE
C  PROPAGATION VECTOR MAKES WITH THE X AND Z AXES.
C
C  THINC AND PHINC ARE SPECIFIED AS FOLLOWS:
C  THINC IS SPECIFIED FROM THE +Z AXIS
€ PHINC IS SPECIFIED FROM THE +X AXIS
C  (ALL ANGLES ARE SPECIFIED IN DEGREES)
C
PARAMETER (THINC=180.0,PHINC=180.0)
C
C  SPECIFY POLARIZATION OF INCIDENT PLANE WAVE HERE
C
C  SET INCIDENT WAVE POLARIZATION — ETHINC = 1 FOR
C  THETA POLARIZED ELECTRIC FIELD, EPHINC = [ FOR PHI
C  POLARIZED
C
PARAMETER (ETHINC=1.0,EPHINC=0.0)
C
C  SET INCIDENT WAVEFORM PARAMETERS
C
C  PARAMETER AMP IS THE MAXIMUM AMPLITUDE OF THE
C  INCIDENT PLANE WAVE AND BETA IS THE TEMPORAL
C  WIDTH OF A GAUSSIAN PULSE SPECIFIED IN TIME STEPS.
C
C  PARAMETER (AMP=1000.0,BETA=32.0)
C
C  CHANGE BETA TO 64 SINCE SPHERE HAS RELATIVE PERMIT-
C TIVITY 4
PARAMETER (AMP=1000.0,BETA=64.0)
C
PARAMETER (EPS0=8.854E-12, XMU0Q=1.2566306E-
6,ETA0=376.733341)
C

COMMON/IDS/IDONE (NX, NY, NZ), IDTWO (NX, NY, NZ),
IDTHRE (NX, NY, NZ)
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COMMON/ESCAT/EXS (NX, NY, NZ), EYS (NX, NY, NZ), EZS
(NX, NY, NZ)

COMMON/HSCAT/HXS (NX, NY, NZ), HYS (NX, NY, NZ), HZS
(NX, NY, NZ)

COMMON /MUR/ CXD,CXU,CYD,CYU,CZD,CZU
COMMON /MUR2/ CXX, CYY,CZZ,CXFYD,CXFZD,CYFXD,

CYFZD,CZFXD,CZFYD

COMMON/RADSAV/EYSX1 (4,NY1, NZ1), EZSX1 (4,NY1, NZ1),
$ EZSY1 (NXI, 4, NZI1), EXSY1 (NX1, 4, NZ1).
$ EXSZ! (NX1, NY1, 4), EYSZ1 (NX1, NY1, 4)
COMMON/RADSV2/EYSX2 (4,NY1,NZ1)EZSX2(4.NY1,NZ1),
$ EZSY2 (NX1, 4, NZ1),EXSY2 (NX1, 4, NZ1),
$ EXSZ2 (NX1, NYI, 4),EYSZ2 (NX1, NY1, 4)
~
COMMON /INCPW/ AMPX, AMPY, AMPZ, XDISP, YDISP, ZDISP,
DELAY,
$ TAU,OFF
COMMON/EXTRAS/
N.DT,T,NPTS,C,PI, ALPHA ,PERIOD,BETADT,W1,W2,W3
C
COMMON/TERMS/
ESCTC(9),EINCC(9),EDEVCN(9),ECRLX(9),ECRLY(9),
$ECRLZ(9),DTEDX,DTEDY,DTEDZ,DTMDX,DTMDY DTMDZ
C
COMMON/CONSTI/EPS(9),SIGMA(9)
C
COMMON/SAVE/
STORE(NTEST),IOBS(NTEST),JOBS(NTEST), KOBS(NTEST),

$NTYPE(NTEST)
DIAGS3D.DAT

THE PROBLEM SPACE SIZE IS 34 BY 34 BY 34 CELLS IN THE X,

Y, Z DIRECTIONS

TIME STEP IS 0.113283E-09 SECONDS, MAXIMUM OF 256 TIME
STEPS

INCIDENT GAUSSIAN PULSE AMPLITUDE= 1000. V/M

e
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DECAY FACTOR ALPHA= 0.304E+18
WIDTH BETA= 64,

INCIDENT PLANE WAVE POLARIZATION:
RELATIVE ELECTRIC FIELD THETA COMPONENT= 1.0
RELATIVE ELECTRIC FIELD PHI COMPONENT= 0.0

PLANE WAVE INCIDENT FROM THETA =| 80.00 PHI =180.00
DEGREES

THE INCIDENT EX AMPLITUDE = 1000.00000 V/M
THE INCIDENT EY AMPLITUDE = 0.00009 VM
THE INCIDENT EZ AMPLITUDE = 0.00009 V/M

RELATIVE SPATIAL DELAY = 0.0000002

QUANTITIES SAMPLED AND SAVED AT 4 LOCATIONS
SAMPLE: 1, NTYPE= 1, SAMPLED AT CELL I= 17,J= 18, K= 25
SAMPLE: 2, NTYPE= 1, SAMPLED AT CELLI= 17,J= 18, K= 18
SAMPLE: 3, NTYPE= 5, SAMPLED AT CELLI= 17,]= 18, K= 24
SAMPLE: 4, NTYPE= 5, SAMPLED AT CELL I= 17,J= 18, K= 17

EXIT TIME= 0.2900040E-07 SECONDS, AT TIME STEP 256
NZOUT3D.DAT

0.58824E-01 0.58824E-01 0.58824E-01 0.1 132828E-09 256 4
0.000000 0.000000 0.000000 0.000000 )
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000009 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
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0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.006000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 -0.202235E-14
0.000000 -0.108238E-12  0.000000 -0.605891E-13
0.000000 -0.334043E-11  0.000000 -0.439806E-11
0.000000 -0.238393E-09  0.000000 -0.911907E-10

0.000000 -0.509543E-08  0.000000 -0.680289E-08
0.000000 -0.368675E-06  0.000000 -0.112241E-06
0.000000 -0.633948E-05  0.000000 -0.371248E-06
0.000000 -0.821796E-04 -0.505071E-22 -0.769339E-06

-0.270318E-20 -0.206003E-03 -0.215671E-20

-0.117868E-18
-0.724897E-17
-0.211383E-15
-0.113785E-13
-0.289138E-12
-0.492210E-11
-0.236493E-09
-0.486287E-08

N INESIEE
-0.705515E-07

-0.473612E-05
-0.742324E-04
-0.188055E-03
-0.366518E-03

-0.647417E-03 -0.124426
-0.108921E-02 -0.180215
-0.178014E-02 -0.258969
-0.285170E-02 -0.369225
-0.449825E-02 -0.522306
-0.700506E-02 -0.733077
-0.107880E-01 -1.02086
-0.164485E-C1 -1.41050
-0.248508E-01 -1.93361
-0.372212E-01  -2.62999
-0.552889E-01 -3.54915
-0.814660E-01 -4.75200

-0.119086

-6.31261

-0.398780E-03 -0.133459E-18
-0.699520E-03 -0.382751E-17
-0.116874E-02 -0.209046E-15
-0.189847E-02 -0.521084E-14
-0.302657E-02 -0.871081E-13
-0.475712E-02 -0.433616E-11
-0.738953E-02 -0.868801E-10
-0.113593E-01 -0.123657E-08
-0.172950E-01 -0.873090E-07
-0.260960E-01 -0.310801E-06
-0.390386E-01 -0.662690E-06 -0.178593E-03
-0.579171E-01 -0.121921E-05
-0.852305E-01 -0.210613E-05

-0.351114E-05
-0.571056E-05
-0.911023E-05
-0.143061E-04
-0.221711E-04
-0.339773E-04
-0.515631E-04
-0.775613E-04
-0.115704E-03
-0.171228E-03
-0.251408E-03
-0.366250E-03

-0.137985E-05
-0.232803E-05
-0.380618E-05
-0.610326E-05
-0.964751E-05
-0.150680E-04
-0.232825E-04
-0.356201E-04
-0.539920E-04
-0.811224E-04
-0.120861E-03

-0.261787E-03

-0.380690E-03
-0.549233E-03
-0.786165E-03
-0.111647E-02
-0.157310E-02
-0.219910E-02
-0.305005E-02
-0.419703E-02
-0.572985E-02
-0.776077E-02
-0.104285E-01
-0.139021E-01
-0.183856E-01

-0.529384E-03 -0.241213E-01
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-0.172710
-0.248522
-0.354818
-0.502625
-0.706451
-0.985192
-1.36320
-1.87156
-2.54947
-3.44590
-4.62126
-6.14930
-8.11890
-10.6359
-13.8249
-17.8300
-22.8165
-28.9701
-36.4968
-45.6207
-56.5810
-69.6271
-85.0126
-102.987
-123.787
-147.624
-174.671
-205.051
-238.824
-275.967
-316.366
-359.804
-405.949
-454.347
-504.423
-555.479
-606.701
-657.173

TNE QRO
=/U3.007

-751.778
-793.727
-830.614
-861.333
-884.836
-900.158

-8.31988
-10.8792

_14112Q
14,1130

-18.1657

-23.1962

-29.3855
-36.9311
-46.0456
-56.9523
-69.8798
-85.0548
-102.693
-122.987
-146.098
-172.136
-201.153
-233.119
-267.919
-305.331
-345.021
-386.532
-429.284
-472.574
-515.581
-557.386
-596.983

633211
635,511

-665.284
-691.823
-711.901
-724.583
-729.064
-724.715
-711.116
-688.084
-655.700
-614.322
-564.584

£0y7 201
~3U/.055

-443.904
-375.495
-303.723
-230.275
-156.914
-85.4195

-0.759195E-03
-0.108025E-02

N 1898NER_()
UL JLIUSE-UL

-0.213616E-02
-0.296879E-02
-0.409376E-02
-0.560099E-02
-0.760345E-02
-0.102414E-01
-0.136870E-01
-0.181492E-01
-0.238784E-01
-0.311707E-01
-0.403718E-01
-0.518796E-01
-0.661451E-01
-0.836710E-01

-0.313933E-01
-0.405301E-01

& N &N
-0.519050E-01

-0.659350E-01
-0.830775E-01
-0.103823
-0.128684
-0.158181
-0.192822
-0.233077
-0.279350
-0.331944
-0.391023
-0.456569

NEIQIAL
-U.3206540

-0.605851
-0.688284

-0.105008 -0.774510
-0.130748 -0.863037
-0.161511 -0.952006
-0.197930 -1.03919
-0.240634 -1.12203
-0.290216 -1.19763
-0.347208 -1.26289
-0.412042 -1.31450
-0.485016 -1.34912

NSeeIa

LY LVE

-0.566247 -1.36341

-0.655630 -1.35425
-0.752797 -1.31881
-0.857074 -1.25472
-0.967446 -1.16023
-1.08253 -1.03429
-1.20054 -0.876707
-1.31931 -0.688208
-1.43629 -0.470511
-1.54853 -0.226339
-1.65277 0.405996E-01
-1.74548 0.325672

21107

-1.82292 0.623424
-1.88124 0.927730

-1.91660

1.23196

-1.92525 1.52922
-1.90372 1.81253
-1.84888 2.07510
-1.75814 2.31057

429
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-906.454 -17.5259 -1.62956 2.51322
-903.032 45.1383 -1.46198 2.67819
-889.373 101.105 -1.25514 2.80162
-865.162 149.119 -1.00979 2.88084
-830.302 188.173 -0.727758 2.91437
-784.927 217.545 -0.411998 2.90205
-729.409 236.813 -0.666306E-01  2.84492
-664.362 245.862 0.303084 2.74524
-590.632 244.882 0.690795 2.60632
-509.289 234.344 1.08916 2.43236
-421.610 214.979 1.48996 2.22833
-329.055 187.737 1.88433 1.99969
-233.242 153.745 2.26292 1.75221
-135914 114.258 261618 1.49176
-38.8988 70.6126 2.93466 1.22410

55.9240 24.1729 3.20930 0.954698
146.673 -23.7147 343174 0.688585
231.507 -71.7643 3.59471 0.430215
308.675 -118.788 3.69223 0.183387
376.562 -163.724 3.72000 -0.488046E-01
433.738 -205.661 3.67556 -0.263989
478.999 -243.851 3.55849 -0.460505
511.409 -277.713 3.37053 -0.637359
530.334 -306.836 3.11557 -0.794159
535.468 -330.972 2.79963 -0.931035
526.847 -350.020 2.43067 -1.04855
504.860 -364.013 2.01836 -1.14762
470.237 -373.097 1.57379 -1.22938
424.038 -377.516 1.10902 -1.29515
367.615 -377.585 0.636717 -1.34632
302.581 -373.677 0.169615 -1.38430
230.751 -366.200 -0.279914 -1.41046
154.087 -355.584 -0.700345 -1.42606
74.6329 -342.266 -1.08142 -1.43228
-5.55064 -326.680 -1.41451 -1.43015
-84.4545 -309.245 -1.69291 -1.42054
-160.184 -290.364 -1.91204 -1.40419
-231.015 -270.414 -2.06951 -1.38170
-295.444 -249.747 -2.16516 -1.35355
-352.230 -228.688 -2.26093 -1.32007
-400.414 -207.534 -2.18067 -1.28153
-439.343 -186.554 -2.10986 -1.23810
-468.667 -165.994 -1.99531 -1.18989
-488.330 -146.072 -1.84475 -1.13698
-498.557 -126.983 -1.66649 -1.07941
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-499.816
-492.794
-478.345
-457.458
-431.208
-400.712
-367.095
-331.450
-294.809
-258.118
-222.217
-187.830
-155.550
-125.845
-75.3933
-54.9712
-37.7925
-23.7757
-12.7666
-4.55339
1.11892
4.53420
5.99248
5.79818
4.25028
1.63416
-1.78477
-5.76560
-10.0948
-14.5874
-19.0873
-23.4660
-27.6209
-31.4728
-34.9634
-38.0524
-40.7147
-42.9379
-44.7199
-46.0672
-46.9930
-47.5165
-47.6610
-47.4540

-108.900
-91.9720
-76.3282
-62.0737
-49.2918
-38.0426
-28.3626
-20.2636
-13.7327
-8.73203
-5.19875
-3.04608
-2.16485
-2.42566
-3.68184
-5.77317
-8.53013
-11.7787
-15.3457
-19.0637
-22.7769
-26.3454
-29.6498
-32.5948
-35.1113
-37.1583
-38.7225
-39.8176
-40.4814
-40.7732
-40.7687
-40.5554
-40.2275
-39.8801
-39.6047
-39.4839
-39.5881
-39.9721
-40.6735
-41.7117
-43.0882
-44.7875
-46.7793
-49.0208
-51.4600

-1.46898
-1.26050
-1.04882
-0.840897
-0.642728
-0.459164
-0.293857
-0.149248

-1.01723
-0.950483
-0.879263
-0.803692
-0.723955
-0.640308
-0.553087
-0.462719

-0.266170E-01 -0.369729
0.738141E-01 -0.274740

0.152746
0.211639
0.252527
0.277846
0.290251
0.292458
0.287110
0.276658
0.263285
0.248839
0.234813
0.222330
0.212163
0.204762
0.200292
0.198684
0.199686

0.202007

VLLUZH0T

0.207874
0.214063
0.220944
0.228005
0.234775
0.240838
0.245844
0.249513
0.251633
0.252061
0.250715

NIATEca
V.4 7568

0.242641
0.235996
0.227730
0.217964
0.206839

-0.178476

-0.817534E-01
0.145205E-01
0.109366
0.201747

0 20N50n
U.LFUSYU

0.374812
0.453347
0.525177
0.589363
0.645076
0.691625
0.728486
0.755318
0.771984
0.778557
0.775320

0203749
V./0L/0L

0.741561
0.712561
0.676746
0.635202
0.589086
0.539579
0.487854
0.435033
0.382158
0.330161
0.279841
0.231853
0.186695
0.144715
0.106110
0.709464E-01
0.391696E-01
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-46.9263
-46.1119
-45.0470

A 2707
43,717

-42.3236
-40.7482
-39.0880
-37.3869
-35.6887
-34.0363
-32.4708
-31.0309
-29.7516
-28.6640
-27.7942
-27.1630
-26.7854
-26.6702
-26.8203
-27.2324
-27.8978
-28.8025
-29.9280
-31.2520
-32.7491
-34.3919
-36.1514
-37.9980
-39.9025
-41.8362
-43.7716
-45.6829
-47.5462
-49.3398
-51.0438
-52.6409
-54.1155
-55.4543
-56.6458
-57.6803
-58.5499
-59.2483
-59.7706
-60.1138
-60.2760
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-54.0382
-56.6936
-59.3639

£1 0999
-01.706060

-64.5120
-66.8828

-69.0570
-70.9973

-72.6737
-74.0624
-75.1461

-75.9125

-76.3540
-76.4667
-76.2495
-75.7041

-74.8342
-73.6453
-72.1448
-70.3424
-68.2499
-65.8820
-63.2566
-60.3950
-57.3226
-54.0691
-50.6685
-47.1593
-43.5842
-39.9897
-36.4255
-32.9436
-29.5972
-26.4397
-23.5227
-20.8955
-18.6027
-16.6831
-15.1682
-14.0810
-13.4351
-13.2336
-13.4693
-14.1238
-15.1690

0.194511 0.106293E-01
0.181146 -0.149000E-01
0.166913 -0.376958E-01
0.151983 -0.580656E-01
0.136524 -0.763260E-01
0.120702 -0.927854E-01
0.104675 -0.107728
0.885945E-01 -0.121405
0.726028E-01 -0.134022
0.568346E-01 -0.145738
0.414149E-01 -0.156663
0.264591E-01 -0.166856
0.120731E-01 -0.176332
-0.164748E-02 -0.185063
-0.146177E-01 -0.192987

N AERERET.NT 000N T
-U.£0/000E-Ul -U.LUUVILL

-0.380227E-01 -0.206022
-0.483458E-01 -0.210891
-0.576967E-01 -0.214484
-0.660533E-01 -0.216669
-0.734080E-01 -0.217320
-0.797680E-01 -0.216332
-0.851551E-01 -0.213618
-0.896054E-01 -0.209124
-0.931677E-01 -0.202831
-0.959026E-01 -0.194757
-0.978800E-01 -0.184963
-0.951762E-01 -0.173557
-0.998712E-01 -0.160687
-0.100045 -0.146545
-0.997734E-01 -0.131361
-0.991265E-01 -0.115398
-0.981633E-01 -0.989434E-01
-0.969293E-01 -0.823027E-01
-0.954539E-01 -0.657866E-01
-0.937484E-01 -0.497023E-01
-0.918049E-01 -0.343415E-01
-0.895962E-01 -0.199701E-01
-0.870766E-01 -0.681855E-02
-0.841832E-01 0.492718E-02
-0.808394E-01 0.151318E-01
-0.769582E-01  0.237155E-01
-0.724465E-01  0.306555E-01
-0.672111E-01  0.359857E-01
-0.611643E-01  0.397936E-01
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-60.2570
-60.0577

20 £Q07

-59.6807
-59.1294
-58.4088
-57.5242
-56.4822
-55.2896
-53.9536
-52.4811
-50.8793
-49.1547
-47.3134
-45.3610
-43.3026
-41.1432
-38.8878
-36.5420

-16.5668
-18.2709
-20.2278
-22.3790
-24.6623
-27.0142
-29.3720
-31.6756
-33.8694
-35.9036
-37.7360
-39.3327
-40.6686
-41.7277
-42.5028
-42.9951
-43.2136
-43.1737

-0.542300E-01
-0.463503E-01
-0.374911E-01
-0.276480E-01
-0.168512E-01
-0.516886E-02
0.728990E-02
0.203747E-01
0.338945E-01
0.476207E-01
0.612917E-01
0.746193E-01
0.872974E-01
0.990113E-01
0.109449
0.118314

0.422145E-01
0.434241E-01
0.436291E-01
0.430565E-01
0.419428E-01
0.405225E-01
0.390181E-01
0.376304E-01
0.365309E-01
0.358559E-01
0.357025E-01
0.361269E-01
0.371446E-01
0.387330E-01

0.408347E-01
0.433633E-01

0.125334 0.462087E-01
0.130276 0.492444E-01
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A

Accumulator function, 173, 175
Accuracy, 7, 175, 345-346
far zone scattering and, 248, 254
of scattered field FDTD method, 90
Acoustic analog/scaler equivalent, 365-367
Admittance, 267, 273
Advanced research EMP simulator (ARES),
56
Advantages of FDTD method, 2, 3, 6
Aircraft modeling, 56-58, 200
Aliased signals, 72
Alternate formulations. 8, 359-367, see
also specific types
acoustic analog/scaler equivalent and,
365-367
high frequency approximation and, 363~
364
history of, 359
implicit, 363
potential, 360~362
total fields and, 359-360
Amplitude, 175
antennas and, 273
current, 214
Gaussian pulse, 208, 212
Gaussian pulse plane wave of, 208
nonlinear materials and, 206, 221
resonance, 72

Animation, 232
Anisotropic dielectrics, 79
Anisotropic gyrotropic media, 299, 309
Anisotropic materials, 38, 79, 299, 309, see
also specific types
Antennas, 7, 67, 263-297, see also specific
types
analysis of, 194
current of, 265-267, 277, 282, 283
dipole, 264, 266
efficiency of, 263, 265, 273-274, 277,
279
feeding of, 281, 289
gain of, 263, 265, 273-274, 277, 279, 281
absolute, 284, 289, 293, 297
calculations for, 290
copolarized absolute, 293, 297
pauerns in, 292
gap of, 43

geometry of, 265, 277, 279, 284
impedance of, 263, 265, 273-274, 277,
279, 281
calculations for, 284, 290
input, 283, 284
isotropic, 274
lossless, 274
modeling of performance of, 263
monopole, see Monopole antennas
with nonlinear diodes, 204-216
modeling of, 207, 212
performance of, 263
radiating. 43
radiation from, 30. 107, 265
response of, 55
scatterer, 43
shaped-end waveguide, 263, 265, 290
297
source voltage of, 283, 284
structure of, 290
subcellular extensions and, 188
three-dimensional geometry of, 263
voltage of, 265, 277, 281, 283, 284
wire, 191, 204
Aperture coupling, 363-364
Aperture cutoff, 52
frequency above, 62-70
frequency below, 70-76, 81
Aperture geometry, 80
Approximation, 293, 317. see also specific
iypes
ESP4 program and, 267
exponential series, 174
far zone scattering and, 244, 252
first-order, 351, 352, 354
fuzziness, 38
high frequency, 363-364
of tumped foads, 213
Mur, 45, 351, 352, 354, 356, 357
Pade, 357
Prony, 3, 173, 174, 197
second-order, 351, 352, 354, 356, 357
Smyth-Kirchhoff aperture, 363-364
staircase, 38
staircase errors and, 244
sub-cell wire, 204
ARES, see Advanced research EMP
simulator
Amays, 110, 190, 251, see also specific
types
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Asymptotic frequency, 299
B

Backscatter, 106, 248, 252, 254, 256, 259
Backward coupling, 81--84
Bandwidth scattering, 261
Bessel function, 291
Bethe small hole theory, 79, 195
Body of revolution (BOR) scattering, 369,
370, 381, 384, 385
BOR, see Body of revolution
Boundary conditions, see also specific
types
far zone scattering and, 242, 251
gyrotropic media and, 299
Miir absorbing, see Mur absorbing
boundaries
nonlinear materiais and, 219. 220
outer radiation, see Outer radiation
boundary condition (ORBC)
radiation, 4346, 113
at scatterer surface, 242
surface impedance, see Surface imped-
ance boundary conditions (SIBC)
volumetric, 88
Boundless free space, 43
Broadband frequency domain, 106
Broadband response predictions, 3

Capacitance, 192, 213
cell, 206, 207, 213, 214
diode, 213
free space, 204, 205, 213, 214
lumped, 193
parallel plate, 193
Capacitive gap sensors, 58
Capacitors, 191, 193, 207
Carriers, 314, see also specific types
Cartesian coordinate systems, 33, 369, 382-
384, 388
one-dimensional, 387-389
two-dimensional, 369
Cartesian geometry, 369, 370, 389
Cartesian vector components, 109
Cartesian Yee cells, 375
Cauchy theorem, 128
Cavity modes, 68
Cavity shielding, 63-64
Cells, 26, see also specific types
capacitance of, 206, 207, 213, 214
conductance of, 208

conductivity of, 193
current of, 207
Eulerian, 365
Lagrangian, 365, 367
large, 185
nonuniform, 31, 251
parallelepiped, 265
size of, 29-31, 164, 181, 185
antennas and, 283, 284
coordinate systems and, 381
dispersion and, 344
nonlinear materials and, 212
reduction in, 381
time steps and, 227
small, 31
square, 80
uniform size of| 31
Yee, see Yee cells
Ceniered finiie differences. 21
Chain rule for derivatives, 218
Charges, 53-55
Circuits, see also specific types
lumped, 185, 190-194. 204, 207, 216
open, 194
short, 264
theory of, 264
Circularly polarized (CP) waves, 301, 308,
314, 320
Coaxial cable, 65, 282
Cold plasmas, 299
Collision frequency, 135, 136
Competitive methods, 264, see also specific
rypes
Computational engineering, 1
Computer-aided design (CAD), 42
Computer engineering, 1
Computer science, 1
Conductance, 205, 207, 208
Conducting layer approach, 348
Conduction current, 126, 208, 314
Conductivity, 32, 37, 72
antennas and, 273
cell, 193
effects of, 136
far zone scattering and, 252, 261
of frequency-dependent materials, 123,
126, 130, 135, 136, 139, 147
of human body tissue, 96
increase in, 179
of nonlinear materials, 205, 218-221,
226-228
nonzero, 136
representative, 76
scattered field FDTD method and, 23
subcellular extensions and, 193

Index

surface impedance and, 164, 176, 179

Constant multipliers, 24
i parameter materials, 166169, see
also specific types
Continuity equations, 366-367
Continuous wave (CW) response, 4, 65,
360
Contour plots, 232
Convolution, 144, 145, 170, 171, 306, 314
recursive, see Recursive convolution
Convolution integrals, 124, 158, 304
Coordinate systems, 369-389, see also
specific types
Cartesian, see Cartesian coordinate
systems
cylindrical, see Cylindrical coordinate
systems
one-dimensional, 347, 387-389
orthogonal, 370
rectangular, 347
spherical, see Spherical coordinate
systems
three-dimensional, 369, 382
two-dimensional, 369, 382, 384-387
Copolarized absolute gain, 293, 297
Coupling, 5, 53-76, see also specific types
aperture, 363-364
backward, 81-84
electromagnetic pulse and, 53-55
exierior puise response and, 55-61
forward, 81-84
frequency above aperture cutoff and, 62—
70
frequency below aperture cutoff and, 70—
76
geometry of, 232, 359
interior, 53, 54
interior shielding and, see Interior
shielding
scientific visualization and, 231
subcellular extensions and, 188
waveguide aperture, 5, 79-84
Courant limit, 137, 165
antennas and, 266

nonlinear materials and, 204, 210, 213,

216 276798
216, 226-228

Courant stability, 17, 32, 35, 36, 47, 11,
335
coordinate systems and, 381, 386
FORTRAN code and, 398
Mur absorbing boundaries and, 354
nonlinear materials and, 226, 227
CP, see Circularly polarized
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Crank-Nicholson equation, 328-329, 335,
363

Cross-poiarization, 297

Current, 54
aircraft skin, 54
amplitude of, 214
antenna, 264-267, 277, 282, 283
at base of wires, 72
capacitor, 207
cell, 207
conduction, 126, 208, 314
diode, 205, 206, 208-210
displacement, 164, 207, 208, 220
exterior surface, 53
out-of-phase, 277
responses of to stimulated EMP, 55
scattered magnetic surface, 110
short circuit, 264

source of. 282
source of, 282

surface, 106, 110
total, 192, 208, 214
transient, 214, 283, 284
z-directed, 274
Cutoff frequency, 54, 290
CW, see Continuous wave
Cyclotron frequency, 301
Cylindrical coordinate systems, 369-382
Maxwell equations and, 370, 372
one-dimensional, 387-389
two-dimensional, 384-387
Yee ceils and, 375, 380

D

Damping coefficient, 146
Data savers, 26
Debye dispersion, 124-131
Debye equation, 124
Debye materials, 124, 127, 136
Debye results, 136
Decays, 127
DFT, see Discrete Fourier transform
Diagonal permiutivity, 38
Dielectric constants, 96, 249
Dielectrics, 79, 123, 290, 421, see also
specific types
iossy, see Lossy dielectric
Differential equations, 7, 220, 327-334, see
also specific types
elliptical, 328
first-order, 365
frequency-dependent materials and, 151-
154
hyperbolic, 327, 330-333, 335
leapfrog method and, 329, 332-334
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linear coupled first-order, 365
parabolic, 328-330, 335
ial, 327, 335, 366

spatial, 327
Differ p
Diffraction,
Diffusion equations, 327, 329
Digital signal processing, 231
Diodes, see also specific types

capacitance of, 213

conductance of, 207

current of, 205, 206, 208-210

nonlinear, 204-216

modeling of, 207, 212

resistance of, 206

voltage of, 204-205, 207, 208
Dipole antennas, 264, 266
Dipole impedance. 264
Dip. 213, 267, 274, see also

periie
3

specific types
Dipole voltage, 267
Dirac delta function, 127, 158
Direct computation of total fields, 4243
Discrete convolution, 144
Discrete Fourier transform (DFT), 105-106
Discrete impulse response function, 174
Dispersion, 7, 335

Debye, 124-131

Drude, 131-139

in ferrites, 299

first-order Debye, 124~131

first-order Drude, 131-139

numerical, 339-345
Displacement current, 164, 207, 208, 220
Drivers, 25
Drude dispersion, 131-139
Drude frequency domain permittivity, 299
Drude materials, 136
Drude permittivity, 136
Dufort-Frankel scheme, 329
Dumping coefficient, 139

E

Electromagnetic energy determination, 53

E mulea (EAMDY 82 84

Electromagnetic Surface Patch Version 4,
267

Elliptical equations, 328

EMP, see Electromagnetic puise

EMPEROR, 65

Energy, 53, 72, 75, 137, 263, see also
specific types

Errors, 243, 256, see also specific types

pulse (EMP), 53- 56

grid dispersion, 32
modeling, 234
staircase, 243, 244, 248-251

Eulerian cells, 365

Expansion technique, 194-199

Explicit differencing schemes, 328, 329
Exponential differencing, 90-91
Exponential series approximation, 174
Exterior pulse response, 55-61

Exterior surface charges, 53

Exterior surface currents, 53

F

Faraday-Maxwell equation, 168, 189, see
alyo Maxwell’s equations
Faraday rotation of waves, 301
Far field radiation, 349
Far zone backscatter, 252. 254
Far zone radiation, 264
Far zone scattering, 7, 241-261
distance to outer boundary and, 254-259
frequency-dependent materials and, 259-
261
fundamentals of, 243-244
impedance sheets and, 251-254
staircase errors and, 242-244, 249-251
Far zone time domain, 274
Far zone transformation, 26, 105-122, 241
three-dimensional, 107-113, 116, 117,
242
transient, 242, 243, 264
two-dimensional, 113-118
Far zone transient fields, 116
Far zone vector potentials, 106, 113
Fast Fourier transform (FFT), 35, 81
alternate formulations and, 360
far zone scattering and, 241
far zone transformation and, 106, 111
frequency domain information and, 97
scientific visualization and, 234
Ferrites, 123, 145, 299, see also specific
types
anisotropic, 309

plasmas compared 1o, 321
Ferromagnetic materials, 79, 217, see also
specific types
FFT, see Fast Fourier transform; Fast
Fourier trnasform

Field algorithms, 26

sl

Index

Field distribution, 31
Field incidents, 91
Field strength, 221
First-order approximation, 351, 352, 354
First-order Debye dispersion, 124131
First-order differential equations, 365
First-order Drude dispersion, 131-139
First-order (Leontovich) surface impedance
boundary conditions, 166, 170
Floating-point operations, 47, 48
Flow chart for FDTD method, 27
Flux density, 153
FORTRAN code, 391433
COMMONA FOR, 424-426
Courant stability and, 398
description of, 391
DIAGS3D.DAT, 426-427
FDTDA.FOR, 391-424
for Gaussian pulse plane waves, 391
incident fields and, 399
for lossy dielectrics, 22-24, 391, 400—
401, 405, 421
NZOUT3D.DAT, 427-433
outer radiation boundary condition and,
406413
for perfect conductor, 19-20, 391
radiation and, 394
for scattered field FDTD method, 19-20,
22-24
spatial delay and, 399

Forward coupling, 81-84
Fourier transforms, 72, see also

specific
types

accuracy and. 245
accuracy and, 345

antennas and, 264, 266, 267, 273, 274,
283, 284
casual, 127
discrete, 105-106
dispersion and, 340-341, 343
of driven dipoles, 267
far zone scattering and, 243, 259
far zone transformation and, 116, 117
fast, see Fast Fourier transform (FFT)
of field incidents, 91
frequency-dependent materials and, 125,
127, 131, 135, 136, 138, 139
casual, 127
fundamental, 127
Lorentz second-order pole and, 145
of pulses, 156
susceptibility function and, 135
fundamental, 127
Gaussian excitation voltage and, 283
gyrotropic media and, 302

439

inverse, 108, 168, 170, 301
Lorentz second-order pole and, 145
of pulses, 156
stability and, 336, 337
surface impedance and, 168 170
of susceptibility function, 135
Frankel-Dufort scheme, 363
Free electron gases, 299
Free magnetic carriers, 314
Free space, 16, 17, 29, 44, 123
boundless, 43
capacitance and, 204, 205, 213, 214
impedance of, 219
nonlinear materials and, 216
surface impedance and, 164, 165
Free space finite difference equations. 339~
341
Frequency
above aperture cutoft, 62-70
asymptotic, 299
below aperture cutoff, 70-76, 81
collision, 135, 136
cutoff, 54, 290
cyclotron, 301
excitation, 293
nonlinear materials and, 216, 221
Nyquist, 42, 72, 359
optical, 299
oscillation, 95
patterns of, 289-290
plasma, 300
proce

proce!
radian plasma, 135
resonant, 139
sinusoidal excitation, 290
from transient fields, 151
Frequency-dependent materials, 6, 29, 123—
161, see also specific types
conductivity of, 123, 126, 130, 135, 136,
139, 147
differential equation method and, 151-
154
far zone scattering and, 241-243, 259
261
first-order Debye dispersion and, 124-131
first-order Drude dispersion and, 131-139
multiple poles and, 146-151
of, 123, 145
permittivity of, 123, 124, 130, 136, 146,
147
scattered field FDTD method and, 154—
161
second-order dispersive, 139-146
surface impedance and, 169-172

nal, 314
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Frequency domain, 65, 74, 106
antennas and, 264, 267, 292
broadband, 106
frequency-dependent materials and, 123,
147
nonlinear materials and, 203
scientific visualization and, 232
steady-state, 266
surface impedance and. 166, 168
susceptibility to, 127
transient, 106
Frequency domain backscatter, 248, 259
Frequency domain far zone fields, 105
Frequency domain information, 97
Frequency domain permittivity, 299
Frequency domain RCS, 113
Frequency domain scattering, 241
Frequency domain susceptibility, 127, 302
Frequency impedance, 281
Fuzziness approximations. 38
Fuzzy dispersive calculations, 261
Fuzzy outer surface, 259
Fuzzy surface approach, 249

G

Gain, 279
absolute, 277, 284, 289. 293, 297
antenna, 263, 265, 273-274, 277, 279,
281
absolute, 284, 289, 293, 297
calculations for, 290
copolarized absolute, 293, 297
patterns in, 292
. copolarized absolute, 293, 297
measurements of, 293
patterns in, 292
Gas law, 366
Gaussian envelope, 81
Gaussian excitation voltage, 283
Gaussian pulse, 34
advantages of, 156
amplitude of, 208, 212
antennas and, 265, 267
derivative, 137, 138, 140, 141, 321
determination of parameters for, 36
far zone scattering and, 248, 254
far zone transformation and, 113, 118
frequency-dependent materials and, 137,
138, 155, 156
gyrotropic media and, 321
incident, 181, 248
nonlinear materials and, 213
surface impedance and, 175, 181

truncated, 155
Gaussian pulse plane waves, 33, 130, 147
far zone scattering and, 252, 254
FORTRAN code for, 391
gyrotropic media and, 207
incident, 252
nonlinear materials and, 206
of peak amplitude, 208
Gaussian pulse voltage, 265, 267, 283, 284
Gaussian waveforms, 72
Geometrical theory of diffraction (GTD), 3
Geometry, 70-72, 217, 381
antenna, 191, 263, 265, 277, 279, 284
aperture, 80
Cartesian, 369, 370, 389
couphing, 232, 359
Guussian pulse amplitude, 212
gyrotropic media, 309
interior, 76, 197, 198
magnetized ferrite, 309
one-dimensional, 299
quantization and, 217
scattering, 359
scientific visualization and, 231, 232
shaped-end radiator, 290
three-dimensional, 263, 299
two-dimensional, 299, 369, 370
waveguide, 79
wire antenna, 191
wire monopole, 265
Yee cell, 20, 45

GINT, 112

Good conductors, 123, 166, 221
Grid dispersion errors, 32
GTD, see Geometrical theory of diffraction
Gyrotropic media, 7, 299-322, see also
specific types
anisotropic, 299, 309
electromagnetic field interactions with,
309
geometry of, 309
isotropic, 300, 304
magnetized ferrites as, see Magnetized
ferrites
magnetized plasma as, see Magnetized
plasmas
permittivity of, 299-301, 303

H

Harmonics, 67

Harmonic vector potentials, 107

High conductivity surface impedance, 176
High frequency approximation, 363-364

Index

Horizontally polarized dipoles (HPD), 53,
55-56

HPD, see Horizonially polarized dipoles

Human body electromagnetic penetration,
87,.91-97

Hybrid techniques, 3, 105, 106, see also
specific types

Hyperbolic equations, 327, 330-333, 335,
363, see also specific types

I

Ideal dielectrics, 123
IMAGE, 232
Image theory, 213
Impedance
anienna, 263, 265, 273-274, 277, 279,
281
calculations for, 284, 290
input, 283, 284
defined, 164
dipole, 264
far zone scattering and, 242
of free space, 219
frequency, 281
input, 65, 279, 283, 284
mutual, 263, 273
patterns of, 264
resistive, 251
self-, 263, 273
sheet, 252
surface, see Surface impedance
thin wire, 190
Im:\ndannﬂ matching conditi ons, 348
Impedance sheets, 251-254
Implicit differencing methods, 217, 328,
363
Incidence angles, 113, 254, 259
Incident fields, 30
antennas and, 264
Cartesian components of, 33
description of, 72
far zone scattering and, 243
far zone transformation and, 107
FORTRAN code and, 399
frequency-dependent materials and, 131,
155, 157
in near zone sphere scattering, 90
nonlinear materials and, 220-221
polarization of, 248
specification of, 33-36
Incident plane waves, 241
Incident pulse, 53, 155, 160, 161
Incident waveforms, 221

441

Inductance, 168, 193, 194
Infinite frequency permittivity, 124
Input impedance, 65, 279, 283, 284
Input power, 273, 284
Instability, 29, 228, 335
Integration contours, 185-188
Interior coupling, 53, 54
Interior geometry, 76, 197, 198
Interior response, 62
Interior shielding, 53, 61-76
cavity, 63-64
data evaluation for, 66-69
effectiveness of, 62, 69-70
frequency above aperture cutoff and, 62—
70
frequency below aperture cutoff and, 70—
76
upper limit in frequency for, 72
Internal wires, 71
Intuition building. 235-236
Inverse Fourier iransforms, 108, 168, 170,
301
Isotropic antennas, 274
Isotropic plasmas, 300, 304

K
Kramers-Kronig relationship, 127

L

Lagrangian cells, 365, 367

Laplace’s equation, 328

Lapiace transform, 171

Large cells, 185

Lax-Friedrichs scheme, 332

Lax-Richtmyer equivalence theorem, 336

LCP, see Left circularly polarized

Leapfrog method, 17, 329, 332-335, 337

Left circularly polarized (LCP) waves, 308,
314, 320

Legendre polynomial analytic continua-
tions, 348

Leontovich (first-order) surface impedance
boundary conditions, 166, 170

Liao’s absorbing boundary, 259

Light, speed of, 219

Lighting, 53, 54

Look-back schemes, 348, 349

Lorentz material, 139, 261

Lorentz poles, 139, 145-147, 151

Lossless isotropic antennas, 274

Lossless plasmas, 300

Loss tangent, 164
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Lossy cylinders, 242
Lossy dielectrics, 20-22, 29-30, 163, 164
antennas and, 263, 290
FORTRAN code for, 22-24, 391, 400~
401, 405, 421
governing equations for, 53
permittivity for, 164
waveguide aperture coupling and, 79
Yee cells and, 37
Lossy dielectric scattering, 5, 87-102
human body electromagnetic penetration
and, 87, 91-97
near zone sphere. 90-91
scattered field FDTD method and, 87-89
Lumped capacitance, 193
Lumped circuits, 185, 190-194, 204, 207,
216
Lumped conductance, 205
Lumped inductance, 193
Lumped loads, 204. 213, 263

M

Magnetic frill method, 282
Magnetic loop sensors, 58
Magnetic sheets, 216-221, 226-228
Magnetized ferrites, 308-321, see also
specific types
anisotropic, 309
electromagnetic field interactions with,
309
geomeiry of, 309
magnetized plasmas compared to, 321
permeability tensors of, 320
Magnetized plasmas, 299-308, see also
specific types
isotropic, 300, 304
magnetized ferrites compared to, 321
permittivity of, 301, 303
Marginal stability, 228
Mathematical operations, 328
Maxwell equations, 3, 4, 327, 329, 332, see
also Faraday-Maxwell equation
alternate formulations and, 360, 363, 365
coordinate systems and, 369, 370, 372,
a8
dispersion and, 343
frequency-dependent maieriais and, 126,
127
nonlinear materials and, 218
scattered field FDTD method and, 1113,
17
subcellular extensions and, 185-187
Measurements, 58 -61, 284, 289, 293, see
also specific types

Metallic probes, 263
Metals, 299, see also specific types
Method of moments, 231, 254

antennas and, 263-265, 267, 274, 277,
279
computer time and, 284
frequency paiterns and, 290
gap source and, 281
magnetic frill method and, 282
wire gap and, 289
thin wire, 263
Microstrip structures, 79
Mie sphere scattering, 87
MoM, see Method of moments
Monopole antennas. 279-290
gain of, 279, 281, 290
geometry of, 279, 284
impedance of, 279, 281, 290
Monopoles, 213, 265
Motion equations. 365-366
Motion laws, 365
Multiple poles, 146-151
Multipliers, 24
Mur absorbing boundaries, 30, 46, 57, 113,
347, 349--355, see also Quter
radiation boundary condition (ORBC)
alternate formulations and, 360
antennas and, 281, 284, 292
differential equations and, 332
far zone scattering and, 241, 244, 254,
256, 259
frequency-dependent materiais and, i30,
137, 147
gyrotropic media and, 307
near zone sphere scattering and, 91
nonlinear materials and, 204, 212
stability and, 354
wave equations and, 349, 350
waveguide aperture coupling and, 79, 80
Mur approximation, 45, 351, 352, 354, 356,
357
Mur expressions, 44, see also specific types
Mutual impedance, 263, 273

N

Nearest-neighbor field, 44

Nearest-neigitbor mieractions, 20

Near-to-far-field transformation, 6

Near zone sphere scattering, 90-91

Newton-Raphson iteration, 208, 210, 212,
214

Newton’s second law of motion, 365

Noise removal, 91

Nonlinear diodes, 204-216

k

Index

modeling of, 207, 212
Nonlinearity, 226
Nonlinear loads, 6, 190, 203-229
magnetic sheets and, 216-221, 226-228
Noniinear materials, 6, 79, 203-229, see
also specific types
antenna with nonlinear diodes and, 204—
216
conductivity of, 205, 218-221, 226-228
far zone scattering and, 242
magnetic sheets, 216-221, 226-228
permeability of, 221, 227, 228
permittivity of, 226, 227
stability of, 204, 216, 218, 226-228
Nonuniform cells. 31, 251
Nuclear detonation, 53
Numerical dispersion, 339-345
Numerical methods, 3, 79, see also specific
lypES
Nyquist frequency, 42, 72, 359
Nyquist sampling, 30, 31

(o}

Object building, 3742, 249
Odd-order harmonics, 67
One-dimensional arrays, 190
One-dimensional calculations, 130, 147
nonlinear materials and, 219
polarization and, 388
on reflection, 307
surface impedance and, 163, 175, 179
on transmission, 307
One-dimensional coordinate systems, 347,
387-389
One-dimensional geometry, 299
One-dimensional transmission lines, 347
One-way wave equations, 331, 356-358
Open circuits, 194
Optical frequency, 299
ORBC, see Outer radiation boundary
condition
Orthogonal coordinate systems, 370
Oscillation frequency, 95
Outer boundary, 196, 204, 254-259, see

also Ou

tion boundary

condition
Guter radiation boundary condition

(ORBC), 7-8, 26, 43-46, 347-358,
see also Mur absorbing boundaries

alternate formulations and, 360

efficiency of, 354

evolution of, 348-349

far zone scattering and, 241

FORTRAN code and, 406-413

history of, 347-349

human body electromagnetic penetiation
and, 92

near zone sphere scattering and, 91

subcetlular extensions and, 195

wave equations and, 327, 330, 331, 349,
350, 356-358

P

Pade approximation, 357

Parabolic equations, 328-330, 335
Parallelepiped cells, 265

Parallel plate capacitance, 193

Parallel plate waveguide visualization, 236
Partial differential equations. 327, 335, 366

Particle-in-cell (PIC) si ion codes, 300
Passive microwave structures, 79
Darfect condiicio

Perfect conducior, 16-19, 40
coupling and, 53
FORTRAN code for, 19-20, 391
lossy dielectric scattering and, 87, 88
propagation of, 88
surface impedance and, 165
waveguide aperture coupling and, 79
Yee cells and, 37
Permeability
differential, 217, 219
of frequency-dependent materials, 123,
145
gyrotropic media and, 299
maximum, 221
of nonlinear materials, 221, 227, 228
scattered field FDTD method and, 23
tensor, 299
Permeability tensors, 38, 299, 314, 320
Permittivity, 37, 39
diagonal, 38
Drude, 136
Drude frequency domain, 299
far zone scaitering and, 252, 254, 261
of frequency-dependent materials, 123,
124,130, 136, 146, 147
frequency domain, 299
of gyrotropic media, 299-301, 303
infinite frequency, 124
for lossy dielectrics, 164
of nonlinear materials, 226, 227
off-diagonal, 303
of plasmas, 300, 301, 303
relative, 147, 164, 254, 300
scattered field FDTD method and, 23
static, 124
surface impedance and, 164
tensor, 299, 300
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Physical optics (PO), 3
Physical process insight, 235
Physics, 55

see Particle-in-cell

Plasma frequency, 300
Plasmas, 123, 136, 138, 142, 143, 145, 299,
see also specific types
cold, 299
ferrites compared to, 321
isotropic, 300, 304
lossless, 300
magnetized, see Magnetized plasmas
permittivity of, 300, 301, 303
susceptibility for, 139, 304
unmagnetized, 300
PLUTO, 63-67, 70-72
PO, see Physical optics
Point-source radiation, 65
Poisson’s equation, 328
Polarization, 113, 251, see also specific
types
coordinate systems and, 388
cross-, 297
electric field, 249, 252
incident field, 248
transverse electric, 115, 117-118
transverse magnetic, 115, 117-118
Poles, see also specific types
Lorentz, 139, 145-147, 151
multiple, 146-151
Potential formuiations, 360362
Predictions, see also specific types
of antenna radiation, 265
broadband response, 3
of human pody electromagnetic
penetration, 91
measurements vs., 58-61
near zone sphere scattering and, 91
response, 72-76
Problem space, 25, 284, 347
Processional frequency, 314
Prony approximation, 3, 173, 174, 197
Propagation, 320
Pulsed planes, 130, 147
Pulses, sce specific
electromagnet;
excitation of, 53, 105, 264, 289
exterior, 55-61
Fourier transforms of, 156
Gaussian, see Gaussian pulse
incident, 53, 155, 160, 161
propagation of, 130

scattered field transmitted, 160
smooth cosine, 155
smoothed cosine, 29

0
X

Quantization, 109, 217
R

Radar cross section (RCS), 111, 113, 116,
251, 263
Radian plasma frequency, 135
Radiating antennas, 43
Radiation, see also specific types
antenna, 30, 107, 263, 265
body of revolution, 369, 370, 381, 384.
385
far field, 349
far zone, 264
FORTRAN code and, 394
losses of, 72
patterns of, 232, 263, 264, 283, 289
point-source, 65
transmissitivity of, 72
Radiation boundary conditions, 4346, 113
Radio flash, see Electromagnetic pulse
Rayleigh-Mie analytic solutions, 91
RCP, see Right circularly polarized
RCS, see Radar cross section
Reactance, 167
Reai-time animation, 232
R gular coordinate sy , 347
Recursive convolution method, 154-161
frequency-dependent materials and, 130-
131, 144, 153, 154
scattered field form of, 154~161
surface impedance and, 172-175
Recursive convolution term, 136
Reflection, 307
Reflection coefficients, 131, 139, 142, 151,
160, 176, 308, 354
Reflectometry, 65
Resistance, 167, 168, 206, 207, 210
Resistance cards, 251

Resistive impedance, 251
Resistors, 191, 193, 213, 214
Resonance, 62, 71, 73, 74, 274, 299

Resonance amplitude, 72

Resonance energy, 72

Resonant frequency, 139

Resource requirements for FDTD method,
4649

Index

Response predictions, 72-76

Right circularly polarized (RCP) waves,
308, 314, 320

Running discrete Fourier transform, 105-
106

S

SAR, see Specific absorption rates
Scalar wave equations, 350
Scattered electric fields, 88, 89, 159
Scattered field FDTD method, 4-5, 11-27,
29, 42, 359, see also specific types
accuracy of, 90
architecture of, 24-26
capabilities of, 90
code requirements for, 24-26
far zone transformaiion and, 107
flow chart for, 27
FORTRAN code for, 19-20, 22-24
frequency-dependent materials and, 125,
154-161
human body electromagnetic penetration
and, 92
interpretation of, 87-89
lossy dielectric, 22-24
lossy dielectric scattering and, 87-89
lossy material formulation and, 20-22
Maxwell equations and, 11-13, 17
perfect conductor and, 16-20
separate field formalism and, 12-16

smitted pulse 160
ismitted pulse, 160

Scattered magnetic surface current, 110
Scatterer antennas, 43
Scattering, see also specific types
bandwidth, 261
body of revolution, 369, 370, 381, 384,
385
far zone, see Far zone scallering
frequency domain, 241
geometry of, 359
from ice crystals, 241
lossy dielectric, see Lossy dielectric
scattering
Mie sphere, 87
near zone sphere, 90-91
practical problems in, 181
from raindrops, 241
sphere, 87, 90-91, 111, 249
two-dimensional, 244
Scattering cross sections, 242, 243
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Scattering width, 116
Schrodinger equation, 328
Scientific visualization, 6, 231-238
advantages of, 231
costs of, 232 237 238
examples of, 234-236
rationale for, 231
resources for, 237-238
types of, 231-232
Second-order approximation, 351, 352, 354,
356, 357
Second-order dispersive materials, 139-146
Second-order Lorentz poles, 146, 147, 151
Self-impedance, 263, 273
Semiconductors, 299
Sensors, 58, sce also specific types
Separate field formalism, 12-16
SER, see Shaped-end radiators
Shaped-end radiators (SER), 290
Shaped-end waveguide antennas, 263, 265,
290-297
Sheet impedance, see Surface impedance
Shield aperture, 54
Shielded wire, 79
Shielding, 54, see also specific types
cavity, 63-64
data evaluation for, 66-69
effectiveness of, 62, 69-70
interior, see Interior shielding
Short circuit current, 264
SIBC, see Surface impedance boundary
conditions
Signals, 72, 81, 231, see also specific types
Sinusoidai excitation, 129, 290, 360
Sinusoidally varying signals, 81
Sinusoidal variation, 283
Sinusoidal waveforms, 292
Small cells, 31
Small hole theory, 79, 195
Smooth cosine pulse, 155
Smoothed cosine pulse, 29
Smyth-Kirchhoff aperture approximation,
363-364
Source voltage, 191, 283, 284
Spatial delay, 399
Spatial differential equations, 327
Spatial plots, 130, 147
Specific absorption rates (SAR), 97, 100—
102
Speed of light, 219
Sphere scattering, 87, 90-91, 111, 249
Spherical coordinate systems, 370~382
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Maxwell equations and, 370, 372
Yee cells and, 375, 380
Square cells, 80
Stability, 7, 17, 335-339
boundary betv i
Courant, see Courant stabi
of expansion technique, 197
marginal, 228
Mur absorbing boundaries and, 354
of nonlinear materials, 204, 216, 218,
226-228
time step size for, 32
Staircase approximations, 38
Staircase errors, 242-244, 248-251
Standard temperature and pressure (STP)
air, 365
Static permittivity. 124
Steady-state frequency domain, 266
Steady-state input power, 273, 284
STP, see Standard temperature and pressure
Sub-cell methods, 31, 208, 212, 265, 289,
see also specific types
Subcellular extensions, 6. 185-200
code requirements for, 199
expansion technique and, 194-199
integration contours and, 185-188
limitations of, 199
lumped circuits and, 185, 190-194
utility of, 199
Sub-cell wire approximation, 204
Surface currents, 106, 110
Surtace impedance, 6, 31, 163-183, 243,
see also Surface impedance
boundary conditions (SIBC)
applications of, 176
constant parameter materials and, 166—
169
defined, 164, 252
demonstration of, 175-181
frequency-dependent materials and, 169~
172
high conductivity, 176
recursive convolution method and, 172-
175
time domain, 171

Lrface impedance boundary co!
urface impedance boundary condition:
1

(SIBC), 163-166, 1
applicability range of, 166
cell size and, 181
dispersive, 181
first-order (Leontovich), 166, 170
frequency domain constant, 168
grid size and, 181

7]

recursive method and, 173
Surface inductance, 168
Surface reactance, 167
tance, 167, 168
5
Dirac delta function and, 158
frequency-dependent materials and, 127,
135, 136, 139, 144, 145, 152, 156
Dirac delta function and, 158
substituting for, 157
frequency domain, 127, 302
gyrotropic media and, 301-303, 308, 315,
319, 321
isotropic plasma, 304
for plasmas, 139. 304
time domain, 125, 135, 136, 144, 145
gyrotropic media and, 301, 302, 303,
308. 315. 321

T

Tangential total fields, 166
Taylor series expansion, 333, 336
TDR, see Time domain reflectometry
TEM, see Transverse electromagnetic
Temporal quantization, 109
Tensors, 300, see also specific types
gyrotropic media and, 314
permeability, 38, 299, 314, 320
permeability of, 299
permittivity of, 299, 300
Test object definition, 26
Thin wire method of moments, 263
Thin wires, 185, 188—190, 208, 265, 284
Three-dimensional calculations, 163
Three-dimensional coordinate systems, 369,
382
Three-dimensional far zone transformation,
242
Three-dimensional geometry, 263. 299
Three-dimensional transformation, 107—
113, 116, 117, 242
Time domain reflectometry (TDR), 65
Time excitation, 129
Time harmonic vector potentials, 107
Time steps, 29, 74
antennas and, 266, 284
cell size and, 227
coordinate systems and, 381
discrete, 304
gyrotropic media and, 304, 305, 316
nonlinear materials and, 204, 214, 216,
227,228

Index

number of, 47
reduction in, 227, 381
size of, 32, 216
TM, sec Transverse magnetic
Total fields, 14, 107, 359-360
antennas and, 264-265
direct computation of, 42-43
tangential, 166
Transfer functions, 55, 65
Transformations, seel also Transforms, see
also specific types
far zZone, see Far zone Iransfurmatiun
near-to-far-field, 6
three-dimensional, 107-113, 116, 117,
242
two-dimensional, 13-118
Transforms, see also Transformations, 73,
171, 197, see aiso specific rypes
Fourier, see Fourier transforms
Transient approach, 106
Transient backscatter, 106
Transient currents, 214, 283
Transient far zone fields, 106
Transient far zone time domain, 274

Transient far zone transformation, 242, 243,

264
Transient FDTD method, 139
Transient fields, 53, 116, 123, 147, 151,
242
Transient frequency domain, 106
Transient range test facility, 65-66
Transient response, 138
Transient time domain current, 284

sn. 72
n, 72

Transmiss

Transmission, 307

Transmission coefficients, 139, 143, 308

Transmission lines, 347

Transmissitivity, 74

Transverse electric polarization, 115, 117—
118

Transverse electromagnetic (TEM) plane
waves, 388

Transverse magnetic (TM) modes, 68

Transverse magnetic (TM) polarization,
115, 117-118

TRESTLE, 56

Two-dimensional calculations, 163, 179,
181

Two-dimensional coordinate systems, 369,
382, 384-387

Two-dimensional geometry, 299, 369, 370

Two-dimensional scattering, 244

Two-dimensional transformation, 113-118

vity of radiat
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u
Uniform cell size, 31

A%
4

Vacuum-water interface, 130
Validation of FDTD method results, 69
Variable amplitude, 221
Variable resistance, 207, 210
Vector potentials, 106-108. 110, 112, 113
Vertically polarized dipoles (VPD), 55-56
Visualization, see Scientific visualization
Vlasov radiators, 290, 292, 297
Voltage

antenna, 265, 277, 281, 283, 284

diode, 204-205, 207, 208

dipole, 267

Gaussian excitation, 283

Gaussian pulse, 265, 267, 283. 284

out-of-phase, 277

source, 191, 283, 284
Volumetric boundary conditions, 88
Volumetric computational method, 30
VPD, see Vertically polarized dipoles

w

Wave equations, 327, 330, 331, 349, 350,
356-358
Waveguide aperture coupling, 5, 79-84
de geomeiry, 79
Waveguide radiators, 292
Wire antennas, 191, 204
Wire monopole geometry, 265
Wires, 67, 74, 195, see also specific types
current response at base of, 72
diameter of, 281
internal, 71
magnetic frill method for exciting, 282
modeling of, 63, 265
resonances of, 71, 274
responses of, 55, 65-66
shielded, 79
thin, 185, 188-190, 208, 263, 265, 284
thinning of, 64

v
X

Yee cells, 19, 24, 30
algorithms for, 242
antennas and, 263, 281, 289
building of objects in, 37-42
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Cartesian, 375 rectangular, 244, 289
coordinates for, 45 Yee grid, 244, 386
cubical, 248, 249, 252 Yee notation, 19, 109, 265
dimensions of, 40
far zone scattering and, 242, 244, 248, Z
249, 251, 252
far zone transformation and, 109, 110 Z-directed current, 274
geometry of, 20, 45 ductivity, 176
locations of, 40 recursive convolution method and, 172
modified, 380 175

object building in, 249 time domain, 171
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