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Foreword

An increasing number of analog integrated circuits suffer from distortion.
It limits the signal swing, subject to the supply voltage available. Together
with noise, it thus establishes the ultimate dynamic range. Distortion is a
difficult topic however. Too few books and papers are devoted to it. This is
why this new edition deserves our full attention.

It is even more difficult to handle distortion at high frequencies. Volterra
series can be used but the phasor method is much more practical indeed.
This book provides an excellent example on how to use the phasor method
towards the analysis of distortion in analog circuits such as operational
amplifiers. It is shown that the Miller opamp with folded-cascode at the
input, is certainly one of the best contenders for high-speed and low
distortion.

In a separate chapter, the non-linear coefficients are examined versus
frequency. They are analyzed in much greater detail than ever before. The
slopes of the distortion versus input amplitudes and versus frequencies are
predicted by means of hand calculations and verified by means of
simulations. Finally experimental data is added, which is of utmost
importance in designs with low distortion.

It can be conculded that a new generation of low-distortion opamps has
been designed and realized with distortion as one of the most important
specifications. This work therefore deserves being read and studied. Since
hand calculations are given, followed by simulations and experiments, it is
clear that this book is of use for both novice designers and for experts, who
want to deepen their knowledge and insight.

09-2002

Willy Sansen
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Preface

Broadband operational amplifiers (opamps) for multi-channel
communication systems have strong demands on linearity performance.
When these opamps are integrated in deep sub-micron CMOS technologies,
the signal-swing has to occupy a large part of the rather low supply voltage
to maintain the signal-to-noise-ratio. To obtain opamps with low distortion it
is necessary to do a thorough analysis of the nonlinear behavior of such
circuits. This is the main subject of this book.

The biasing of each transistor in the circuit is a major issue and is
addressed in this work. It is important to bias the transistor such that the
distortion is low and stable in the entire range of its terminal voltages. This
will ensure high linearity and robustness against variations in circuit
conditions such as power supply voltage, bias current and process variations.

Further, a general two-input weakly nonlinear model of the opamp is
developed, with the differential and the common-mode voltages as the
inputs. This model accounts for the effect that the input common-mode
voltage has on the linearity performance. The model describes the opamp
with a set of linear and nonlinear transfer functions. The linear transfer
functions are the well-known differential gain and common-mode gain of the
opamp. The nonlinear transfer functions depend on the two input voltages,
the input frequency and the nonlinear sources embedded in the opamp.

The two-input model, applied on a folded cascode Miller opamp, is
further used to explore the non-inverting and inverting opamp
configurations. For each of the configurations, the strongest contributions to
nonlinear distortion are found. Simplified expressions for the closed-loop
nonlinear responses are presented as a function of the input frequency. From
the closed loop expressions, design equations are extracted, which show how
the distortion can be suppressed in the different ranges of frequency. For
computation of the nonlinear transfer functions, a method based on the
Volterra series is used. The method, which in this book is referred to as the
phasor method, results in a subset of the Volterra series.

The analysis of the nonlinear behavior results in a design procedure for
achievement of highly linear opamp circuits. The design procedure is used in
design of three opamps connected in the inverting configuration. The
measurements show that HD2 and HD3 are both less then –77.5dB at
80MHz for an opamp with 1.8V supply voltage and signal swing.
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xxiv Preface

Additionally, a unity-gain opamp is designed, which uses a tail-current-
compensation-circuit to suppress the effect of large common-mode voltage
swing.

This book is based on a Ph.D. project initiated by Nordic VLSI ASA and
performed at the Norwegian University of Science and Technology
(NTNU), dept. of Physical Electronic, both located in Trondheim, Norway.

09-2002
Trondheim, Norway

Bjørnar Hernes
Trond Sæther
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Chapter 1

Introduction

1.1 Motivation

Broadband operational amplifiers (opamp) with low nonlinear distortion
are important building blocks in many applications. Examples of such
applications are multi-channel communication systems, multi-channel video
systems, and buffers for broadband Analog-to-Digital and Digital-to-Analog
Converters (ADC and DAC). These systems are moving towards higher
level of integration in low-cost technologies, such as deep sub-micron
CMOS processes.

Analog design in modern CMOS technologies suffers from the low
supply voltage that is required by these processes. To make the signal-to-
noise ratio as high as possible the signal swing has to occupy a large part of
the available supply voltage. This means that the voltage left to bias the
circuit is small. This represents one of the bottlenecks in achieving low
distortion for opamps implemented in deep sub-micron technologies.

When increasing the loop gain of a feedback circuit the nonlinear
distortion will decrease. Thus, a well-known method to obtain low distortion
in feedback circuits is to design for high loop gain. However, the loop gain is
only high in a limited frequency range. For opamp circuits, the loop gain is
decreasing for frequencies above the dominant pole. This is shown in Figure
1-1, where is the low frequency open loop gain and is the dominant
pole of the opamp. Thus, the maximum loop gain at a specified frequency is
set by the maximum Gain-Band-Width (GBW) of the opamp. The maximum
GBW is a result of the opamp topology and fabrication technology.

Another challenge in the design phase of linear analog circuits is
estimation of the nonlinear distortion. The harmonics and intermodulation
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2 Design Criteria for Low Distortion in Feedback Opamp Circuits

products depend on higher order derivatives of the drain current of the
transistors. The higher order derivatives are often poorly modeled in the
transistor models available in SPICE-like circuit simulators, especially for
sub-micron CMOS devices [1], [2]. Further, when simulating nonlinearity in
SPICE-like simulators it is not possible to get any information about the
strongest contributions to nonlinear distortion and what parameters to use for
minimizing it.

Facing the problems described above, it was necessary to develop a
design method to achieve linear opamp circuits. The method is twofold.
First, careful biasing of each transistor in the circuit such that the higher
order derivatives of the drain current is on a minimum and, further, stable in
the entire range of the transistor’s terminal voltages. This results in high and
robust linearity performance. Next, find the largest contributions to nonlinear
distortion and derive symbolic expressions for these. It is then possible to
optimize the circuit for low distortion even without accurate modeling of
higher order derivatives.

The method sketched above is used in design of three opamps in a
CMOS fabrication technology, two with 3.3V supply voltage and

one with 1.8V supply voltage. Additionally, a 3.3V opamp in
technology is designed. Measurement results from the opamps are presented
in this book.
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Chapter 1 Introduction 3

1.2 Earlier Work

To derive symbolic expressions for nonlinear distortion, a mathematical
analyzing tool is needed. Since the linearity performance at frequencies
above the dominant pole of the opamp is important, the requirement for the
analyzing tool is to include the frequency response of the distortion. This is
done by the Volterra series. The Volterra series has since 1967 been used to
compute the nonlinear behavior of weakly nonlinear analog circuits as a
function of frequency. In [3] and [4] Volterra series is used to model
distortion in bipolar transistors and in [5] the issue is JFET-transistors. The
derived models are further applied on one-transistor amplifiers.

Feedback systems are also presented in terms of Volterra series in
literature. In [6] the Volterra series is applied to a feedback amplifier and the
effect of the feedback is explained. Similar derivations are done in [1] and
[7]. In [8] cross-modulation and intermodulation is found for a two-transistor
bipolar amplifier with feedback.

Additionally, the Volterra series are used to find the nonlinear distortion
in many other applications. For example, distortion in log-domain filters is
described in [9] and distortion analysis of larger analog systems is addressed
in [10].

Volterra series represents a general representation of the nonlinearity, but
leads to complex derivations with many unnecessary kernels when the
circuit is excited by only one or two frequencies or when the circuit has two
inputs. In [11] a technique called the probing method is described. This
method computes the terms in the Volterra series by iterative solving the
same differential equations with different excitations for the circuit. In [12] a
simplified version of the probing method is presented. This method exploits
the fact that the circuit performance often is measured by applying one or
two frequencies at the input. The method uses phasors to represent currents
and voltages, and is in this book referred to as the “phasor method”.

To include the effect that the input Common-Mode (CM) voltage has on
the linearity performance, the opamp is considered as a two-input device
with the differential voltage and the CM-voltage as the inputs. The nonlinear
responses for the two-input opamp are computed and further used to derive
the nonlinear responses for the Closed-Loop (CL) circuits, the inverting and
non-inverting opamp configurations. The phasor method is simpler to use for
analyses of two-input devices then the Volterra series. In [13] the phasor
method is described for a double-balanced mixer and in [2] for a CMOS up-
conversion mixer. Further, in [2] and [14] the phasor method is applied on a
CL Miller opamp and simplified expressions are shown for and
harmonics, including the strongest contribution to distortion.
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4 Design Criteria for Low Distortion in Feedback Opamp Circuits

The book of Wambacq and Sansen [1] describes both the Volterra series
and the phasor method. Additionally, it shows many useful examples on how
nonlinear analysis of electrical circuits can be done. This source has been the
most useful reference for the work presented in this book.

1.3 Design Issues for Low Nonlinear Distortion

The approach of this work is to achieve a design method for obtaining
low nonlinear distortion in feedback opamp circuits. Distortion in transistor
circuits is mainly due to non-zero higher order derivatives of the transistor
drain current. These higher order derivatives can be viewed as nonlinear
sources in the circuit. Thus, it is important that the strength of the nonlinear
sources is low and that they are attenuated as much as possible to the output
of the circuit. These are the key issues of the design method, which can be
summarized as follows:

Biasing each transistor in the circuit such that the higher order derivatives
of the drain current are small and stable in the entire range of the terminal
voltages.
Find the strongest contributions to nonlinear distortion for the CL circuit
and derive symbolic expressions for these. From the symbolic
expressions, design equations can be obtained.
Use the biasing point obtained in 1 as a starting point for the optimization
for minimum nonlinear distortion of the CL circuit. The optimization is
carried out in a circuit simulator with the design equations as guidelines.

1.

2.

3.

How to bias the transistor is found by plotting the higher order
derivatives of the transistor drain current and find at what range of the
terminal voltages they are small and stable. This is done in a circuit
simulator with transistor parameters given by the fabrication technology to
be used. The accuracy of these derivatives is less important as long as the
shapes of the curves are approximately correct.

The strongest contributions to nonlinear distortion are found by
implementing the phasor method in a symbolic mathematical tool. Maple6
[15] is used in this work. The phasor method is further applied on a weakly
nonlinear model of the circuit. The nonlinear behavior of this model is due to
the higher order derivatives of the transistor drain current. Each of the higher
order derivatives represent a source to nonlinear distortion and it is important
to detect the strongest contributing sources. This is done by plotting the
contribution from each source in the same plot as a function of frequency. It
is then easy to compare them and pick out the most important sources.
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Chapter 1 Introduction 5

By using a two-input model of the opamp, it is further possible to view
the effect that the CM-voltage has on the linearity performance. This is
especially important when the opamp has large swing in the input CM-
voltage, which is the case for the non-inverting opamp configuration.
Further, Maple6 can be used to derive simplified CL responses of the
distortion, including the strongest contributing nonlinear sources. From these
responses, it is possible to obtain design equations that show what circuit
parameters to alter to suppress the distortion.

Finally, the design equations are used to optimize the circuit for
minimum distortion. The optimization is carried out in a circuit simulator
using the biasing obtained in point 1 above as a starting point. The equations
show which parameters to use to enhance the linearity performance of the
circuit.

Because that the phasor method is a series, the simulations in Maple6 and
the simplified expressions for the nonlinear distortion are under the
assumption that the circuit is weakly nonlinear. The phrase “weakly
nonlinear” means that the nonlinear behavior is mainly determined by 2nd

and 3rd order nonlinearity. This can be a good approximation in feedback
opamp circuits, design for high linearity performance. However, the issue is
not accurate modeling of distortion, but to provide insight and understanding
of how distortion occurs and how to minimize it. The phrase “weakly
nonlinear” is more thoroughly explained in Chapter 2.

1.4 Outline

In Chapter 2 the basic of nonlinear specification and analyses are
described. First, some measurement parameters are presented for one- and
two-frequency excitation of the circuit. Second, the Volterra series and
phasor method are described and an example is given to show the difference
between the two methods. Further, the phasor method is applied on a simple
circuit example, where the nonlinear responses for 2nd and 3rd harmonics are
found.

Chapter 3 presents some important issues in modeling, symbolic analysis
and design of weakly nonlinear circuits. First, the nonlinear model of the
transistor is presented, where the drain current and currents through the
diffusion capacitances are expressed as Taylor expansions. Further, based on
the transistor model, the biasing technique for obtaining low higher order
derivatives of the transistor drain current is presented. Second, the opamp as
a two-input device is described in general terms and further the principle of
splitting of nonlinear transfer functions. At the end of Chapter 3 the
cascoded Miller opamp and its model are presented. This model will further
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6 Design Criteria for Low Distortion in Feedback Opamp Circuits

be used to derive nonlinear responses for the CL opamp circuits in Chapter
4.

In Chapter 4 the non-inverting and inverting opamp configurations are
explored regarding nonlinear behavior. The main contributions to nonlinear
distortion are shown by plotting. The expressions for 2nd and 3rd harmonics
are given including the strongest contributions. From these expressions, it is
possible to give guidelines and design equations for obtaining low distortion
in feedback opamp circuits.

The design guidelines achieved in Chapter 3 and Chapter 4 are further
used in design of several opamp circuits. These are presented in Chapter 5.
Here, also the measurement system is described, which is used for testing the
opamp circuits. Further, the opamp with the best linearity performance, as
regards the supply voltage, is compared to previous reported results and
some commercial available opamps with high linearity performance.

Chapter 6 summarizes this book and gives proposal to further work.
Here, also a comparison between the presented opamp circuits is carried out.
These are further compared to some commercial available opamps with high
linearity performance.

1.5 Summary

The main contributions in this work are as follows:

Method for biasing CMOS transistors to obtain low and stable higher
order derivatives of the drain current of the transistor and thus high and
robust linearity performance.
Thoroughly description of the nonlinear behavior of feedback opamp
circuits. This work is an evolution of the work presented in [2] and [16]
for feedback opamp circuits. The work consist of the following parts:

Describing the opamp as a two-input device, one input for the
differential voltage and one for the CM-voltage. This makes it possible
to take into consideration the effect of swing in the CM-voltage. This
swing can be damaging for the linearity performance of the circuit.
Exploiting the phasor method to split-up the nonlinear responses of
distortion. For the CL circuit, these responses tend to be very complex.
By using the iterative nature of the phasor method, in conjunction with
the two-input model of the opamp, it is possible to factorize the
responses in many terms. This makes it simple to do simplification on
each term and to obtain surveyable expressions for the nonlinear
responses as a function of frequency. This is done for both the
inverting and non-inverting opamp configurations by using a folded
cascode Miller opamp.
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Chapter 1 Introduction 7

Extracting design equations from the CL nonlinear responses. These
equations show what circuit parameters that minimize the nonlinear
distortion.

Design procedure for opamps circuits to obtain low nonlinear distortion.
Design of highly linear opamps in modern CMOS technologies:

A 1.8V CMOS opamp with –77.5dB HD2 and HD3 at 80MHz. The
input voltage swing was and the circuit is fabricated in a

process.
A 3.3V CMOS opamp with –80dB HD3 at 80 MHz. The input voltage
swing was and the circuit is fabricated in a process.
A 3.3V CMOS current opamp with –63dB HD3 at 100MHz. The input
voltage swing was and the circuit is fabricated in a
process.
A 3.3V CMOS unity-gain opamp with –80dB HD3 at 10MHz. The
input voltage swing was and the circuit is fabricated in a

process. This circuit uses a new tail-current-compensation-
circuit to suppress the effect of large CM-voltage swing [17].
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Chapter 2

Specification and Analysis of Nonlinear Circuits

This chapter describes some of the theoretical background for
specification and analysis of nonlinear systems. First, the measurement
parameters that describe the nonlinear performance of an analog circuit are
addressed. An example of a nonlinear system is presented, which is further
used to define the measurement parameters obtained when the circuit
excitation consists of one or two frequencies. Second, the Volterra series is
defined. The Volterra series is an analysis tool for obtaining symbolic
expressions for weakly nonlinear analog systems. The Volterra series can
also be transformed to the frequency plane in a similar way as the well-
known Laplace transform (e.g. [1] and [2]). However, the Volterra series
leads to cumbersome analysis and complex symbolic expressions, especially
for large circuits and high order nonlinearities. Thus, a simpler method is
described, which throughout this book is called the phasor method. The
phasor method uses phasor representation for currents and voltages in the
circuit and results in a subset of the equations obtained by the Volterra
series. This method is visualized by an example, which is a simple Low-Pass
(LP) filter with a nonlinear resistor. The phasor method will also be used
further in this book.

Most of the definition and theory in this chapter are taken from [3]. The
Volterra series are further described and used in [4] to [13]. The phasor
method is applied in [14], [15] and [16].

2.1 Linearity Specifications

Figure 2-1 shows a nonlinear system with as the circuit excitation and
as the output variable applied to the load Disregarding the constant

term, the output variable can be expressed by (2-1). Here, the nonlinear
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10 Design Criteria for Low Distortion in Feedback Opamp Circuits

system is approximated by a Taylor series [1]. The requirement for the
Taylor expansion is that the series converge, which means that the terms in
the series decrease with increasing order. Additionally, the series must
represent with small error in the specified range of which is to
The coefficients in (2-1) are given by (2-2). These coefficients are in general
a function of frequency, but will in this section be considered constant. is
the desired gain of the circuit. The other coefficients cause distortion and are
further called nonlinear coefficients. Figure 2-2 shows (2-1) truncated to
order (Vout_nonl) and the ideal output voltage (Vout_ideal) disregarding all
higher order terms in (2-1). Both are plotted versus the input voltage. The
value of the coefficients are and
0.05. The plot shows that the output voltage deviate from the ideal value at
low and high input voltage, which is typical behavior for many analog
circuits. The nonlinear system, with the DC-response plotted in Figure 2-2,
will further be used to define and plot the various nonlinear measurement
parameters.
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Chapter 2 Specification and Analysis of Nonlinear Circuits 11

2.1.1 Single-Frequency Excitation

The single-frequency test is carried out by applying a signal containing
only one frequency component at the input of the nonlinear system. The
same frequency component will occur at the output, where it is called the
fundamental frequency. However, the output signal will also contain
unwanted frequency components at multiples of the input frequency. These
are called harmonic frequencies and are caused by the nonlinear behavior of
the circuit.

In (2-3) the input voltage is shown, where is the amplitude and
is the input frequency. When (2-1) represents the nonlinear system, the
amplitude of the fundamental frequency on the output of the system can be
expressed by (2-4). Equation (2-4) shows that this amplitude is primarily a
function of the order coefficients in (2-1), which is the gain of the system.
Further, (2-4) is also a function of all odd order nonlinear coefficients of the
system. When the input amplitude increases, the fundamental component on
the output will increase or decrease, depending on the sign of the nonlinear
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12 Design Criteria for Low Distortion in Feedback Opamp Circuits

coefficients. If it increases it is called expansion and if it decreases it is
called compression.

The equations (2-5) and (2-6) are the amplitudes of the and
harmonics, respectively. The harmonic depends on all even order
nonlinear coefficients, while the harmonic depends on all odd order
nonlinear coefficients. The ratios between the levels of and harmonics
and the level of the fundamental frequency are called HD2 and HD3,
respectively. HD2 and HD3 are widely used parameters to describe
nonlinear behavior for an analog system. When the higher order terms in (2-
4) to (2-6) are small, and decreases with increased order, the system is called
weakly nonlinear. The phrase “weakly nonlinear” will be further and more
rigorously defined in terms of Volterra series in section 2.2. When the
system is weakly nonlinear, HD2 and HD3 can be approximated with (2-7)
and (2-8) below. In (2-9) another measurement parameter is defined, the
Total Harmonic Distortion (THD). THD is the square root of the ratio
between the quadratic sum of the harmonic amplitudes and the amplitude of
the fundamental frequency.
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Chapter 2 Specification and Analysis of Nonlinear Circuits 13

Figure 2-3 shows the output power versus the input power for the
fundamental frequency and the and harmonics. The curve
P_out_1_nonl is obtained by plotting (2-4) truncated to the order
coefficient. At low input levels, the system has weakly nonlinear behavior.
This means that the level of the fundamental frequency and the and
harmonics can be expressed by the first term in (2-4) to (2-6), respectively.
By extrapolating the first terms of these equations and plotting them versus
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14 Design Criteria for Low Distortion in Feedback Opamp Circuits

the entire input range, the curves P_out_1_ideal, P_out__2_ideal and
P_out_3_ideal are obtained. The input and output levels are in dBm, which
are the levels referred to lmW in a 50 Ohm resistor. For all curves, the
coefficients are the same as for the plots in Figure 2-2.

When is approximately 9dBm the P_out_1_nonl-curve
deviate from the ideal output signal power with ldB. This is called the –1dB
compression point and is shown in Figure 2-3. Further, also a –3dB
compression point can be defined in the same way. The deviation from the
ideal curve is caused by the nonlinear behavior of the system. There will also
be compression or expansion of the and harmonics caused by the
higher order terms in (2-5) and (2-6). Thus, a deviation from the extrapolated
curves will occur for high input levels.

The and order intercept points are defined to be the input level that
causes the extrapolated and harmonics to be equal to the level of the
extrapolated level of the fundamental frequency. The harmonic intercept
points are given by (2-10) and (2-11) below and visualized in Figure 2-3. By
knowing the intercept points and the linear gain of the system, it is possible
to compute the and harmonics for a specific input level. Further, to
obtain low harmonic distortion the and order intercept points need to
be as high as possible.

Another parameter that is used to characterize analog systems is the
dynamic range. In [3] the input dynamic range
input level causing the –1 dB (or –3db) compression point and the input

is defined as the ratio of the

referred noise. This ratio is usually given in dB.

2.1.2 Dual-Frequency Excitation

Another test of the nonlinear behavior of an analog system can be done
by applying two sinusoid signals with different frequency at the same input
terminal. The total input signal can be represented as (2-12), where
and are the input amplitudes and frequencies, respectively, of the
sinusoids. The difference between the two frequencies is assumed small
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Chapter 2 Specification and Analysis of Nonlinear Circuits 15

compared to the absolute value of each of them. At the output of the
nonlinear system several frequency components appear. First, both
fundamental frequencies are present. The amplitude at can be expressed
as (2-13). As for the single frequency excitation, (2-13) shows that the
fundamental response depends on the gain factor and the odd order nonlinear
coefficients. Further, it depends on the amplitude of both input frequency
components. Similar equation can be obtained for the response at by
interchanging and in (2-13).

Second, as for the single frequency excitation, the harmonics of the input
frequencies are present at the output terminal. Further, mixing of the two
signals is performed, and the sum and the difference of the various frequency
components appear at the output terminal. These responses are called
intermodulation products. The second order intermodulation product, shown
in (2-14), is located at As for the harmonic, the order
intermodulation product depends on all even order nonlinear coefficients.
Further, it also depends on the amplitudes of both input frequencies, and

The order intermodulation product, located at can be
expressed as (2-15). As for the harmonic, the order intermodulation
product is a function of the odd order nonlinear coefficient. In addition, it
also depends on the amplitude of the input frequency components. The
responses at and can be obtained by interchanging
and in (2-14) and (2-15). When assuming that the system behaves
weakly nonlinear, the and order intermodulation distortion can be
approximated by (2-16) and (2-17).
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Chapter 2 Specification and Analysis of Nonlinear Circuits 17

In Figure 2-4 the extrapolation of the weakly nonlinear gain and and
order intermodulation products are plotted. The plots of the

intermodulation products are obtained by setting and equal. As for
the single frequency excitation, a compression point can be defined and
further and order intercept points. Due to larger higher order terms in
the order response (2-13), the –1dB compression point occur at lower
level than when the system excitation is single-frequency. The
intermodulation intercept points represent the input amplitude that make the
extrapolated intermodulation products equal to the extrapolated order
response. These are defined in (2-18) and (2-19).

2.2 Volterra Series

In (2-1) the nonlinear system is represented by a Taylor series. Taylor
series can be used to approximate weakly nonlinear systems without
memory. Most nonlinear systems have memory, or in other words, the
response of the system depends on the frequency contents of the input signal.
For describing weakly nonlinear behavior of analog systems with memory,
the Volterra series can be used.

The Volterra series can be defined by (2-20), where the terms are called
Volterra operators. The index numbers are the order of the operators. The
Volterra operators can further be expressed as (2-21). Here, are called
Volterra kernels, where the order of the kernel is given by The order
Volterra operator in (2-21) can be recognized as the convolution integral of
the impulse response of the linearized system, and the input signal

The impulse response can be converted to the s-plane by doing a
Laplace transform ([1], [2]). Then in (2-22) is achieved, which is the
well-known s-plane representation of the linearized system. The s-plane
representation is widely used in design of analog circuits. The higher order
Volterra kernels in (2-21) are multidimensional impulse responses. Thus,
they can also be transformed to the s-plane by using a multidimensional
Laplace transform. In (2-22) the multidimensional Laplace transform is
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18 Design Criteria for Low Distortion in Feedback Opamp Circuits

applied to the and order Volterra kernels. The s-plane representations
of the kernels are called nonlinear transfer functions. Similar transformation
can be done by the Fourier transform ([1], [2]). These issues are thoroughly
explained in [3].

As for all series expansions, the Volterra series has limited radius of
convergence. Thus, the Volterra series will diverge if the input signal
become large enough. At what level of the input signal this happens,
depends on the Volterra operators and thus on the nonlinear transfer
functions. Another issue is how high the order of the Volterra series should
be to describe the nonlinear system accurate. In this book, only weakly
nonlinear systems are considered. In [3] the phrase “weakly nonlinear” is
defined to be:
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Chapter 2 Specification and Analysis of Nonlinear Circuits 19

“A circuit behaves weakly nonlinear if, for the applied input signal, it
can be accurately described by the first three terms of its (converging)

Volterra series ”
Thus, further in the book it is assumed that the circuits, in conjunction

with the input signal, are weakly nonlinear as described above. The
nonlinear behavior of the systems will be described in the frequency plane
by the and order nonlinear transfer functions.

In the introduction of this chapter, it was mentioned that Volterra series
can be cumbersome to derive and results in complex expressions. This
assertion will now be visualized by an example. In Figure 2-5, a order
two-dimensional nonlinear coefficient is shown. The signals A and B
have two different transfer functions from the input, and
respectively. Further, is the transfer function from the nonlinear
coefficient to the output of the system. The order nonlinear transfer
function of the entire system is given by (2-23), which cover both harmonics
and intermodulation product of second order. The expression is rather large
and becomes larger when inserting for the various transfer functions. For
higher order, the nonlinear transfer functions contain even more terms,
including all harmonic responses and intermodulation products. This is the
main drawback of the Volterra series. Because of the generality, all
nonlinear responses are found, which is overkill when e.g. only the harmonic
responses are requested.

TLFeBOOK



20 Design Criteria for Low Distortion in Feedback Opamp Circuits

The phasor method described in the next section provides only the
required subset of the Volterra series, e.g. the harmonic responses. Thus, the
derivation and expressions for nonlinear responses will be simpler and
provide more insight and understanding of the nonlinear behavior of a circuit
than Volterra series does.

2.3 Phasor Method

When a circuit is in steady state, all currents and voltages are sinusoids.
The output voltage of the system can be expressed as the input voltage with
a change in amplitude and phase represented by and
respectively. This is shown in (2-24), where and is the amplitude and
frequency of the input signal, respectively. Further, are the order
transfer function of the system and is the phase of In
output voltage are represented in the frequency plane as a phasor [2] , where

(2-25) the

P represents the phasor transform. The requirement for the phasor
representation is that the circuit is in steady state.

The frequency components that is caused by the nonlinear behavior of
the system, are also sinusoids. Thus, since the circuit is in steady state, the
nonlinear responses can also be represented by phasors, with the excitation
frequency equal to the frequency of the wanted harmonic or intermodulation
product. The excitation of the system is now the nonlinear coefficients
embedded inside the system. This is the idea of the phasor method.
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The phasor method, carried out on an analog circuit, can be explained by
the following procedure:

Find the order response and all voltages/currents that control nonlinear
coefficients in the circuit. These will be further used to find nonlinear
responses of higher order. The circuit excitation is the input voltage to
the circuit, which runs at one or more frequencies.
Find the desired order nonlinear response and all voltages/currents
that control nonlinear coefficients in the circuit. The circuit excitation is
the nonlinear coefficients of order, which depends on the order
voltages/currents found in 1. The excitation frequency is the frequency of
the desired order nonlinear response, e.g. for the harmonic it
equals
Find the desired order nonlinear response. The circuit excitation is the
nonlinear coefficients of and order. Further, the nonlinear
coefficients depend on voltages/currents found in both 1 and 2. The
excitation frequency is the frequency for the desired order nonlinear
response. E.g. for harmonic it equals For order
intermodulation product it equals the frequency for the desired product.

1.

2.

3.

The procedure shows that the order nonlinear response depends on
voltages/currents of lower order. Thus, it is necessary to begin with the
order response, continuing with the order and so on. The procedure can
be extended to orders higher than 3, but the computation becomes complex.

The main advantage of the phasor method compared to the Volterra
series is that only the necessary kernels are found. For example, when using
a single-frequency test it is the and harmonic that are the desired
nonlinear responses. These can be found directly by the phasor method,
omitting the rest of the responses that the Volterra series provide. This can
be visualized with a simple example. In Figure 2-6 the same system as
described in Figure 2-5 is shown, but expressed by the phasor method. When
using the procedure above the signals A and B are obtained by point 1, and
the output voltage is achieved by point 2. The desired nonlinear response is
the harmonic, which is expressed in (2-26). When (2-26) is compared to
(2-23) it shows that (2-26) corresponds to the first term of (2-23), except for
the factor ½. This factor is due to the phasor representation [3]. If the
order intermodulation product is to be found, it will correspond to the second
term in (2-23). The nonlinear transfer functions, obtained by the phasor
method, are thus a subset of the Volterra series. The phasor method provides
less complex derivations and expressions at the cost of generality. Especially
the harmonic nonlinear responses are simple.
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2.3.1 Example: Nonlinear LP-Filter

In Figure 2-7 a simple LP-filter is shown. The filter consist of a linear
capacitor and a nonlinear resistor can for example be a simple
model of a transistor used as a switch. The current through the resistor is
given by (2-27), where is the small-signal conductance of the resistor.
Further, and are the and order nonlinear coefficients,
respectively. The phasor method will now be applied to find the harmonic
nonlinear responses for the circuit in Figure 2-7.

22 Design Criteria for Low Distortion in Feedback Opamp Circuits

Next, a simple example is shown to demonstrate how the phasor method
can be used for computation of nonlinear transfer functions of electrical
circuits.
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To compute the order response, the circuit in Figure 2-8 is used. Here,
is replaced by the conductance The output response is given by (2-

28) and the order controlling voltage for the nonlinear coefficients of
is shown in (2-29). will further be used in computation of the

nonlinear responses. is the –3dB frequency of the LP-filter and is
expressed in (2-30).

For computation of the nonlinear responses, the circuit in Figure 2-9 is
used. The input voltage is shorted and the excitation for the circuit is the
current This current represents the order nonlinear behavior of the
resistance in phasor representation. Equation (2-31) shows the order
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nonlinear current, which is the excitation when finding the order
nonlinear response of the circuit. Because of the phasor representation, the
nonlinear coefficient is preceded by the factor ½. The reason for this factor is
shown in [3]. The order nonlinear response and controlling voltage are
shown in (2-32) and (2-33), respectively.

The order nonlinear response can be found by replacing in
Figure 2-9 with of (2-34) (derivation of this current is shown in [3]).
By inserting for and and further solve for the output voltage, the
harmonic response is found, given by (2-35). From (2-35) it is shown that
the harmonic depends on the order nonlinear coefficient, in addition to
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the order nonlinear coefficient. Because of the harmonic is
mixed with the fundamental frequency. The resulting frequency component
is at harmonic.

The to order responses for the LP-filter are plotted in Figure 2-10.
The order response has the expected LP-filter shape. The and order
responses are both low at low frequencies. When increasing the frequency
the and harmonics increase with 40dB/decade and 60dB/decade,
respectively, and reach their maximum approximately at the –3dB frequency
of the filter.
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2.4 Concluding Remarks

First in this chapter, several measurement parameters was defined for
both single-frequency and dual-frequency excitation of the circuit. For
single-frequency excitation, HD2, HD3 and THD can be obtained. For dual-
frequency excitation, it is possible to achieve IM2 and IM3. For both
excitations, and order intercept points can be found. From the
intercept points it is possible to compute the distortion at the output of the
circuit for a given excitation level on the input. Further, two tools for
symbolic analysis of weakly nonlinear systems were described. The Volterra
series is general, but complex. By the phasor method is it possible to find
only the desired nonlinear responses. This results in simple derivations and
less complex symbolic expressions.

Further in this book, the phasor method will be used for nonlinear
analysis. There are two main reasons for this. First, by the phasor method it
is possible to obtain only the desired nonlinear transfer functions. The
derivations are more simple and the expressions are less complex than
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obtained by the Volterra series. Second, in Chapter 3 and Chapter 4 the
Miller opamp is considered as a two-input device. Nonlinear analysis of two-
input devices is much simpler when using the phasor method than the
Volterra series [3].

Further, to keep the derivaitons as simple as possible, only nonlinear
transfer functions for the and harmonics will be found. Thus,
intermodulation products will not be considered. However, by describing the
nonlinear performance of the circuit by HD2 and HD3, also information of
IM2 and IM3 are obtained. At low frequency, and under the assumption that
the circuit is weakly nonlinear, the ratios IM2/HD2 and IM3/HD3 equals 2
and 3, respectively. At higher frequency, the situation is somewhat different.
For example, IM2 and HD2 are obtained in the same way. Using the phasor
method, first the order controlling voltages/currents to the nonlinear
coefficients are obtained. For both HD2 and IM2, these are derived from the

order circuit (as shown in Figure 2-8 for the LP-filter). For HD2 the
excitation frequency is and for IM2 and which are close in
frequency. Thus, the controlling voltages/currents are nearly equal for HD2
and IM2. To find the nonlinear responses for HD2 and IM2 the order
circuit is evaluated at two different frequencies. For HD2 at the frequency

and for IM2 e.g. on the frequency For CL opamp circuits
the nonlinear transfer functions contains zeroes well below the location of
the poles. Thus, the nonlinear responses will increase with increasing
frequency. Because of this, the ratio IM2/HD2 will be less than 2 for
frequency excitations higher than the locations of the zeroes of the nonlinear
transfer functions. The same argument holds for IM3/HD3. Thus, for
feedback opamp circuits, which is the main subject in this book, and for the
intermodulation products at the difference of frequencies, the equations (2-
36) and (2-37) are valid.

All circuits further in this book will be considered weakly nonlinear as
stated in section 2.2. For feedback opamp circuits, this is an accurate
description when the circuit excitation is well below the supply voltage and
the biasing of the transistors in the opamp is adequate for low distortion.
However, if the circuit is not weakly nonlinear, the nonlinear transfer
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functions obtained by the Volterra series or the phasor method will still
provide valuable information about the nonlinear behavior of the circuit and
how the distortion can be minimized.
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Chapter 3

Biasing and Opamp Modeling for Low Distortion

An important issue regarding robust design for low distortion is the
biasing of each transistor in the circuit. In section 3.1, transistor biasing for
high and robust linearity performance is described. First, a nonlinear model
of the transistor is presented. This model is further used for arguing how to
bias the transistor to achieve high and stable linearity performance. This is
done by first using the transistor as current source and then as a common
source amplifier. The section results in biasing guidelines to obtain low
nonlinear distortion in CMOS transistor circuits.

In section 3.2 the opamp is described as a two-input device, one input for
the differential voltage and one for the CM-voltage. This is done to include
the effect the CM-voltage has on the linearity performance of the circuit,
especially in the non-inverting opamp configuration. Section 3.2 also
contains explanation of how the Open Loop (OL) and CL nonlinear transfer
functions of the opamp circuit are obtained. The transfer functions are split
up in different factors to make the simplifications easier and to obtain
surveyable expressions for the transfer functions. This gives also valuable
insight in the cause of nonlinear distortion. At the end of section 3.2 the
opamp, used further in this work, and its simplified model is presented.

This chapter makes the foundation for the nonlinear transfer functions
and design equations discussed in Chapter 4 and the opamp designs
described in Chapter 5.

31
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3.1 Biasing for Robust Linearity Performance

3.1.1 Transistor Model

The transistor model is described in [1] and [2] and is shown in Figure 3-
1. Here, the capacitance between gate and drain is omitted. This capacitance
causes a feed forward- and feedback path when the transistor is used as an
amplifier. Because of the Gate-Drain (GD) capacitance the and higher
order transfer functions for the total circuit (e.g. an opamp) become
complex. The transistor model in Figure 3-1 will be used in the model for the
opamp described in section 3.2. For this opamp, omitting the GD
capacitance will only cause minor errors in the frequency responses up to
GBW of the opamp.

The main contributions to nonlinearity for a transistor biased in strong
inversion, are the nonlinear intrinsic drain current (further referred to as the
drain current), the Source-Bulk (SB) capacitance and the Drain-Bulk (DB)
capacitance. The D/S-B-capacitances are due to the diffusion between
drain/source and bulk. The drain current is generally a three dimensional
function, where the excitations are the voltages and For weak
nonlinearity, the equation for the drain current can be expressed as a series,
which is evaluated around a bias point as (3-1) shows. Here, and
are the terminal voltages disregarding the DC value. In (3-1) gm is the
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transconductance, gd is the drain to source conductance, and gmb is the
transconductance caused by the bulk modulation. These factors are the well-
known small-signal parameters for a transistor, and are widely used in circuit
design. The rest of the factors are because of nonlinearity in the transistor
and thus called the nonlinear coefficients of the drain current. Equation (3-2)
is obtained by treating the current through the diffusion capacitance in the
same way. The index x is D (drain) or S (source). The definitions of the
nonlinear coefficients are given in Appendix A.

If all nonlinear coefficients in (3-1) and (3-2) are zero, the circuit is
reduced to an ordinary small-signal system and does not produce any
distortion. Thus, it is important to make the nonlinear coefficients and the
terminal voltages as small as possible such that the higher order terms in (3-
1) and (3-2) have minor contributions to the total signal current. Terminal
voltage can be kept small by apply negative feedback. Small nonlinear
coefficients are obtained by careful biasing of the circuit. It is also desirable
that the circuit has low distortion even if the circuit conditions are changing,
e.g. change in process parameters, biasing conditions, power supply voltage
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etc. To make the circuit robust against these variations it is important to keep
the small-signal parameters and nonlinear coefficients relatively constant in
the entire range of the terminal voltages of the transistors. These topics are
addressed in the next subsections.

Simulations of small-signal parameters and higher order derivatives will
be shown in the next subsections. The simulations are done by the SPICE-
like simulator Eldo [3] with Philips MOS Model 9 (MM9) [4] and parameter
set from a 0.35µm CMOS technology. In [1] and [2] it is pointed out that
higher order derivatives of the MOS transistor drain current often are poorly
modeled in commercial available circuit simulators, especially for devices in
sub-micron technologies. This is further described in [5] and [6], which
show the inaccuracy of transistor models. The inaccuracy can be caused by
the model itself or in conjunction with a poorly extracted parameter set.
Further, the parameter sets are often worked out to obtain highly accurate
first order derivatives (small signal parameters). This gives high accuracy in
simulation of e.g. gain, bandwidth, gain- and phase margins of the circuit.
Thus, the accuracy of higher order derivatives are often not an issue when
the parameter sets are made.

In the next subsections, the higher order derivatives are viewed
qualitatively and the accuracy of the absolute values is thus less important.
This is done to obtain information on how to bias the transistor for low
distortion. For this purpose, the shape of the curves is plotted as a function of
the transistor terminal voltages and it is assumed that these shapes are
approximately correct.

3.1.2 Biasing of Current Sources

The requirement for a current source is low output conductance and small
parasitic capacitance. A simple current source can be made of one transistor
as shown in Figure 3-2. Here, is the bias voltage, assumed constant, is
the parasitic capacitance in the drain node and is the drain current. When
designing for high bandwidth it is often more important to keep the parasitic
capacitance low, than to obtain low output conductance. By using minimum
gate length, and thus keep the gate width small, the parasitic capacitance on
drain will be minimum, but at the cost of higher output conductance.

When setting all voltages except in (3-1) to zero, equation (3-3) is
obtained. Figure 3-3 shows Eldo simulations of the coefficients in (3-3). The
transistor has minimum gate length and the Gate-Source (GS) voltage is
0.75V. At low Drain-Source (DS) voltage the transistor is biased on the edge
of the triode region and all nonlinear coefficients are large compared to gd.
Additionally, they also have large variation with change in the DS-voltage.
When the DS-voltage is increased well above the saturation voltage of the
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transistor, the nonlinear coefficients become small and relatively stable.
Thus, a current source with low distortion and robustness against variations
in circuit conditions is obtained by biasing the transistor well above the
triode region.
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It is possible to lower the saturation voltage by decreasing the GS-
overdrive. This is done by making the transistor wider and/or shorter at the
same drain current. However, a wider transistor gives larger which can
ruin the phase- and gain-margins for the feedback circuit.

In also the DB-diffusion capacitance is included. This capacitance is
caused by a reverse biased pn-junction and becomes more linear as the
reverse voltage increase. Thus, also for the diffusion capacitance it is
important to have large DS-voltage. On the other hand, simulations show
that these nonlinear coefficients contribute to distortion only in nodes with
large voltage swing and only at very high frequency.

3.1.3 Biasing of Signal Transistors

The phrase “signal transistor” means a transistor where the signal that
appears in the GS-voltage is transferred to the DS-voltage. An example of a
signal transistor is shown in Figure 3-4. The transistor is used in a common
source amplifier stage, where can be the output of the previous stage and

the output conductance of a current source. Here, bulk and source are
connected together through the substrate. Thus, (3-4) is obtained by setting

in (3-1) to zero.

In Figure 3-5 gm, and are plotted versus GS-voltage with
minimum gate length for the transistor and DS-voltage equal to 1.65V. The
plot shows that when the GS-voltage is equal to the threshold voltage the
higher order derivatives and have a discontinuity. The reason is
the MOS model in conjunction with the parameter set used. MOS models
use different equations in different biasing modes. In the transit region
between two modes (e.g. between sub-threshold and above threshold)
discontinuities in the higher order derivatives may occur. This is a common
problem in modeling of MOS devices. To get reliable estimates of the
linearity performance through simulations, it is important not to bias the
transistors in the vicinity of discontinuities in the transistor models.

TLFeBOOK



Figure 3-5 shows that and are large compared to gm at low
GS-voltages and the variations in the nonlinear coefficients are considerable.
Thus, it is important to avoid biasing the transistor in this region. At higher
GS-voltage, the inclination of gm rolls of and reach zero at 1.8V. This is due
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to a combination of velocity saturation and mobility degradation. Thus,
and are both low compared to gm for in this region. On the other
hand, high GS-voltage, and thus high GS-overdrive, will make the saturation
voltage high and increase the nonlinear coefficients associated with the DS-
terminal. This is the same situation as for the current source described in the
previous subsection. Thus, a tradeoff has to be made where the optimum GS-
voltage is lower than 1.8V to keep all nonlinear coefficients small and the
total distortion from the transistor on a minimum.

The other nonlinear coefficients in (3-4) depend on both and
Simulations show that these coefficients are low and relatively constant with
the same biasing scheme as above.

When the SB-voltage is non-zero, the nonlinear coefficients because of
the bulk effect must be taken into consideration. By using the biasing
scheme above, the nonlinear coefficients associated with the SB-voltage are
all small and stable. Further, as long as the GS-overdrive is adequate, the
effect that the biased bulk has on the other nonlinear coefficients (due to the
GS- and DS-terminals) is small.

Thus, for a signal transistor the GS-voltage should be high enough to
keep the nonlinear coefficient associated with the GS-voltage low and low
enough to keep the transistor away from the triode region. This results in low
distortion and achievement of robust linearity performance against variations
in circuit conditions.

3.1.4 Biasing Guidelines for Low Distortion

Before starting the design process, verification of the transistor models,
together with the parameter sets for the fabrication technology, should be
carried out. It is important to locate discontinuities in the derivatives and to
avoid bias the transistors near these points. This is to evade unreliable
simulation estimates of distortion.

The selection of appropriate bias currents of the transistors is an
important issue. At low frequencies, the resistive load on the transistor
output consumes signal current. To avoid clipping, the equilibrium drain
current has to be equal to or larger than the signal current. Further, to
maintain weakly nonlinear behavior of the circuit the equilibrium drain
current has to be well above the signal current. At higher frequencies, signal
currents through capacitive loads come in to consideration. This will at high
enough frequency result in slewing. To ensure weakly nonlinear behavior
also at high frequencies, the bias current must be large enough to keep the
circuit far from slewing behavior in any of its nodes, at the highest operating
frequency.
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For the signal transistor, it was stated in the above subsection that the
GS-overdrive should not be too low because of large nonlinear coefficients
in this biasing region. In feedback systems, the loop gain suppresses the
distortion. It is shown in Chapter 4 that it is important to keep the
transconductance of each amplifying transistor high, in order to obtain large
suppression of distortion in a wide frequency range. In (3-5) a simplified
equation for the transconductance is shown for a transistor in saturation.
When the drain current remains constant, the only way to increase gm is to
decrease the GS-overdrive by making the transistor wider. As shown in the
previous subsection, the nonlinear coefficients will then increase. Thus, to
obtain the lowest distortion, which means high gm and low nonlinear
coefficients, the CL circuit must be optimized using a circuit simulator.

In Figure 5-4 in section 5.2, a 1.8V CMOS opamp manufactured in a
technology is presented. This opamp is connected in inverting

opamp configuration and optimized for low HD2 and HD3 in Eldo. The
Miller transistor M4 has major contribution to the total distortion of the
circuit and is thus an essential transistor when optimizing the circuit. The
small-signal parameters and nonlinear coefficients of M4 after optimization
are shown in Figure 3-6 and Figure 3-7. The gate length of the transistor is

and the transistor model used is BSIM3 [7]. The transistor is biased
with and Figure 3-6 shows that the nonlinear
coefficients associated with the DS-terminals are low when
Further, at this bias point, the nonlinear coefficients are relatively stable in a
large range of the DS-voltage. Figure 3-7 shows that at both
nonlinear coefficients are large, especially The reasons why the CL
circuit still has minimum distortion are a combination of low saturation
voltage and high transconductance obtained by low GS-overdrive as
described above.

Further, the plots show no discontinuities in the higher order derivatives.
Additionally, compared to the plot for the transistor, gm are more
constant at high GS-voltage. The reason for this is expected to be stronger
effect from velocity saturation.
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A set of biasing guidelines, to obtain high and robust linearity
performance, can be as follows:

The transistor model and the parameter sets should be tested by plotting
the small-signal parameters and nonlinear coefficients. It is then possible
to see how the transistors should be biased to avoid discontinuities and to
obtain low and stable nonlinear coefficients.
Choose the bias current of each transistor in the circuit such that weakly
nonlinear behavior is maintained. This means that the bias currents shall
be set well above the signal currents associated with each transistor. This
must be satisfied in the whole frequency range of the input signal.
Dimensioning each transistor to set the voltage bias point such that the
nonlinear coefficients are low and stable in the entire range of the
transistor terminal voltages. For transistors in current sources, low GS-
overdrive is important to obtain low saturation voltage. For signal
transistors, the GS-overdrive has to be large enough to keep the nonlinear
coefficients associated with the GS-voltage low. Further, the saturation
voltage, and thus the GS-overdrive, must be low enough to achieve low
nonlinear coefficients associated with the DS-voltage.
For feedback systems, the loop gain will attenuate the distortion. Thus, it
is important to increase the transconductances for the amplifying
transistors. However, when the drain current remains constant, this
results in increased nonlinear coefficients. This is an optimization
problem, which can be carried out in a circuit simulator to achieve the
optimum biasing for low distortion. The starting point for the
optimization is the biasing achieved in point 2 and 3 above.

1.

2.

3.

4.

3.2 Opamp Modeling for Nonlinear Analysis

In Chapter 2 the principle of weakly nonlinear circuits was explained to
be a criteria for expressing the nonlinear behavior of the circuit by Volterra
series and phasor method. In CL opamp circuits the higher order terms of the
Volterra series is kept small by applying negative feedback in combination
with careful biasing. Additionally, the circuit excitation has to be well below
the supply voltage. This results in accurately analysis of the CL opamp
circuits using the phasor method, even when the series is truncated to
order.

To find the output responses of to order of the CL circuit, the
phasor method can be applied on the total circuit including the feedback
network. This leads to accurate, but very complex equations that provide
very little information. Instead, the phasor method can be applied only on the
opamp circuit to find the to order OL transfer functions. Further, the
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OL transfer functions can be used to find the CL responses. By this, it is
possible to obtain surveyable equations, which provides valuable insight and
understanding of nonlinear behavior. The only degradation in accuracy is the
loading effect on the feedback network, caused by the input terminal of the
opamp. However, this effect is insignificant at frequencies below the GBW
of the opamp. The pole made by the resistive feedback network and the
parasitic capacitor at the opamp input terminal has to be well above the
GBW of the opamp to obtain safe phase- and gain-margins.

To derive OL transfer functions for the opamp several elements have to
be established. First, a general model of the opamp is described, which
models the opamp as a two-input device, one for the differential input
voltage and the other for the CM input voltage. Especially for the non-
inverting opamp configuration, the distortion caused by the input CM-
voltage is considerable. Further, it is described how the phasor method can
be utilized to split-up the nonlinear transfer functions. By this, simple
equations are obtained. Even more important is the insight and
understanding of the nature of nonlinear distortion that can be achieved by
this split-up. At the end of this section, a folded cascode Miller opamp and
its simplified model are described. This opamp is further used as a case for
evaluating the inverting and non-inverting opamp configurations in Chapter
4 and for some of the designs in Chapter 5.

When a circuit is in steady state it is possible to use phasor representation
of node voltages and branch currents, and the phasor method can be applied.
Further, in this chapter and in Chapter 4, all voltages and currents are on
phasor form and written in capital letters. The indexes are written in lower
case letters to indicate signals where the DC-value is disregarded.

3.2.1 The Opamp as a Two-Input Device

Opamps with single ended output have differential- and CM-signal
swings at the input terminals. This is illustrated in Figure 3-8(a), where
and are the differential and CM voltage swings, respectively. The CM-
swing can be damaging for the linearity performance of the opamp,
particularly when the swing is large. Especially the non-inverting opamp
configuration suffers from large swing in the CM-voltage. Thus, when
finding expressions for the harmonic responses it is important to take the
effects from the CM-swing into consideration. This is the main reason why
the opamp is handled as a two-input device in this work.

Figure 3-8 (b) shows a weakly nonlinear model of the opamp. The input
variables to the model are and These voltages are computed from the
terminal voltages of the opamp, and as shown in the figure. The
output voltage can be expressed as (3-6), when truncating the Volterra series
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to order. is representing the output response at the fundamental
frequency, and and are the output responses for and
harmonics, respectively. These transfer functions are shown in (3-7) to (3-9).
In these equations are the transfer function from the input
voltages indicated by the indexes and respectively, to the output of
the opamp. The factors n and m are integers between 0 and 3, and are the
exponents of and respectively. If n or m is zero the corresponding
input voltage is also zero. The order of the transfer functions is n+m.

can be found by using the phasor method on the OL opamp.
The procedure for doing this is explained in Appendix C, where it is applied
on the Miller opamp presented at the end of this chapter.
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order: Derive the equation for the output voltage of the opamp (the
order transfer functions) as a function of the circuit excitations. Further,
derive all order controlling voltages (i.e. terminal voltages) for
nonlinear current sources, as a function of the circuit excitations. The
circuit excitations are and and the excitation frequency is

order: Derive the output voltage and all order controlling voltages
as a function of the circuit excitation. The circuit excitation is now all
nonlinear current sources of order. Subsequently, inserting for the
order controlling voltages found in 1. Because of the order
nonlinearity the excitation frequency is

order: The same procedure as for order, but the excitations are all
nonlinear current sources of and order. Insertion has to be done for

and order controlling voltages. The excitation frequency is

1.

2.

3.

3.2.2 Splitting of Transfer Functions

In Figure 3-9, an arbitrary nonlinear current source in the opamp is
shown with the controlling voltage The current source sees a transfer
function to the output, and each of the input voltages and experience a
transfer function to the controlling voltage. The phasor method is explained
in section 2.3. Carried out on the two-input opamp, it can in short be
explained as follow:

The above equations represent a universal model for the two-input
opamp. This model can further be used for various types of opamps
connected in various configurations.

44 Design Criteria for Low Distortion in Feedback Opamp Circuits
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It is thus possible to split the nonlinear transfer functions in two factors.
One factor that represents the transfer function from the nonlinear current
source to the output and one factor expressing the transfer functions from
and/or to the controlling voltage. For a multidimensional current source
and for combination of and order controlling voltages there are several
transfer functions from and/or to the nonlinear current source.

Further, if the opamp is viewed as a two-dimensional nonlinear element,
with as the nonlinear “coefficients”, it is possible to obtain the
CL nonlinear transfer functions by using the same procedure as above on the
opamp with the feedback network included. This is shown in Appendix B,
and the obtained CL transfer functions are further used in Chapter 4.

This method makes it possible to split the total transfer function in many
different factors. Each of these factors is easy to simplify and analyze. It also
gives valuable insight in the cause and behavior of distortion. Further, the
method makes it possible to isolate poles and zeros and find which design
parameters that improve the linearity performance of the circuit. This
technique is used to obtain simplified nonlinear CL transfer functions for
non-inverting and inverting opamp configurations, which is described in
section 4.1 and 4.2, respectively.

3.2.3 Case: Miller Opamp

A folded cascode Miller opamp [8] is shown in Figure 3-10. This opamp
is chosen as an opamp case for further use in Chapter 4 and Chapter 5. The
input differential pair is implemented by M1 and M2, and M3 is the tail
current source. M6 to M13 make the folded cascode and the output stage is
made by a common source transistor M4 with M5 as the output current
source. The Miller capacitance is connected between the output and the
source of M11. The zero in the right half plane is moved to high frequencies
and the stability problems caused by the zero is omitted. The bias currents
are chosen such that the drain current of each transistor is well above the
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signal current. As described in section 3.1.4, this ensures weakly nonlinear
behavior of the circuit even at high frequencies.

The small-signal equivalent of the opamp is shown in Figure 3-11. The
folded cascode is replaced with a linear resistor equal to the resistance seen
into the drains of M9 and M11. This simplification was necessary to avoid
high complexity in the expressions for The main
contributions to distortion are expected to come from the transistors that are
exposed for the highest signal swing. Since the folded cascode does not have
large voltage swing at any of its nodes, the estimated distortion will still be
relatively accurate. The effect of the approximation will be visualized in
Chapter 5 where the simulation results obtained with Maple and Eldo will be
compared.

The transfer functions given in (3-7) to (3-9) will be found using the
small-signal model in Figure 3-11. The procedure used is explained in
Appendix C, where it is carried out to obtain the transfer functions of
order. Because of the large complexity the higher order transfer functions are
carried out in Maple and not shown in Appendix C. The derivation of the
nonlinear transfer functions of the opamp is similar to the derivation for the
LP-filter carried out in section 2.3.1.
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Further in this book, small-signal parameters and nonlinear coefficients
will have indexes according to the number of the belonging transistor.
However, M1 and M2 are designed to be equal. Thus, these transistors are
represented with the same small-signal parameters and nonlinear
coefficients, which are without integer indexes. Differences between M1 and
M2 are expressed by using a mismatch factor for each of the transistor
parameters.

Simplified expressions of the first order transfer functions, disregarding
poles and zeroes at high frequency, are quoted in (3-10) and (3-11). Here, D
is given by (3-12), where and are the mismatch in the small-
signal parameters of M1 and M2.  poles and zeros are given in (3-13)
to (3-16) and the GBW of the opamp is given in (3-17). More accurate
versions of the order transfer functions are shown in Appendix C.

In the sections 4.1 and 4.2 numerical simulations of the CL responses
will be carried out to find the main contributions to nonlinear distortion. The
simulations are done in Maple. Thus, it is necessary to extract small-signal
parameters and nonlinear coefficients for the transistors M1 to M5 of the
opamp. The extractions are done individually for each transistor at their bias
points, which are chosen according to the bias recommendations in section
3.1. This is carried out with Eldo and Philips MM9 MOS model with
parameters from the same process that is used in section 3.1. The
extracted values are given in Table 3-1 (p. 50), where all small-signal
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parameters (named order) are according to Figure 3-11. The capacitances
due to the DB-diffusions to M4 and M5 are included in and all diffusion
capacitances in the common source node of M1 and M2 are included in

Mismatch between M1 and M2 are only considered for gm and is denoted
In Table 3-1 the for is given, derived from the mismatch

data for the fabrication technology and the sizes of the transistors. For the
rest of the small-signal parameters and nonlinear coefficients of M1 and M2,
the mismatch is assumed to be zero unless stated otherwise. For the CM-
gain, this can be considered as worst case. Equation (3-12) shows that setting

and to zero gives the highest D and thus the highest CM-gain,
assuming that non-zero and leads to attenuation in (3-12).
Additionally, the distortion is expected to be larger when the mismatches in
the nonlinear coefficients are included.

The opamp in Figure 3-10 is only used as a test case for exploring the
inverting and non-inverting opamp configurations in Chapter 4. Thus, the
circuit is not optimized for low distortion in a circuit simulator. However,
the test case represent a realistic behavior of distortion and the contributions
to nonlinearity is mainly the same as the fabricated opamps presented in
Chapter 5. Table 3-2 (p. 51) shows some characteristic parameters for the
test opamp, obtained with the equations below.
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Chapter 4

Nonlinear Analyses of Feedback Miller Opamp

Nonlinear analysis of feedback systems is reported in several scientific
papers. In [1] and [2] Volterra series is used to find the nonlinear CL
expressions as a function of the to orders OL kernels of the one-input
amplifier. In [3] the effect that Miller compensation has on linearity
performance is investigated and in [1] and [4] the most important nonlinear
coefficients of HD2 is plotted for a two-stage Miller opamp connected in
inverting configuration. The obtained results are similar to the results
obtained in section 4.2 below. In [5] a comparison regarding linearity
performance between the inverting and non-inverting opamp configuration is
carried out. The measurements show large degradation at low frequencies
when the opamp is connected in the non-inverting configuration.

In this chapter, the non-inverting and inverting opamp configurations are
analyzed using the phasor method, considering the opamp as a two-input
device. The to order CL responses will be presented as a function of
the OL transfer functions of the opamp, given in (3-7) to (3-9) (p. 44). By
this, it is possible to see what influence the feedback has on linearity
performance. As a case, the opamp presented in section 3.2.3 is used. For
this opamp, simplified equations for distortion as a function of frequency are
shown. This is done first for the opamp connected in non-inverting
configuration and further in inverting configuration. These equations include
the strongest nonlinear sources to distortion. The feedback network is
assumed linear, which is a good approximation while using highly linear
resistors. Further, design criteria for low distortion in feedback opamp
circuits are given. The thoroughly analysis done in this chapter is a further
evolution of the work presented in [1], [4] and [5] regarding feedback opamp
circuits.

53
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4.1 The Non-Inverting Configuration

In Figure 4-1 the non-inverting opamp configuration is shown. The
closed loop responses for and order are given in (4-1) to (4-3),
respectively. Derivations of these are done in Appendix B. The OL transfer
functions of the opamp, are explained in section 3.2.1.
is the transfer function because of mixing of the harmonic and the input
frequency in the order nonlinear transfer functions of the opamp. The
harmonic is fed from the output terminal to the inputs of the opamp through
the feedback network. The input variables to and

are the differential and CM input voltages of and order. Further,
is the feedback factor.
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The main drawback of the non-inverting configuration regarding
nonlinearity is the large CM voltage swing at the input terminals of the
opamp. This is reflected in the and order responses given by (4-2) and
(4-3). The equations show that the OL transfer functions of the opamp that
have m>n (in are less suppressed by the loop gain,

than the transfer functions which have m<n. For instance, in (4-2)
is suppressed by the cubic loop gain while is only

suppressed by the loop gain.
As will be shown further in this section, it is important that the CM-gain

is low to obtain low distortion. The CM-gain is expressed by given
by (3-11) (p. 48). There are two reasons for keeping the CM-gain low. First,
the term in (4-2) and (4-3) should be smaller than 1 to not
increase the distortion. Further, high CM-gain causes the output transistors
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to experience large voltage swing due to the CM-voltage. Thus, the
distortion from the output transistors becomes dominant. Both these effects
occur at low frequencies. At frequencies above the dominant pole of the
opamp rolls off and the problem disappears.

In the next subsections, the nonlinear transfer functions that have the
strongest contributions to and harmonics will be found. For each of
these, the major nonlinear coefficients will be detected by plotting. Further,
it will be shown approximate equations for the strongest transfer functions
including the major nonlinear coefficients.

The effect from the CM-gain will also be visualized. The CL nonlinear
transfer functions will be plotted for both high and low CM-gain. To do this
it is necessary to describe how high and low CM-gain is achieved. The CM-
gain is proportional to D given by (3-12) and quoted in (4-4). The high CM-
gain is obtained by setting is expressed in (4-5). Low CM-
gain occur when setting and reduce to 1/5 of the value
given in Table 3-1 (p. 50). is given by (4-6). The reduction of can be
achieved by e.g. a tail current compensation circuit, which is described in
[6]. Thus, at low frequencies becomes 20dB (high) and –6dB (low)
when the parameters are set according to Table 3-1.

All considerations and plots in this section are done with the CL-gain
equal to 1, which means that the opamp is connected in unity gain
configuration. This gives the highest input CM-swing and results in worst
case regarding nonlinear distortion. The input voltage is and the
circuit parameters are shown in Table 3-1 (p. 50). The mismatch in the
differential pair is only considered through mismatch in the small-signal
parameters gm, gmb and gd, as explained above. All nonlinear coefficients
because of M1 and M2 are assumed equal for the two transistors.
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4.1.1 Contributions to      Harmonic

Equation (4-2) can be expressed as (4-7) where the terms are given in (4-
8) to (4-10).

In Figure 4-2 the accurate versions of (4-7) (labeled to
(4-10) are plotted with high CM-gain. The plot shows that at frequencies
below 10MHz, all transfer functions are large and have approximately the
same contribution to the total distortion. Because of different signs, the sum
of the transfer functions is lower than each of them. The reason for the large

order transfer functions at low frequency is the high CM-gain. For
in (4-8), the term is the cause for the increased

contribution. For in (4-9), the does some
of the contribution. Additionally, because of large CM-gain, the output
transistors experience large voltages and thus contribute more than the input
transistors. This is also the reason why in (4-10) are large at low
frequencies. All these transfer functions rolls off when rolls off,
which is at the dominant pole of the opamp. Thus, above 10MHz the input
transistors have the strongest contributions to and

Figure 4-3 shows the same transfer functions as Figure 4-2, but with low
CM-gain. Here, the CL transfer functions that depend most on the CM-
voltage are the largest contributions to distortion. At low frequencies, the
dominant transfer function is Further, the overall order
response is lower than when the CM-gain is large. Thus, it is important to
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keep the CM-gain low to obtain small harmonic at frequencies below the
dominant pole of the opamp.

At frequencies above 10MHz is the strongest contribution
to harmonic regardless of the CM-gain. In the next subsection it will be
shown symbolic expression for This expression takes into
consideration the major nonlinear coefficients. Since is
independent of mismatch in the nonlinear coefficients, the expression will be
accurate even without a mismatch model for the nonlinear coefficients of M1
and M2.

4.1.1.1
The curves labeled “all” in Figure 4-4 and Figure 4-5 show

including all order nonlinear coefficients of the transistors M1 to M5 in
the opamp. When all of the nonlinear coefficients are set to zero except for

the curves denoted “K2_gm” is obtained. The same is done for
and The curve “M4 and M5” is the contributions from all

order nonlinear coefficients of M4 and M5. The sum of the contributions
above is plotted in the curve called “K2_gm, K2_gmb_gm, K2_gm_gd, M4,
M5”. This last curve shows close fitting to the “all”-curve in both figures.
Thus, the main contributions to are covered in these plots.

Figure 4-4 shows when the CM-gain is high. At low
frequencies, the transfer function is high due to the nonlinear coefficients of
the output transistors, M4 and M5. These contributions rolls off with the
CM-gain and above 10MHz is decided by the input transistors
only. In Figure 4-5, the CM-gain is low and the output transistors contribute
at a level that is 50dB lower than in Figure 4-4. This shows that much can be
earned by keeping the CM-gain low.

Figure 4-5 shows that the strongest contributions above 10MHz are (in
declining order) and Because of canceling effects
between the contributions, are smaller than each of them. This
canceling effect is also shown by the expression for which is
given in (4-11). This equation is obtained using the technique for splitting of
transfer functions described in section 3.2.2. is the dominant pole of the
opamp, and are the gain of input stage and output stage, all given in
section 3.2.3. Poles and zeros located at high frequencies are disregarded.
Because of different signs of the terms in (4-11), canceling occur between

and the sum of and This effect can be reliable since
all nonlinear coefficients are due to the same transistor. However, because of
poor modeling of higher order derivatives of the transistor current, it can be
difficult to utilize this effect in the design phase.
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The canceling effect is also the reason for the larger inclination in the
“all”-curve above approximately 50MHz compared to its contributions.
Because of poles and zeros at high frequencies, the contribution from
starts to increase at 50MHz. This results in poorer canceling between
nonlinear coefficients and the total order distortion increase. This is not
included in (4-11) because poles and zeros at high frequencies are
disregarded.

Equation (4-11) shows that the contributions from the nonlinear
coefficients increase with 20dB/dec above the zero located at the dominant
pole of the opamp This can also be seen in Figure 4-5. Further, for
frequencies above will roll of and (4-11) can be expressed as
(4-12). (4-12) shows that it is possible to lower the asymptote of

and thus lower harmonic in this frequency range, by
increasing the GBW of the opamp. The maximum GBW is limited by the
stability criteria for the opamp. It can be shown that all contributions from
the input stage that depends on the input differential voltage, have the
same dependence of GBW. Thus, this is a secure way to lower the distortion
caused by the input stage.

In Figure 4-6, equation (4-11) and the accurate version of
are plotted, denoted and
respectively. Since (4-11) does not include the contributions from the output
transistors, there is some deviation at low frequencies. Further, at high
frequencies, the gap between the curves is caused of high frequency poles
and zeroes not included in (4-11).
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4.1.2 Contributions to       Harmonic

The harmonic for the non-inverting opamp configuration is expressed
in (4-3), and can be written as (4-13). The terms are shown in (4-14) to (4-
18). The equations are similar to the order transfer functions and the
effects are also expected to be the same.
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Figure 4-7 and Figure 4-8 show the plots of the accurate versions of (4-
13) to (4-18), using high and low CM-gain, respectively. The plots visualize
the same effects as for the order transfer functions. For high CM-gain and
low frequencies the nonlinear transfer functions are large and roll off above
the dominant pole of the opamp. The total order response (denoted
“H_3_all_CL”) are also affected of this, in contrast to the order response.
Thus, at low frequency and high CM-gain the harmonic will be
unacceptably high.

For low CM-gain, the CL nonlinear transfer functions that have the
strongest dependence on the CM-voltage, contribute most to harmonic.
For low frequencies are largest and takes over
above approximately 1MHz. Next, the strongest contributions to

will be found and a simplified expression will be shown.
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4.1.2.1
Figure 4-9 and Figure 4-10 shows the main contributing nonlinear

coefficients to with high and low CM-gain, respectively. The
plots are obtained in the same way as for and the labels of the
curves have the same structure. For high CM-gain and low frequencies, the
output transistors are the strongest contributors. This is seen from that the
“all”-curve is decided of the “M4 and M5”-curve in this frequency range.
For higher frequencies, the input transistors take over. When the CM-gain is
low, the input transistors are the strongest contributors in the whole
frequency range. The strongest nonlinear coefficients are (in declining order)

and The curve that includes these nonlinear
coefficients in addition to M4 and M5 fits the “all”-curve well for
frequencies above the dominant pole of the opamp. It is in this frequency
range that contribute alone to harmonic. The simplified
equation for is given in (4-19) including the main nonlinear
coefficients. The order coefficients and contribute because
of mixing between harmonic and the fundamental frequency. As for

there is a zero at which gives a slope equal to 20dB/dec for
the nonlinear transfer function above this zero. It is possible to lower the
harmonic at frequencies above by making the GBW of the opamp as high
as possible. It is also important to keep the nonlinear coefficients low and the
transconductance high. Because of different signs of the nonlinear
coefficients, some canceling effects are expected.

The accurate version of and (4-19) are plotted in Figure 4-
11. The match between the two curves is close for frequencies above the
dominant pole of the opamp and up to approximately 200MHz. The
deviation between the curves at low frequencies is due to nonlinear
coefficients not included in (4-19). Because of canceling effects the accurate
curve is lower than the approximated curve. Above 200MHz the deviation is
caused by omission of poles and zeroes at high frequencies.
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4.1.3 Non-Inverting: Design Considerations for Low Distortion

In this section, the non-inverting opamp configuration with low CL gain
is analyzed with respect to nonlinear behavior. The main drawback of this
configuration is the high CM-voltage swing at the input terminals of the
opamp. This swing is destructive for the linearity performance of the circuit.
This is also reported in [5]. Thus, to achieve high linearity performance for
the non-inverting opamp configuration the challenge will be design of the
input stage.

The above analysis shows that low CM-gain is an important design issue.
This can be obtained by close matching between the input transistors, by
avoiding the bulk modulation and by making the conductance of the tail
current source M3 as low as possible. According to [7] and [8], the matching
of the gain factors, the threshold voltages and the body factors are all
inversely proportional to the square root of the area of the transistors. Thus,
close matching is achieved by using large area for the input transistors. The
bulk modulation is omitted by using PMOS transistors. These are placed in
N-wells in modern fabrication technologies. It is then possible to connect
bulk to source and by this shorten the BS-terminal of the transistor. Low
conductance in the tail current source can be attained by using a cascode.
The cascode has higher saturation voltage than a one-transistor current
source. This can be a problem when the input CM-swing is large compared
to the supply voltage. Another possibility is to use the tail current
compensation circuit described in [6]. By this solution, low output
conductance is obtained at the same time as low saturation voltage.

If the CM-gain is low and the strongest contributions to
nonlinear distortion are the input transistors. The nonlinear coefficients of
these transistors contribute through the nonlinear transfer functions that have
the largest dependence on the CM-voltage. For low frequency,
(where x is 2 or 3) is the dominant transfer functions. It can be shown that

depends on the mismatch in the differential pair, M1 and M2.
Thus, better matching gives lower distortion at low frequency. For higher
frequency, (where y is 1 or 2) takes over, even if the CM-
gain is large. The distortion in this frequency range can be lowered by
increasing the GBW of the opamp. Additionally, the expressions (4-11) and
(4-19) (p. 61 and 67, respectively) show that do not depend
on mismatch between M1 and M2 when When

will depend on mismatch through
Both (4-11) and (4-19) are lowered by increasing the transconductance of

the input transistors. This is also the case for Thus, it is
important that the gm of M1 and M2 is as high as possible. On the other
hand, when increasing gm by increasing the aspect ratio of the transistors
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(W/L) and at the same time keeping the bias current constant, the GS-
overdrive will decrease. In section 3.1 it is shown that biasing the transistor
with low GS-overdrive results in high values for the nonlinear coefficients
associated with the GS-terminal. The compromise between high
transconductances and low nonlinear coefficients can be optimized in a
circuit simulator to obtain low nonlinear distortion.

The linearity can also be improved by matching different nonlinear
coefficients with opposite sign. For opamps in non-inverting configuration,
the input differential pair has large contributions to distortion. Since the
nonlinear coefficients with opposite sign are due to the same transistor, it is
possible to utilize this to enhance the linearity performance. Accurately
modeling of higher order derivatives of the transistor current is an important
issue here.

The design guidelines for achievement of highly linear opamps for the
non-inverting configuration can be summarized as follows:

For low frequencies:
Obtain low CM-gain by close matching of the input differential pair,
by omitting the bulk modulation and by obtaining high output
resistance of the tail current source.

For high frequencies (well above the dominant pole of the opamp):
High GBW of the opamp.

Generally, in the entire frequency range:
Set the equilibrium currents well above the signal currents in the
whole frequency range. Further, dimension the transistors to set the
voltage bias point such that the nonlinear coefficients are low and
stable in the entire range of the terminal voltages of the transistors.
Use this as a starting point for optimization.
Optimizing: high transconductance versus low nonlinear coefficients.
Utilize canceling between nonlinear coefficients.

When the CL-gain of the circuit is increased, the CM-voltage on the
inputs decrease and the contributing transfer functions shifts towards

and The output stage has the main contribution in
these transfer functions, and it is a similar situation as for the inverting
opamp configuration described in the next section.
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4.2 The Inverting Configuration

The inverting opamp configuration is shown in Figure 4-12. The to
order CL responses, derived in Appendix B, are quoted in (4-20) to (4-22).

is the ideal CL-gain equal to
For the non-inverting opamp configuration, described in the previous

section, the swing in the CM-voltage is high and not suppressed by the
feedback loop. The nonlinear transfer functions, which have the strongest
dependence on the input CM-voltage, are the strongest contributors to the
total distortion. The large advantage of the inverting opamp configuration is
the low CM-swing, which is Thus, for the inverting
configuration all OL nonlinear transfer functions are suppressed by the same
order of the loop gain as shown in (4-21) and (4-22). In Figure
4-13 and Figure 4-14 the CL nonlinear transfer functions are plotted. The CL
transfer functions are obtained by expanding (4-21) and (4-22). The naming
convention is the same as for the non-inverting configuration. For the
inverting configuration the major contributors to the total CL responses are
those nonlinear transfer functions that have the strongest dependence on the
differential input voltage. These are and for and

order distortion, respectively.
In the next subsections, the nonlinear coefficients with the highest

contributions to and will be found by plotting.
Further, it will be given approximate equations for these transfer functions,
which also are the simplified expressions for the total and order
responses. From these results some design criteria will be drawn. As for the
non-inverting configuration, all parameters are according to Table 3-1 (p.
50). The input voltage is and the closed loop gain is –1, which means
that the feedback factor is The mismatch between M1 and M2 are
only considered through mismatch in the transconductance gm.
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4.2.1 Contributions to         Harmonic:

Figure 4-15 shows with the most important nonlinear
coefficients. These are and The curve that plots
the sum of these coefficients (denoted “K2_gm4, K2_gm_gd4,...”) shows
close fitting to the “all”-curve (seem to be identical in the plot). This shows
that the major order nonlinear coefficients are included.

Equation (4-23) shows including the nonlinear coefficients
plotted in Figure 4-15. Here, is the pole in the output node of the folded
cascode when disregarding the Miller feedback capacitance. is the pole
caused by the output node of the opamp with the Miller capacitance
connected to ground. These are given in (4-24) and (4-25) and appear as
zeros in both and is described in the next
section. The poles and zeros at high frequency are disregarded. Using (4-24)
and (4-25), and the parameters from Table 3-1 (p. 50), it is possible to locate

at 23MHz and at 212MHz. This can also be seen in Figure 4-15.
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Figure 4-15 shows that at low frequency all nonlinear coefficients
contribute almost at the same level. (4-23) shows that the contribution from
the nonlinear coefficients increase with 20dB/dec for frequencies above

Further, above and increase with 40dB/dec and
60dB/dec, respectively, due to the and order zero at Because of the
60dB/dec slope, takes over as the strongest contribution to
harmonic at frequencies above 100MHz. Similar results are presented in [1]
and [4], were appears as the strongest contribution in the entire
frequency range.

The total order response and (4-23) are plotted in Figure 4-16. The
total order response includes all order transfer functions and all
nonlinear coefficients. The plot shows close match between the curves for
frequencies below 1GHz. Thus, the harmonic of the inverting opamp
configuration is well approximated by (4-23).
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4.2.2 Contributions to       Harmonic:

The major nonlinear coefficients contributing to are plotted in
Figure 4-17. For frequencies below 100MHz, the sum of and
contributes well above the other coefficients. For high frequencies, the
nonlinear coefficients with higher order zeroes take over. Especially
and are strong. Because of different signs between and the sum
of and an optimum occurs at approximately 200MHz. The curve
that covers all the major nonlinear coefficients shows close match to the
“all”-curve in the entire frequency range. This shows that that the most
important nonlinear coefficients are considered in Figure 4-17.

The sum of the expressions (4-26) and (4-27) makes the approximated
(4-26) includes the order nonlinear coefficients and (4-27)

the order nonlinear coefficients. (4-26) has a similar structure as
given by (4-23). All nonlinear coefficients have a zero at

which cause a 20dB/dec slope for frequencies above this zero. Further,
and have to order zeroes, respectively, at

These zeroes cause the slopes of and to be
40dB/dec, 60dB/dec and 80dB/dec, respectively, above (4-27) shows that
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the order nonlinear coefficients have a slightly different structure. The
contributions from the order coefficients are caused by mixing of
harmonic and the fundamental frequency. The contribution from has a
slope of 20dB/dec for frequencies below    0dB/dec  between and
20dB/dec above and 80dB/dec above is due to the input stage
and has 60dB/dec slope above the dominant pole The slopes described
above are also viewable in Figure 4-17.

The total order response (“H_3_all_CL”) and the sum of (4-26) and
(4-27) (“H_3_CL_apr”) are plotted in Figure 4-18. The two curves show
close fitting for frequencies below 1GHz. Thus, (4-26) and (4-27) are
accurate estimation for the order response of the inverting opamp
configuration.
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4.2.3 Inverting: Design Considerations for Low Distortion

The inverting opamp configuration has been described in this section.
The main advantage of this configuration, compared to the non-inverting, is
the low CM-voltage swing on the input terminals of the opamp. Because of
this, the main contributions to distortion come from the output stage. The
contribution from the input stage does not become considerable except at
high frequencies. This also makes the analysis simpler and the derived
expressions more accurate.

The strongest CL nonlinear transfer functions are and
for and order responses, respectively. is well

approximated by (4-23) and by the sum of (4-26) and (4-27).
These transfer functions can be described by asymptotes in the various
ranges of frequency. Each of the asymptotes can be lowered by the factors
shown in (4-28) to (4-31). These factors can be used as design equations to
obtain high linearity performance of the folded cascode Miller opamp
connected in inverting configuration.
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For frequencies below both and harmonic is suppressed
by (4-28). (4-28) shows that it is important to obtain high gain in the input
stage and high transconductance in the output stage to achieve low distortion
below In the frequency range between and the attenuation is
proportional to (4-29). In this frequency range the transconductances of both
the input and output stages should be as high as possible and, at the same
time, should be small. For frequencies above shows that it is
even more important to increase Further, in addition to the
capacitances and should also be small.

The last section showed that at high frequencies the contribution from the
input differential pair due to can be considerable. This and other
contributions from the input transistors Ml and M2 are suppressed by (4-
31). Here, both gm and the GBW of the opamp need to be high.

Common factors in (4-28) to (4-31) are the transconductances of the
amplifying transistors. The transconductances gm      and  needs both to be
large to obtain large attenuation of the asymptotes that describes the
nonlinear transfer functions. However, increasing the transconductances has
some side effects. For example, in (4-29) is mainly determined by the GS
capacitance of M4. Thus, increasing by making M4 wider will also
increase Additionally, the nonlinear coefficients will increase due to
lower GS-overdrive of M4, as explained in section 3.1. Another possibility is
to increase gm   of the input stage. However, this will increase the nonlinear
coefficients of the input transistors, which can be damaging for the
harmonic at high frequency. Thus, a trade off between these contradictions
has to be done to obtain low distortion.
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Using the biasing guidelines of section 3.1.4 and the design equations (4-
28) to (4-31) it is possible to make qualified decisions on how to optimize
the linearity performance of a folded cascode Miller opamp connected in
inverting configuration. Because that the various parameters are interfering
with each other, and the nonlinear coefficients will be altered when changing
the small-signal parameters, the circuit has to be optimized in a circuit
simulator. Using the biasing guidelines (given by 1 to 3 in section 3.1.4) as
the starting point for the optimization, the equations (4-28) to (4-31)
describes how to enhance the linearity performance in the different
frequency ranges. Guidelines for obtaining low distortion can thus be
summarized as follows:

Generally:
Biasing such that the equilibrium currents are well above the signal
currents in the whole frequency range.
Dimensioning each transistor in the circuit to set the voltage bias point
such that the nonlinear coefficients are low and stable in the entire
range of the terminal voltages of the transistors. Use this as a starting
point for optimization.
Optimizing: high transconductance versus low nonlinear coefficients.
Utilize canceling between nonlinear coefficients.

For low frequencies
High OL DC-gain in the opamp.
High transconductance in M4.

For high frequencies
High transconductance in M4.
High transconductance in the input differential pair M1 and M2.
Make and as small as possible.
Make the GBW of the opamp as high as possible to suppress the
contributions from the input differential pair.

The nonlinear coefficients in (4-23), (4-26) and (4-27), are the strongest
contributions to nonlinear distortion for the opamp used. In Chapter 5 three
folded cascode Miller opamps are presented, all connected in inverting
configuration. These are optimized for low distortion using the biasing
guidelines of section 3.1.4 and the design equations above. For these opamp
circuits the contributions to distortion come from the same nonlinear
coefficients as described above and the linearity performance is accurately
described by (4-23), (4-26) and (4-27). This will be further described in
Chapter 5. Thus, the expressions and design equations obtained in this
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section contain the most important nonlinear contributions while the opamp
is biased properly.

When increasing the CL-gain of the inverting configuration the
output responses due to and will increase with
where is given by (4-32). This is under the assumption that the input
voltage is lowered by the CL-gain, such that the swing in the output voltage
remains the same. This assumption also results in that the input CM-voltage
is independent of the CL-gain. Thus, the nonlinear transferfunctions that
depends on the input CM-voltage will still not contribute to the distortion.
The conlusion is that by increasing the CL-gain the distortion will increase
with in the frequency range from DC to The approximate
expressions (4-23), (4-26) and (4-27) are still valid.

4.3 Concluding Remarks

In section 3.1 it was pointed out that if the nonlinear coefficients and the
swing in the terminal voltages of the transistors are small the distortion will
be low. In feedback circuits, only a few nodes are exposed to large voltage
swing. In this chapter, the non-inverting and inverting opamp configurations
have been described regarding nonlinear behavior. Both configurations have
large voltage swing at the output node of the opamp. The non-inverting
configuration has in addition large CM-voltage swing at the input terminals.

The analysis of the non-inverting configuration showed that high
linearity performance at low frequencies can be obtained by keeping the
CM-gain of the opamp low. Further, even with low CM-gain, the input
differential pair has the main contribution to nonlinear distortion in the entire
frequency range and contributes well above the output stage. For large CL-
gain, the non-inverting configuration becomes more similar to the inverting
configuration. The reason for this is that the input CM-swing decreases and
the strongest transfer functions shift towards and
However, low CM-gain is still required.

For the inverting configuration, only the output node of the opamp has
large voltage swing and the output transistors are thus the main contributors
to distortion. This simplifies the analysis of the nonlinear behavior and
makes the optimization for low distortion less complicated. Because of these
features, it is possible to obtain better linearity performance for the inverting
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than for the non-inverting configuration. This is also shown when comparing
the plots for and order responses for the two configurations. The
inverting configuration should thus be the preferred choice when low
distortion is important.

Nonlinearity because of voltage coefficients in the resistors in the
feedback network is very harmful for the linearity performance of the CL-
circuit. The distortion produced of this network will not be suppressed at the
circuit output. In addition, the feedback network is connected to nodes with
large voltage swing. Thus, it is important to use linear resistors for the
feedback circuit. Linear resistors can be obtained on-chip by implementing
the resistors in metal. The drawback of metal resistors is large area,
especially for high resistance. However, for circuits with large bandwidth the
resistance has to be small because of the parasitic pole on the inverting input
of the opamp. This pole appears in the loop gain of the circuit and will cause
stability problems if not located well above the GBW of the OL circuit.
Metal resistors are then the best alternative.

In the next chapter, three opamps connected in the inverting opamp
configuration are presented. These opamps are designed using the design
equations obtained in section 4.2 and the biasing guidelines of section 3.1.
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Chapter 5

Opamp Circuits with High Linearity Performance

In this chapter four opamp circuits are presented, all designed for high
linearity performance. Three of the opamps are using the inverting opamp
configuration with the CL gain equal to –1. These are designed using the
biasing guidelines of section 3.1 and the design equations obtained in section
4.2. The circuits are fabricated in a CMOS technology. The last
opamp is connected in unity gain. It uses a tail current compensation circuit
to linearize the input differential pair because of the large input CM-voltage
swing. The circuit is fabricated in a CMOS technology with 3.3V
supply voltage.

To perform measurements of low nonlinear distortion, several
precautions must be taken. Thus, the measurement system, used for the
opamps connected in inverting configuration, is introduced. Further, the
various opamp circuits are presented, one by one, beginning with a 1.8V
cascoded Miller opamp. The design procedure used to achieve low nonlinear
distortion is described and the strongest contributions to nonlinear distortion
are found, using the Maple model applied in section 4.2 for the opamp.
Further, the measurement results are presented and compared to simulations.
A 3.3V cascoded Miller opamp and a 3.3V Current OpAmp (COA) are
described in the same way. The unity gain opamp and its measurement
system is described in [1] and only a brief description is included in this
chapter with some supplementary characteristics obtained from simulations.
At the end of the chapter, some concluding remarks are written and a
comparison, regarding low distortion, is done against state of the art circuits.
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5.1 Measurement System

The measurement system shown in Figure 5-1 is used for characterization
of the opamp circuits described in the next three subsections. The opamps
are connected in inverting configuration with the CL gain equal to –1. To
prevent stability problems, due to the parasitic pole on the inverting input
terminal of the opamp, the values of the resistors in the feedback network are
chosen small. The parasitic pole, formed by the parallel connection of the
two resistors and the input capacitance of the opamp, will then be well above
the unity gain frequency of the OL circuit. The opamps are all intended to be
used in on-chip applications. Thus, a 50 Ohms resistor is connected
between the output of the opamp and the pad. This will isolate the opamp
from the rather large capacitive and inductive load due to pad, bond wire,
package and off-chip PCB (Printed Circuit Board) loading effects. To
prevent any distortion caused by voltage coefficients, all resistors are
implemented using metal. The input CM-voltage, is typical set to half
the supply voltage, but may also be adjusted externally. Each opamp has a
bias circuitry, which generate bias voltages and thus set up the bias currents
in the opamp. To maintain simplicity, this circuitry will not be shown in the
schematic of the opamps. The bias circuitry is supplied by an external
current    of        (typ.).This current is referred to as the opamp bias current
in the following subsections. Additionally, the protection diodes in the signal
carrying pads were removed due to their expected contribution to nonlinear
distortion.

The signal generator is a SML 03 from Rohde & Schwarz [2]. The signal
generator is followed by high-order Chebyshev Band-Pass (BP) filters from
TTE [3], one for each test frequency. The BP-filter is necessary to suppress
the harmonics generated by the signal generator. On the output of the test-
chip, the signal is applied to a voltage divider for conversion to the 50 Ohm
load of the spectrum analyzer. The spectrum analyzer consists of two parts.
HP89441A [4] is a mixer that converts the radio frequency to a base-band.
The base-band is then applied to the low frequency part HP89410A [5] that
does the signal processing and shows the frequency spectrum on a screen.

The measurements of nonlinear distortion is carried out as follows:

1.

2.

Compute the output level of the measurement system (on the input of the
spectrum analyzer in Figure 5-1) referred to the desired voltage swing on
the output of the opamp.
For each of the test frequencies, insert the BP-filter and adjust signal
generator such that the measured level is equal to the level computed in 1
above.
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3. Measure HD2 and HD3 by finding the difference between the level of the
fundamental frequency and and harmonic, respectively.

The levels of the harmonics measured by the spectrum analyzer were
very low. Thus, it was necessary to use the internal filtering function of the
spectrum analyzer with very narrow bandwidth to keep the noise floor low
enough. The filter function was set such that the error in the measured level
was less than 0.01dB. The measurement was carried out by first measuring
the signal level at the fundamental frequency with low filtering bandwidth,
and with the range of the instrument well above the input signal. Next, the

harmonic was measured, then harmonic and, for computation of THD,
and harmonics. The same range and filtering bandwidth was used for

the harmonics as for the fundamental frequency.

TLFeBOOK



88 Design Criteria for Low Distortion in Feedback Opamp Circuits

The opamp circuits presented in this chapter are intended for use in a
Track and Hold Amplifier (THA) preceding an ADC. Examples on such
ADC’s can be [6] and [7], which have 1.8V and 3.3V power supply voltage,
respectively. The maximum differential voltage swings on the input of these
ADC’s are and respectively. This is the reason why the single
ended voltage swing is chosen to be for the opamp with 1.8V
supply voltage and for the opamps with 3.3V supply voltage. Further,
the THA is to be used in multi-channel IF systems. Such systems have
strong demands on linearity performance in the frequency range from
10MHz to 200MHz. Thus, the opamps are optimized and tested for low
distortion at these frequencies.

A reference measurement was done to measure how much the
measurement system contributes to the nonlinear distortion. The test-chip
was removed and the input and output pads on the PCB was connected by a
strap. The results from these measurements are shown in Figure 5-2. The
figure shows that below 10MHz the measurement system contributes to
distortion at the same level as the opamps described in the next subsections.
Above 10MHz HD2 and HD3 of the system is below –100dB and at some
frequencies below the noise floor, which is at approximately –110dB. In this
frequency range the contribution from the measurement system is well
below the nonlinear distortion from the opamp circuits.

The micrograph of the test-chip is shown in Figure 5-3, containing the
three opamps connected in inverting configuration. The fabrication
technology is a CMOS process.

TLFeBOOK



Chapter 5 Opamp Circuits with High Linearity Performance 89

TLFeBOOK



90 Design Criteria for Low Distortion in Feedback Opamp Circuits

5.2 A 1.8V CMOS Opamp with –77.5dB HD2 and HD3
at 80MHz

In this section a CMOS opamp fabricated in a fabrication
technology is presented. The opamp has 1.8V power supply voltage and the
OL-gain is 66dB (typ.). When connected in inverting configuration with CL-
gain equal to 1, the bandwidth is 2.9GHz. The opamp is optimized for low
nonlinear distortion using the design criteria described in Chapter 3 and
Chapter 4. Measurements show that HD2 and HD3 are less than –90.5dB at
20MHz and less than –77.5dB at 80MHz, with the output voltage swing of
the opamp equal to

5.2.1 Design Considerations

In section 4.2 design criteria for low nonlinear distortion were found for
the cascoded Miller opamp used in inverting configuration. For the opamps
presented in this chapter the main design specification was low nonlinear
distortion at high signal frequencies. The circuits were optimized for low
HD2 and/or HD3 in the frequency range 10MHz to 100MHz. For high
frequencies it is important that the value of the design equations (4-28) to (4-
31) (p. 79) are as large as possible. At the same time, the nonlinear
coefficients should be as small as possible. As mentioned in section 4.2 this
is a contradiction and a circuit simulator has to be used to find the optimum
sizes and biasing of the transistors.

The folded cascode Miller opamp [8] described in section 3.2 was used.
To achieve high linearity performance the following design procedure was
applied:

1.

2.

Choose the bias current of the transistors to be well above the associate
signal current. This was done by finding the Slew-Rate (SR) specification
of the opamp output node and of the folded cascode output (see Figure 5-
4). Further, the bias currents are chosen such that the circuit is far from
slewing at the highest signal frequency. In other words, the Full Power
Bandwidth (FPBW) of the CL circuit has to be well above the highest
signal frequency. These choices of bias currents are also well above the
maximum resistive signal currents.
Dimension each transistor in the circuit to set the voltage bias point such
that the nonlinear coefficients are low and stable in the entire range of the
terminal voltages, as described in section 3.1. This gives low nonlinear
coefficients and robustness against variations in circuit conditions (power
supply, bias current etc.) and is a starting point for the optimization,
which will be carried out in 4.
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3.

4.

Simulation of OL-gain of the opamp and the feedback circuit together.
The simulation is done with the circuit simulator Eldo [9]. Through these
simulations a minimum Miller compensation capacitance is found, which
give safe gain- and phase margins and at the same time the largest GBW.
Optimize the CL circuit for low HD2 and HD3 at high frequencies. The
CL responses given by (4-23), (4-26) and (4-27) and the design equations
(4-28) to (4-31) are used as optimization guidelines. All equations are
given in section 4.2.

Some iteration of the points above was necessary to obtain low nonlinear
distortion and safe phase- and gain margins. The resulting opamp is shown
in Figure 5-4 and some important simulated and estimated parameter values
are shown in Table 5-1. The simulations are done with capacitive, inductive
and resistive loading effects due to output pad, package pin and external
load. The estimated values are computed with equations given in section
3.2.3 and Chapter 4.

5.2.2 Contributions to Nonlinear Distortion

For implementation in Maple6 [10], the opamp model described in
section 3.2 was applied on the opamp in Figure 5-4. For the transistors M1 to
M5, the terminal voltages were found from a CL DC simulation, and were
subsequently used to extract small-signal parameters and nonlinear
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coefficients for each of the transistors. All simulations were done using Eldo
and the transistor model BSIM3v3 [11]. The model parameters were given
by the fabrication technology. The output conductance of the folded cascode,

and the Miller capacitance, were adjusted in the opamp model of
section 3.2. This was done such that the low frequency loop gain and the
dominant pole were equal to the values obtained by the Eldo simulation. In
addition, parasitic capacitances were extracted from the opamp layout and
included in the model. All parameters are given in Table 5-2, and are used
for simulation of nonlinear responses in Maple.
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As for the inverting opamp configuration described in section 4.2, the
contributing transfer functions are for the harmonic and
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for the harmonic. At low frequency the strongest contributions
to are (in descending order) and For
frequencies above 70MHz only and contribute and, due to
higher order zeros, contributes alone at high frequencies. The total
order response, including all order transfer functions and nonlinear
coefficients, are plotted in Figure 5-5 together with (4-23) (section 4.2). The
plot shows that (4-23) approximates the order response well.

The total order response and the sum of (4-26) and (4-27) (section
4.2) are plotted in Figure 5-6. This plot also shows good matching between
the accurate and approximated equations. The curves show an optimum in

order distortion at 70MHz. The reason for this optimum can be explained
as follows. At low frequencies and are the strongest
contributions to harmonic. At higher frequencies and
take over due to the higher order zeroes. The contributions from the order
coefficients are caused by mixing of the fundamental frequency and the
harmonic, both present at the transistors terminals. At approximately 70MHz
the sum of and has the same magnitude as but
the signs are opposite (+j and –j, respectively). Thus, a cancellation is
achieved and a minimum in the order response occurs. and
make the cancellation less ideal.

As explained in Chapter 3 several sources to nonlinear distortion are
omitted in the Maple simulation. The equation for the drain current is a
series truncated to order, which means that the nonlinear analysis only is
valid for relatively small-signal amplitudes. Especially for the opamp output
transistors this can be an inaccurate simplification due to the large voltage
swing at the output node. However, because of careful biasing of the
transistors the nonlinear coefficients are relatively constant in the entire
range of the terminal voltages. Both simulations and measurements show
that the opamp circuits presented in this chapter have near weakly nonlinear
behavior at the signal swing used. Further, the folded cascode (M6 to M13 in
Figure 5-4) is replaced by a linear resistor equal to the output resistance of
the cascode. For the order response this is a fair approximation since
nonlinearity due to M1, M2 and M6 to M9 is attenuated because of the
differential nature of these transistors. The main contribution from the folded
cascode to harmonic thus comes from M10 to M13. On the other hand,
the contribution from the cascode to the harmonic is larger since the
order signal currents are not differentiated.

Because that the folded cascode is omitted, it will be a gap between the
simulation done in Maple and the simulation done in Eldo. It is also a risk
that the Eldo simulations does not give accurate estimates of the nonlinear
behavior due to inaccurate modeling of higher order derivatives of the drain
current of the transistors. These topics will be described in the next sub-
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section where the measurements are presented and compared to the
simulated results from Maple and Eldo.
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5.2.3 Measurement Results

All measurement results presented in this section are done with the
measurement system and procedures described in section 5.1. First, HD2 and
HD3 are presented as a function of frequency and compared to the
simulations carried out in Maple and Eldo. Further, to illustrate the
robustness of the design, HD2, HD3 and THD are presented as a function of
output signal swing, input CM-voltage, supply voltage and bias current.

HD2 and HD3 were measured at certain input frequencies in the range
from 100kHz to 200MHz. For frequencies below 20MHz the measurement
system contributions are at the same level as the circuit, as shown in Figure
5-2. Measured values in this frequency range are not reliable. Thus, only
measurements done in the 20-200MHz range will be considered here.

The measured values for HD2 and HD3 from three different samples of
the circuit are shown in Figure 5-7 and Figure 5-8, respectively. The
measurements are carried out with the output voltage swing of the opamp
equal to HD2 and HD3 are both less than –90.5dB at 20MHz, less
than –77.5dB at 80MHz and less than –62.5dB at 150MHz. The figures also
show that there are only small variations between the three samples. The
variations are less than 1.2dB. In Table 5-3 HD2 and HD3 are listed for
some test frequencies.

The resistor at the output of the opamp (see Figure 5-1) together with the
capacitive load due to pad, package and PCB, makes a LP-filter. Using the
values extracted from layout, the specific pin of the package and off-chip
PCB, the –3dB frequency is located at 660MHz and shall have minor effect
on the measurements. However, the plot for HD3 shows lower harmonic
at 200MHz input frequency than at 150MHz. When applying a 200MHz
signal at the input the harmonic at the output is at 600MHz. A possible
explanation of the decrease in HD3 can be that package and PCB effects
cause a notch in the order response. This notch is not visible in the
simulations, which can be due to the simplified model used.

The simulation results of HD2 and HD3 from Maple and Eldo are also
plotted in Figure 5-7 and Figure 5-8. The Eldo simulation is carried out
including the folded cascode and a model for the load seen by the output of
the opamp. First, a transient analysis at each test frequency is done. Further,
Fast Fourier Transform (FFT) is performed on the output voltage of the
opamp. To get reliable estimate of the nonlinear distortion it is important to
use high accuracy and correct settings for Eldo. For both HD2 and HD3
there is a gap between Eldo and Maple simulations. As shown later, the error
due to large-signal behavior of the opamp is small, only a few dB. Thus, the
folded cascode is suspected to be the major reason for the difference
between Maple and Eldo.
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Figure 5-7 shows that the curve from the Eldo simulation has a minimum
at 20MHz and a larger inclination above 20MHz than both the Maple
simulation and measurement results. The reason for this can be cancellations
between nonlinear coefficients in the cascode and the output transistors.
Since the opamp is optimized for low HD2 (in addition to low HD3) in Eldo,
it is possible that such effects have been utilized. On the other hand, the
simulation carried out by Maple shows the same inclination as the
measurements in the frequency range from 20MHz to 120MHz. The
measured HD2 is a little bit higher.

For HD3 the gaps between Maple and Eldo are larger than for HD2. Both
curves have the same shape, with the same inclination at low and high
frequencies. However, the curve estimated by Eldo shows a larger HD3 than
the simulation from Maple. Because of the low supply voltage, the
transistors in the folded cascode had to be biased with low DS-voltages. To
keep the saturation voltage small enough, it was necessary to keep the GS-
voltage low. As shown in section 3.1 such biasing leads to large nonlinear
coefficients. Thus, it is expected that the folded cascode have strong
contribution to HD3 for this opamp. The “notch” in the Maple simulation,
due to canceling effects, is not as distinct in the Eldo simulation, but this is
reasonable since also the cascode contributes here.

Further, there is a large difference between simulations and
measurements for HD3. At low and high frequencies the same inclination is
observed in all curves, indicating the two zeros at and (see Table 5-1) in
the order responses. However, the minimum in the simulated curves does
not appear in the measurement results. Additionally, the absolute value is
larger. An important reason for this can be the models and parameter sets
from the fabrications technology used for transistors. Models in conjunction
with the parameter set are often optimized to give accurate values for
currents and their order derivatives. The higher order derivatives are not
necessarily very accurate and tend to be less accurate for higher order. Thus,
it is reasonable that there is larger gap between simulations and
measurements of HD3 than HD2. This problem is described in [1] and [12],
which show that especially the output conductance of the transistor suffers
from large errors in its higher order derivatives. These errors will of course
influence the accuracy of the Eldo simulation.
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The measured HD2 and HD3 as function of the output amplitude of the
opamp are plotted in Figure 5-9. In the same figure, also the weakly
nonlinear versions of HD2 and HD3 are shown, given by (5-1) and (5-2),
respectively. Here, and are normalized values of HD2 and HD3.
The normalized values are obtained from HD2 and HD3 measured when the
output signal swing is equal to The assumption made is that the
circuit has weakly nonlinear behavior at this signal level. Because of the
biasing guidelines, described in section 3.1, the nonlinear coefficients of the
transistors are relative constants in a large part of the opamp voltage range.
As Figure 5-9 shows, the opamp has nearly weakly nonlinear behavior when
its output swing is which is used for the measurements and
simulations plotted in Figure 5-7 and Figure 5-8. The error is a few dB and
the large-signal effect is thus a minor reason for the gap between the
simulations from Maple and Eldo. For higher output levels the large-signal
effects become considerable, especially when the output level approach the
supply voltage.
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The next three figures are included to show the robustness of the linearity
performance against variations in certain circuit conditions. All
measurements are carried out at 80MHz input frequency and the nominal
circuit conditions are the same as in Table 5-3.

In Figure 5-10 the measured values of HD2, HD3 and THD is plotted
versus the input CM-voltage of the opamp. THD is computed from the first
five harmonics. The figure shows that the optimum CM-voltage is between
0.8V and 0.9V. Outside this range, the harmonics increases, but are lower
than –64dB in the range 0.9V±0.2V at 80MHz signal frequency.

Figure 5-11 shows the linearity performance versus the supply voltage.
The CM-voltage is scaled with the supply voltage and the bias current is kept
constant. When the supply voltage is increased to 1.9V, HD2 and HD3 both
decreases below –80dB. THD is –78.7dB at 1.9V and less than –80dB at
2.0V supply voltage. At 1.6V HD2 and HD3 are still below –67dB and THD
is below –63dB.

Figure 5-12 shows that changing the bias current in Figure 5-1),
around the typical value of a small variation in HD3 (1.2dB) and a
slightly larger variation in HD2 (6dB) occur. Both HD2 and HD3 are lower
at smaller bias currents.
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5.3 A 3.3V CMOS Opamp with –80dB HD3 at 80 MHz

In this section a CMOS opamp fabricated in a process is
presented. The opamp uses thick oxide transistors and has 3.3V power-
supply voltage. The OL-gain is 79.6dB (typ.) and when connected in
inverting configuration with CL-gain equal to –1, the bandwidth is 1.99GHz
(typ.). The opamp is optimized for low nonlinear distortion, especially low
HD3, using the design criteria described in Chapter 3 and Chapter 4.
Measurements show HD3 less than –92dB at 20MHz and less than –80dB at
80MHz with 1Vp-p signal swing at the output of the opamp.

5.3.1 Design Considerations

The design considerations described for the 1.8V opamp in section 5.2
are also used for the 3.3V opamp. The folded cascode Miller opamp is
shown in Figure 5-13. For Eldo simulations the test-bench of the 1.8V
opamp is used, adjusted for slightly different load. The reason for the
adjustment is that another output pin on the package was used. The key
computed and simulated results are shown in Table 5-4. The DC OL-gain is
larger than for the 1.8V opamp. However, the unity gain frequency, of the
loop formed by the opamp and feedback network, is smaller. In addition, the
FPBW is larger ensuring that the opamp is far from slewing in any of its
nodes.

TLFeBOOK



104 Design Criteria for Low Distortion in Feedback Opamp Circuits

5.3.2 Contributions to Nonlinear Distortion

As for the 1.8V opamp the small-signal parameters and nonlinear
coefficients are extracted for each of the transistors M1 to M5 in Figure 5-13
at their bias point. The values are given in Table 5-5, where and are
adjusted such that the DC-gain and the dominant pole of the opamp are equal
in Maple and Eldo simulations. The accurate and approximated equations for

and order responses are plotted in Figure 5-14 and Figure 5-15,
respectively. The figures show that (4-23), (4-26) and (4-27) are describing
the nonlinear behavior well.
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It should be no surprise that and are the strongest
contributions to and harmonic, respectively. The strongest
contributions to are and at low
frequency and at high frequency. For and

are the strongest contributions for low frequencies. For high
frequencies, has a larger part of the total order distortion than was
the case for the 1.8V opamp. At the frequency where becomes
dominant, there is an optimum in the order response. As Figure 5-15
shows, this optimum is at approximately 50MHz.

Table 5-6 shows a comparison of the 3.3V opamp and 1.8V opamp of
section 5.2. The design equations (4-28) to (4-30), given in section 4.2,
describe the attenuation of the and order responses due to the Miller
stage at frequencies below between and and above respectively.
Equation (4-31) describes the asymptote for the nonlinear responses due to
the input stage. The equations are quoted in Table 5-6. The frequencies
and ((3-15) p. 49, (4-24) and (4-25) p. 74, respectively) are zeros in the
nonlinear responses. Their values for the 1.8V and 3.3V opamps are given in
Table 5-1 and Table 5-4, respectively. Table 5-6 shows that at low frequency
the 3.3V opamp has larger attenuation, and thus lower HD2 and HD3, than
the 1.8V opamp. At frequencies above (of the 1.8V opamp) the 1.8V
opamp suppress the harmonics more than the 3.3V opamp. However,
because of smaller nonlinear coefficients the 3.3V opamp shows better
linearity performance even at larger output voltage swing. The ratio between
the supply voltage and threshold voltage is larger for the 3.3V transistors
than for the 1.8V transistors. Thus, for the 1.8V opamp it was necessary to
bias the transistors with lower GS overdrive. The nonlinear coefficients
became higher as shown when comparing Table 5-2 and Table 5-5. This is
also shown by the simulations. When comparing Figure 5-5 and Figure 5-6
with Figure 5-14 and Figure 5-15 the 3.3V opamp has better linearity
performance even at higher output swing. This will also be shown by the
measurement results presented in the next section.
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5.3.3 Measurement Results

The measurements done on the 3.3V opamp are carried out by the same
measurement system and the same procedures as for the 1.8V opamp. The
results will be presented in the same order.

The measured values of HD2 and HD3 as a function of frequency are
shown in Figure 5-16 and Figure 5-17, respectively, and tabulated for some
test frequencies in Table 5-7. The opamp was optimized for low
harmonic and the measurements shows that HD3 is less than –92.7dB at
20MHz, less than –80.4dB at 80MHz and less than –64.8dB at 150MHz. The
measurement was done with voltage swing at the output of the opamp.
As for the 1.8V opamp the resistor between the output and the pad will
perform filtering on the signal. The –3dB frequency is lower for the 3.3V
opamp because of its output pin is worst-case regarding capacitive and
inductive load. This effect is viewable in Figure 5-17. For frequencies above
120MHz the inclination in HD3 falls off and is smaller than the Eldo
simulation show. In addition, HD3 is lower at 200MHz input frequency than
at 150MHz. As for the 1.8V opamp, package and PCB effects is suspected to
be the reason.
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For HD2 the match between Eldo and Maple are better than for the 1.8V
opamp. The inclination in the two curves are the same at low and high
frequencies, but the Eldo simulations shows a minimum at 60MHz, which is
not visible in the Maple simulation or the measurements. This is probably
because of cancellations between different nonlinear coefficients of the
cascode and the output transistors, as was the case for the 1.8V opamp.

The simulations carried out for HD3 shows that both curves have the
same inclination at low and high frequencies. Further, an optimum is located
at approximately 55MHz. Additionally, the difference between the curves is
smaller than for the 1.8V opamp. The reason is expected to be lower
contributions from the folded cascode due to higher GS-overdrive that used
for the 1.8V opamp.

The difference between simulated and measured HD2 and HD3 is larger
than for the 1.8V opamp. The reason for this is suspected to be the transistor
models and the belonging parameter sets, as was explained in section 5.2.3.
The thick oxide transistors have other parameter sets than the thin oxide
transistors. It seems that the parameter sets for the thick oxide transistors are
less accurate regarding higher order derivatives and thus gives a poorer
estimate of the nonlinear distortion.

The measurement results presented below are all carried out at 80MHz
input frequency and at the circuit condition listed in Table 5-7. THD is
computed from the first five harmonics.

In Figure 5-18 HD2 and HD3 are plotted versus the output amplitude. In
addition, the weakly nonlinear versions of HD2 and HD3 are plotted (named
“_IDEAL”) using (5-1) and (5-2) and assuming that the opamp is acting as a
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weakly nonlinear circuit at This assumption was verified by
simulations, where the opamp was simulated with an output voltage swing
equal to When the simulation result was corrected for lower
swing, it showed the same results as for The measured results in
Figure 5-18 shows that the opamp has weakly nonlinear behavior for output
voltage swing lower than This shows that the biasing guidelines of
section 3.1 cause stable nonlinear coefficients in the entire range of the
output voltage.

Figure 5-19 shows HD2, HD3 and THD as a function of the input CM-
voltage at 80MHz input frequency. The figure shows that HD3 has an
optimum at the nominal value and is very stable over variations in the CM-
voltage. On the other hand, HD2 has a large decrease with increasing CM-
voltage. The reason for this can be the trade-off made when optimizing for
low HD3.

In Figure 5-20 HD2, HD3 and THD are plotted versus the power supply
voltage. In these measurements, the bias current was scaled down with the
supply voltage. The measurements show that HD3 is less than –60dB at 2V
supply voltage, less than –70dB at 2.4V and less than –82dB at 3.5V at
80MHz signal frequency.

The nonlinear distortion versus the bias current in Figure 5-1) is
shown in Figure 5-21. Both HD2 and HD3 show only small variations over
the range of the bias current, and HD3 has a minimum for the nominal value
of

The results described above show robust linearity performance against
variations in circuit conditions. This is achieved by biasing the transistors
that contribute most to distortion such that the nonlinear coefficients are
relatively constant over variations in terminal voltages. The robustness for
the 3.3V opamp is even better than for the 1.8V opamp because of the ratio
between the supply and the threshold voltage is larger.

TLFeBOOK



112 Design Criteria for Low Distortion in Feedback Opamp Circuits

TLFeBOOK



Chapter 5 Opamp Circuits with High Linearity Performance 113

TLFeBOOK



114 Design Criteria for Low Distortion in Feedback Opamp Circuits

5.4 A 3.3V CMOS Current Opamp with –63dB HD3 at
100MHz

A CMOS COA fabricated in a process is presented in this
section. The opamp uses thick oxide transistors and has 3.3V supply voltage.
When the inverting opamp configuration is used, with CL gain equal to –1,
the OL-gain of the opamp and feedback circuit is 64.7dB (typ.) and the CL
bandwidth equals 724MHz (typ.). The opamp is optimized for low nonlinear
distortion, especially low HD3, using the design criteria described in Chapter
4. Measurements show HD3 less than –79dB at 20MHz and less than –63dB
at 100MHz with 1Vp-p signal swing at the output of the opamp.

5.4.1 Design Considerations

A COA is a device with one high impedance input node, one low
impedance input node and a voltage or current output. The high impedance
input node, which is the non-inverting input, has a voltage gain equal to 1 to
the low impedance input node and sets the voltage on the inverting input.
The main advantages of COA’s are high SR (and FPBW) and constant CL
bandwidth when altering the CL gain with in Figure 5-1. When using the
opamp with resistive feedback in switched systems the parasitic capacitance
on the inverting input can be large due to switches. By using a COA the
resistance level in the inverting node will be lowered and the parasitic pole
will be at a frequency which is well above the GBW of the opamp. This is an
additional advantage of the COA and was the main reason for doing this
design.

COA are discussed in many scientific papers, e.g. in [13] to [16]. In [16],
a low voltage COA is described and the idea for the circuit shown in Figure
5-22 was taken from this paper. The transistors M1 to M3 makes a one-stage
“opamp” connected in unity gain. This “opamp” has the non-inverting
terminal of the COA as the input and the inverting terminal as the output.
This ensures relatively low resistance in the inverting input terminal of the
COA and the voltage here is set by the non-inverting input. The current that
flows into the inverting input goes through M2 and M1, into the folded
cascode M7 and M9 and is converted to a voltage at the output of the
cascode. The second stage, M4 and M5, is an ordinary Miller stage.

The COA in Figure 5-22 can be viewed as a Miller opamp with the
differential input transistors replaced with a “current” input stage. Replacing

in ((3-10), p. 48) with (5-4) the voltage transfer function from the
inverting input terminal to the output of the opamp is obtained (5-3). Here,

in (5-4) is given by (5-6). The feedback factor for the COA with
resistive feedback is given in (5-5). This is the same expression as for the
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voltage opamp except for in the denominator. This causes the feedback
factor for the COA to be lower than for the voltage opamp.
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The resulting opamp with transistor sizes and bias currents is shown in
Figure 5-22 and its essential parameters are listed in Table 5-8. To show the
difference in the harmonic linearity performance between COA and the
voltage opamp, all transistors and bias currents are the same as for the 3.3V
opamp, described in section 5.3. Because of the smaller feedback factor, the
Miller capacitance is set to 0.5pF. Table 5-8 shows an OL gain, for COA
and the feedback circuit together, equal to 64.7dB(typ.). This is 12.5dB less
than for the 3.3V opamp because of reduced and transconductance
in the input stage. The FPBW is larger, as expected for COA.
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5.4.2 Contributions to Nonlinear Distortion

For simulation in Maple the same small-signal parameters and nonlinear
coefficients were used as for the 3.3V opamp in section 5.3. The output
conductance of the folded cascode and were adjusted such that the OL
gain and the dominant pole obtained in Maple and Eldo were equal. The
capacitive load is also different because the COA uses another output pin on
the package and has another PCB loading. All parameters are given in Table
5-9 (p. 119).

The model of the circuit implemented in Maple is shown in Figure 5-23.
Here, the COA and the feedback network are modeled together and solved as
one set of equations. Thus, the CL transfer functions are found directly, and
not by finding the OL responses first as were done for the voltage opamps.
The drawback is the increased difficulties obtaining simplified symbolic
expressions for the nonlinear responses. However, since the voltage opamps
and COA are similar circuits, symbolic expressions for the CL transfer
functions for COA can be obtained from the equations for the voltage opamp
given in section 4.2. This is done by replacing and in (4-23), (4-26) and
(4-27) with and given by (5-4) and (5-5), respectively.
Additionally, the term due to must be multiplied with ½ since the
output from the first stage of the COA is not differential. The accurate and
simplified and order responses are plotted together in Figure 5-24 and
Figure 5-25, respectively (p. 120). The plots show close match, indicating
the correctness of the simplified equations.

The contributions to the order response are and
at low frequency and at high frequency, which is the same as for

the 3.3V opamp. For the order response and are the
strongest contribution at low frequencies and and at high
frequencies. Near the frequency where the high-frequency contributions take
over, an optimum occurs due to canceling of effects. This optimum is
located at a higher frequency than for the 3.3V opamp, because of weaker
contribution from

In Table 5-10 (p. 121) the design equations (4-28) to (4-31) for the
voltage opamp are compared to (5-7) to (5-10) below. The equations below
are achieved by replacing and with and respectively.
Because of the reduced feedback factor and the reduced voltage gain in the
input stage, the COA has lower attenuation of the nonlinear responses.
Especially in the frequency range between and COA has poor linearity
performance. This will also be shown when comparing the measurement
results from the circuits.
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5.4.3 Measurement Results

The measurements for the COA are carried out on three samples of the
circuit using the same procedure as for the opamps described previously.
The results will be presented in the same way and compared to the results of
the 3.3V opamp.

The measured HD2 and HD3 are shown in Figure 5-26 and Figure 5-27,
respectively, and the worst case sample is tabulated in Table 5-11 for some
test frequencies. Measurements show that HD2 is less than –69.0dB at
20MHz, –56.4dB at 80MHz and –53.7dB at 100MHz. HD3 is less than –
79.3dB, –65.9dB and –62.9dB at the same frequencies, respectively.

At 20MHz signal frequency the difference between COA and the 3.3V
opamp is 12.6dB and 13.4dB for HD2 and HD3, respectively. This
corresponds to the second row of Table 5-10, which gives 13.6dB. At
150MHz, which is above but below where the input differential pair
becomes dominant, the difference between COA and the voltage opamp
should be 13dB according to the row of the table. The measurements
show 10.3dB and 9.2dB difference in HD2 and HD3, respectively. This
shows that a voltage opamp has better performance regarding nonlinear
distortion than COA. This is also predicted accurately by the design
equations compared in Table 5-10.

The difference between the simulations carried out in Maple and Eldo are
smaller than for the voltage opamp for both HD2 and HD3. However, the
gap from simulations to measurements is about the same as for the voltage
opamp. This is no surprise since the same transistor models and parameters
are used.
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In Figure 5-28 the measured and ideal HD2 and HD3 are plotted as a
function of the COA output amplitude. As for the voltage opamps (5-1) and
(5-2) are used as the ideal curves, assuming that the opamp is acting as a
weakly nonlinear circuit at The deviation from the weakly
nonlinear behavior is small for signal amplitude below This
indicates that the transistors in the circuit are biased such that the nonlinear
coefficients are nearly constant in this voltage range.

In Figure 5-29, Figure 5-30 and Figure 5-31 HD2, HD3 and THD are
plotted against CM-voltage, supply voltage and bias current in Figure
5-1), respectively. All measurements are carried out with the signal
frequency equal to 80MHz. All these plots show lower performance than the
3.3V opamp. However, the shapes are mainly the same.
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5.5 A 3.3V CMOS Unity-Gain Opamp with –80dB HD3
at 10MHz

A unity-gain CMOS opamp with high linearity performance is presented
[1]. The opamp is fabricated in a process and has 3.3V supply
voltage. The OL-gain of the one-stage opamp is 51.9dB (typ.) and the CL
bandwidth equals 624MHz (typ.). The opamp uses a tail current
compensation circuit to increase the resistance of the tail current source of
the input differential pair. As shown in section 4.1 this resistance has to be
high to keep the CM-gain low and thus to achieve low distortion at low
frequencies. Additionally, the shape of the tail current was optimized for low
HD3 at high frequencies, compensating for non-linearities in the differential
input stage together with the folded cascode, which makes the output stage
of the opamp. The simulated characteristics of the opamp are shown in Table
5-12. The measurements show HD3 less than –80dB at 10MHz and less than
–60dB up to 80MHz with 1Vp-p signal swing at the output of the opamp.
The circuit and measurement system is thoroughly explained in the paper.

The opamp is made for on-chip applications and therefor has a well-
defined capacitive load. Thus, it was necessary to design a voltage buffer to
bring the signal off-chip. To avoid affecting the measurements of the
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harmonics from the opamp, the buffer must have linearity performance far
beyond the opamp. The buffer is shown in Figure 5-32. The transistor M3
makes a source follower with M1 and M2 as the cascoded current source. To
make the DS-voltage of M3 relatively constant, and thus enhance the
linearity performance, M4 and M5 are added. M4 is a source follower with
M5 as the current source, ensuring that the voltage on the drain of M3
follows the input signal. Since this circuit was designed for test purposes
only, high bias currents and supply voltage could be used. Thus, AVDD_2
was set to 6.5V and the transistors were biased such that non of them had
terminal voltages larger than 3V, even in the start up of the circuit.
According to simulation results the  harmonic was below –100dB up to
120MHz and was thus well below what was expected for the opamp.
However, the measurement results showed that the linearity performance of
the buffer was far lower than estimated by simulation and on the same level
as the opamp. Thus, it was necessary to estimate the HD3 of the opamp. This
is explained in [1]. Some simulated parameters for the voltage buffer are
shown in Table 5-13.
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5.6 Concluding Remarks

In this chapter, four opamps have been presented, all designed to have
low distortion. Three were connected in inverting opamp configuration and
one in unity gain, which is a special case of the non-inverting configuration.

The opamps in inverting configuration were designed and optimized
using the biasing guidelines described in section 3.1 and the design
equations of 4.2. All show high linearity performance and robustness against
variations in circuit conditions. Further, the difference between the voltage
opamp and COA was shown. Because of lower feedback factor, due to low
input resistance, COA has less attenuation of the nonlinear responses and
thus lower linearity performance than the voltage opamp.

As described in Chapter 4, the non-inverting configuration has a
drawback due to high CM-voltage swing on the input terminals of the
opamp. This causes the input differential pair to contribute significantly to
nonlinear distortion. The presented unity-gain opamp utilizes a tail current
compensation circuit to increase the output resistance of the tail current
source. Additionally, the tail current was shaped such that some of the
distortion from the rest of the opamp was canceled out. The opamp shows
low HD3 with an optimum at 70MHz. However, the distortion figures were
poorer than for all the opamps designed for the inverting configuration.
Thus, for superior linearity performance at low supply voltages the inverting
opamp configurations should be preferred.

A problem in the design of circuits with high linearity is to make reliable
estimates of the distortion. As shown in this chapter, the gaps between
simulations and measured results are large. The reason for this is suspected
to be inaccurate modeling of higher order derivatives of the transistor
current. It is possible to optimize the parameter set, used for the transistor
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model, to achieve better accuracy in higher order derivatives. More reliable
simulation results give improved optimization. Further, it gives the
opportunity to exploit canceling between nonlinear coefficients with
different sign. Thus, opamps with even lower distortion can be achieved.

Design of low distortion opamps in modern CMOS technologies is
difficult because of the low supply voltage. Thus, it is of major importance
to have large insight and understanding of the nonlinear behavior of opamp
circuits. By using the biasing guidelines of section 3.1 and the CL equations
for the harmonic responses of Chapter 4, it was possible to obtain opamp
circuits with high linearity even at low supply voltage. To visualize the value
of the biasing guidelines and the design equations, a comparison between the
1.8V opamp and previous work is carried out below.

It was difficult to find scientific papers that report opamps with low
distortion at frequencies from 10MHz to 100MHz. However, [17] and [18]
describes similar circuits. In [ 17] a differential IF amplifier in CMOS
technology and 3.3V supply voltage was described. For a differential output
voltage at (which is single ended) it was reported THD equal to
0.006%, or –84.4dB, at 20MHz signal frequency. In [18] a bipolar IF
amplifier was described with 5V supply voltage. At 20MHz and
differential output voltage, 0.068% THD was reported, which is –63.4dB. In
both papers, the measurements were done with 1KOhm load. Since these
circuits are differential, the odd harmonics are the strongest contributions to
THD. THD for the 1.8V opamp was –88.5dB at 20MHz including odd and
even harmonics up to harmonic, where the and harmonics were the
strongest contributions.

The opamps presented in section 5.2 to 5.4 and some commercial
available opamps, AD8037 and AD8009 [19], are compared in Figure 5-33
and Figure 5-34. The commercial available opamps are intended for
applications that require low distortion and are the opamps with the highest
linearity performance found (October 2001). The comparison criteria are the

and order harmonic intercept point, and defined in section
2.1. For each opamp, the intercept points are obtained by using (5-11) and
(5-12) below, and further inserting the output amplitude, HD2 and HD3 of
the opamp. The assumption is that, at the signal swing that they were tested,
the opamps are acting weakly nonlinear. For the 3.3V opamp and the 3.3V
COA, this is a good approximation. For the 1.8V opamp, the assumption is
pessimistic. The commercial available opamps are tested with a signal swing
equal to 1/5 of the supply voltage, which is far lower than for the opamps
presented in this chapter. Thus, AD8037 and AD8009 should also be acting
weakly nonlinear.
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As explained in section 2.1, the harmonic intercept points, and
describe the nonlinear coefficients of and order, respectively. These
coefficients are frequency dependent. Thus, in Figure 5-33 and Figure 5-34
the intercept points are found for four different frequencies. Further, for all
opamps the intercept points are referred to the signal amplitude at the output
of the opamp.

For Figure 5-33 shows that the 1.8V opamp is far better than the
other opamps. Further, both the 1.8V and the 3.3V opamps show higher
than AD8037 and AD8009.

A comparison of in Figure 5-34 shows that the 3.3V opamp has the
best performance and thus the lowest  order nonlinear coefficient. for
AD8037 and AD8009 are closer to the 1.8V and 3.3V opamps than was the
case for The reason can be that they are optimized for low order
nonlinear coefficient. The order coefficient is the reason for the order
intermodulation product. In a multi-channel communication system it is
important that the order intermodulation product is small. This is because
of the order mixing of two relatively close frequency components will
cause distortion components in the same frequency band.

The comparison in Figure 5-33 and Figure 5-34 shows that it is possible
to obtain highly linear opamps in deep sub-micron CMOS technologies by
using the design method and design equations presented in this book.
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Chapter 6

Conclusions and Discussions

In this book the issue has been achievement of highly linear opamps in
deep sub-micron CMOS technologies. To make this possible, design
procedures and design equations for minimization of the nonlinear distortion
in feedback opamp circuits have been developed. The design procedure can
be summarized as follows:

1.

2.

3.

133

Biasing for low distortion:
Choose the bias current for the transistors to be well above the
associate signal current in the specified frequency range. For low
frequencies, the resistive load decides the bias currents. For high
frequencies, the bias currents must be chosen such that the circuit is far
from slewing at the highest signal frequency. In other words, FPBW of
the CL circuit has to be well above the highest signal frequency.
Use the bias current in a) and set the voltage bias point for each
transistor such that the nonlinear coefficients are small and stable in
the entire range of the terminal voltages. This is done by proper
dimensioning of the transistors. The result of the biasing is used as a
starting point for the optimization, which will be carried out in point 3
below.

a)

b)

Find the strongest contributions to nonlinear distortion for the CL circuit
and derive symbolic expressions for these. From the symbolic
expressions, design equations can be obtained. The small-signal
parameters and nonlinear coefficients, required for this analysis, are
extracted from the circuit obtained in point 1.
Use the biasing of point 1 as the starting point for the optimization of the
CL circuit for low nonlinear distortion. The optimization is carried out in
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a circuit simulator and the design equations obtained in point 2 are used
to see what parameters to alter to minimize the distortion.

The biasing of the circuit is the foundation of high linearity performance.
First, the bias current of each transistor in the circuit is set. This is done by
choosing the drain current of the transistors to be well above the associate
signal current in the specified frequency range. Thus, the circuit is far from
both clipping and slewing due to limited available current. Second, small
nonlinear coefficients are generally obtained by using large overhead for the
terminal voltages of the transistor. This means large GS-overdrive and a DS-
voltage well above the saturation voltage. Each transistor in the circuit is
dimensioned under these constraints. Especially in deep sub-micron CMOS
technologies, the velocity saturation of the transistor can be utilized for
achieving small and stable nonlinear coefficients.

To develop symbolical expressions for the nonlinear responses, a tool
that describes nonlinear behavior as a function of frequency is required. The
phasor method has been used in this work, which leads to a subset of the
Volterra series [1]. The assumption made is that the circuit behaves weakly
nonlinear, which is true for well-designed CL opamp circuits with excitation
levels well below the supply voltage. The phasor method has been
implemented in Maple6 and applied on a model of the folded cascode Miller
opamp, which has been the example opamp throughout this book.

To include the effect that the CM-voltage swing has on the linearity
performance, a two-input model of the opamp was developed. This model
was further used to explore the non-inverting and inverting opamp
configurations regarding nonlinear behavior. For each of them, the strongest
contributions to nonlinear distortion were found, and simplified symbolical
expressions including the strongest contributions were developed. From the
simplified expressions, design equations were extracted. These have further
been used to optimize the circuit for high linearity performance.

The simplified expressions were obtained by splitting the accurate but
rather complex equations for the CL nonlinear responses in different factors.
This was done by exploiting the iterative nature of the phasor method, and
further, the two-input model of the opamp. Because of the split-up, it was
possible to do simplifications on each factor, obtaining simple and
informative equations for the CL nonlinear transfer functions. The simplified
equations show close match to the accurate nonlinear transfer functions.

For low CL-gain, the non-inverting configuration has large swing in the
CM-voltage. This swing is damaging for the linearity performance. Thus, the
requirements to the input stage of the opamp become tough. It is especially
important to have low CM-gain. Further, even with low CM-gain, the input
stage is the main contribution to the nonlinear distortion in the entire
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frequency range. For high CL-gain, the CM-voltage swing becomes smaller
and the non-inverting opamp configuration is approaching the inverting
configuration regarding nonlinear behavior.

The inverting configuration does not have large swing in the CM-voltage.
Thus, the output stage of the opamp has the largest contribution to nonlinear
distortion, which is smaller than for the non-inverting configuration. Because
of this, the inverting configuration should be the preferred choice when low
nonlinear distortion is a requirement.

The optimization of the CL circuit is done in a circuit simulator. Using
the biasing as a starting point, the design equations show what parameters to
use to suppress the nonlinear distortion. Generally, increasing the
transconductance of the amplifying transistors suppress the nonlinear
transfer functions. At the same time the nonlinear coefficients increase and
will counteract the decrease in distortion.

Three opamps, connected in inverting opamp configuration, have been
design and fabricated as a result of the design procedure. Additionally, a
unity-gain opamp was made using a new approach to minimize the effect of
the large swing in the input CM-voltage. This approach is called “tail current
compensation circuit” and is described in [2].

Throughout this book just one opamp topology is used, the folded
cascode Miller opamp. In the next sub-sections some comments are made for
other opamp topologies and it will be discussed why the folded cascode
Miller opamp is a good choice for obtaining high linearity for frequencies up
to approximately 1/10 of the GBW of the opamp.

6.1 Opamp Topologies Versus Linearity

The biasing guidelines in Chapter 3 stated that each transistor connected
to the signal path should be biased with high GS-overdrive and further, such
that the DS saturation voltage is well below the lowest DS-voltage. In other
words, to obtain high linearity performance for the overall circuit the
transistors need some voltage headroom. The necessary voltage headroom is
easier to gain in some opamp topologies than others. Thus, the choice of
opamp topology should be done with this in mind. Chapter 4 shows that the
linearity performance is strongly related to the OL-gain and high frequency
capabilities of the opamp. This is also a key issue when choosing what
opamp to use. In the following only fully differential opamps are discussed.
A fully differential circuit will suppress the even order harmonics strongly
such that the odd order harmonics will be the largest contributions to
nonlinear distortion. Further, a fully differential opamp in inverting
configuration will have zero input CM-voltage swing. The only contribution
to harmonic is thus from (see Chapter 4). Thus, only the
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harmonic due to will be considered in the following. The opamp
topologies are compared with the 1.8V opamp presented in section 5.2. They
will be discussed and compared to the folded cascode Miller opamp in three
frequency ranges:

Low frequencies: DC <f< 1MHz
below the dominant pole of the 1.8V opamp

High frequencies: 1MHz< f< 200MHz
all zeroes in the nonlinear transfer function given by (4-26) are located
in this range for the 1.8V opamp

Very high frequencies: f > 200MHz
harmonic totally decided by the contribution from the input

transistors (equation (4-27))

6.1.1 One-Stage Opamp

1.

2.

3.

The simplest one-stage opamp consist of five transistors. Two make the
differential pair, two the active load to the differential pair and one the tail
current source. The largest GBW possible in the given fabrication
technology is obtained with this opamp. A major drawback when it comes to
linearity performance is the limited voltage swing at the opamp outputs.
From the output node to one of the supply rails there are two DS-voltages,
and each shall be well above the saturation voltage. To satisfy this
requirement the signal swing must be limited. This problem is solved by
choosing the opamp in Figure 6-1. Here, there is only one DS-voltage from
the output node to each of the power supply rails. This means that the signal
swing can be large and the DS-voltages are well above the saturation voltage
in the entire output voltage range.

The circuit works as follows: the current from the differential pair M1
and M2 is mirrored from M6P/N to M4P/N and injected in the output nodes.
The dominant pole of the opamp is made at the output node. By varying the
load capacitance the dominant pole changes and further the GBW. This is
called load compensation, which is common for all one-stage topologies.
Further, the opamp has one non-dominant pole located at the node on the
gate on M4P/N. To obtain safe phase- and gain margins for the CL-circuit
the non-dominant pole has to be well above the GBW of the loop formed by
the opamp and feedback circuit. The CM-feedback circuit to control the CM-
voltage on the opamp output is not shown in Figure 6-1. This opamp
topology is described in more detail in [3] (Chapter 6).

The contributors to distortion are the same as for the folded cascode
Miller opamp. At low and high frequencies the output transistors are the
strongest contributors. Because of the low OL-gain the distortion is far larger
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than for the folded cascode Miller opamp. The gain from the input terminals
of the single-stage opamp to the gate of M4P/N can replace in equation
(4-26). For the one-stage opamp is low and most likely from 1 to 4 if the
saturation voltage of M4P/N shall be low enough. Compared to the 1.8V
folded cascode Miller opamp presented in section 5.2, is roughly 40dB
lower for the one stage opamp. The harmonic will then be 40dB higher
for low frequencies and well above the harmonic of the 1.8V opamp in
the whole high-frequency range. This is under the assumption that all other
parameters are the same for the two opamps. Thus, at both low and high
frequencies the distortion is less suppressed than for the folded cascode
Miller opamp.

At very high frequencies the nonlinear contribution from the input
differential pair takes over. The suppression of this contribution depends on
the GBW of the opamp. Thus, since the GBW of a one-stage opamp can be
larger than for a two-stage opamp, the linearity performance can potentially
be better in this frequency range.

The opamp in Figure 6-1 is a good choice among one-stage opamps. The
complexity is low and it is easy to design. If the linearity specification for
the circuit is not too demanding this could be the best choice.
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6.1.2 Two-Stage Opamp

Figure 6-2 shows a Miller compensated two-stage opamp. M1, M2, M3
and M6 make the input stage and M4 and M5 are the common source output
stage. The opamp is compensated by the capacitor Due to the feed-
forward path through the compensation capacitor, a zero in the right half of
the s-plane occurs in the OL transfer function. This zero contributes
negatively to the phase margin. The resistor moves this zero to the left
half of the s-plane and the phase margin becomes larger. This makes it
possible to make the GBW of the opamp larger. The opamp is described
further in [4].

As for the one-stage opamp in Figure 6-1 the high-swing node, the output
node, sees only one DS-voltage to each of the supply rails. This means that
the output is well suited for obtaining low distortion. The contributors to
distortion are the same as for the folded cascode Miller opamp and the
equations (4-26) and (4-27) can be used when replacing with

and with given by (6-1). This means that the gain of
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the Miller opamp first stage is lower than for the folded cascode Miller
opamp. Equation (4-26) shows that all distortion contributions from the
output transistors are increased with the same amount at low frequencies. In
addition, because goes to suppression of distortion above is
lower. This is shown by design equations (4-29) and (4-30), where is
replaced with will be larger than because that the cascode
transistors (M9 and M11 in Figure 3-10) can be made smaller such that their
drain capacitances are smaller than for M1/2 and M6P/N. Thus, the Miller
opamp has poorer linearity performance for low and high frequencies
compared to the folded cascode Miller opamp.

For very high frequencies the contribution from the input differential pair
is dominant. The GBW decides the suppression of the distortion. According
to [4] the GBW for the Miller opamp is half the GBW of the folded cascode
Miller opamp. This means that also at very high frequencies the cascoded
Miller opamp has higher linearity performance.

6.1.3 Three-Stage Opamp

Before compensation a three-stage opamp has three dominant poles in the
OL transfer function. Thus, a three-stage opamp needs one additional Miller
feedback loop compared to the two-stage opamp. A three-stage opamp has
thus larger OL DC gain, but more non-dominant poles, which results in
lower obtainable GBW. Various topologies for three-stage opamps are
discussed in [4]. In this section the nested Miller compensation is
considered.

As for the one- and two-stage opamps the output node should see only
one DS-voltage to each of the power supply rails. Thus, the output stage
should be of the common-source type as it is in the two-stage Miller opamp
in Figure 6-2. When using a common-source output stage, equation (4-26)
can be used to describe the contributions to harmonic from the output
transistors. Because of one more stage compared to the two-stage opamp,
shall now be replaced with the gain of the two first stages of the three-stage
opamp. Further, because of the additional Miller feedback loop in (4-26)
will be replaced with two zeroes. Above these zeroes the incline of the
order response is 20dB/dec larger than for the two-stage opamp.
Nevertheless, the contributions from the output transistors will be lower for
the three-stage opamp than for the two-stage folded cascode Miller opamp at
low and high frequency.

The contributions from the input transistors are suppressed by the cubic
GBW for frequencies above the dominant pole. This is shown by the design
equation (4-31). Thus, since the highest obtainable GBW of the three-stage
opamp is smaller than for a two-stage opamp, the distortion due to the input
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transistors is larger. Since the contributions from the output transistors are
smaller for a three-stage opamp the input transistors becomes dominant at
much lower frequency than for the two-stage opamps. So, at high and very
high frequency the three-stage opamp has poorer linearity performance than
the two-stage cascoded Miller opamp.

6.1.4 Concluding Remarks

The last subsections show that a one-stage opamp has the lowest linearity
performance in the low and high frequency ranges, but potentially the best
performance at very high frequency due to high GBW. The three-stage
opamp is probably the best choice for high linearity for low frequencies,
especially if the linearity requirement is high. The two-stage opamp,
especially the folded cascode Miller opamp, is a good choice for combining
high linearity for low and high frequencies and low complexity and power
consumption.

Compare the 1.8V folded cascode Miller opamp presented in section 5.2
with a three-stage nested Miller compensated opamp. Assume that the input
stages are equal. According to [4] the GBW of the three-stage opamp is 3 to
4 times lower than the GBW of the folded cascode Miller opamp. For the
1.8V opamp the distortion from the input differential pair becomes dominant
at 100MHz (see Figure 5-6). If the GBW of the three-stage opamp is 3 times
lower, the harmonic produced by this opamp will be larger than for the
two-stage cascoded Miller opamp for frequencies above 20MHz. Thus, the
three-stage opamp has lower harmonic for frequencies below 20MHz and
higher for frequencies above.
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Appendix A

Transistor Model

The three-dimensional drain current is given in (A-1). The equation is a
Taylor expansion to order with and as the signal terminal
voltages. The explanations of the coefficients are given in (A-3) to (A-8).
When the transistor is in saturation it is assumed that all transistor
capacitances are linear, except for the DB and SB diffusion capacitances.
The current for the nonlinear capacitance is given in (A-2), and the
coefficients in (A-9).
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Appendix B

Closed Loop Opamp Transfer Functions

In section 3.2.1, p. 42, the opamp was described as a two-input device
whose OL output responses, truncated to order, can be expressed as (3-7)
to (3-9). In this appendix, the CL responses for non-inverting and inverting
opamp configurations will be derived as a function of the OL transfer
functions given in (3-7) to (3-9).

Because of large complexity in the derivations, it is necessary to do some
simplifications. It is assumed that the feedback network is resistive and
linear. This is a good approximation when using metal resistors in the
implementation. The loading effects on the feedback network due to the
inverting input terminal are disregarded, and likewise the parasitic pole in
the same node. Loading on the output terminal due to the feedback network
is included in the load. For frequencies below GBW of the opamp these
simplifications give accurate modeling of the CL circuit.

All voltages and currents are on phasor representations in this section.
The method is similar to the method used in Appendix C. The only
difference is that the nonlinear coefficients are replaced with the and
order OL transfer functions of the opamp.

B.1 Non-Inverting Opamp Configuration

The non-inverting opamp configuration is shown in Figure B-1 (a) and its
order model in Figure B-l(b). The models for deriving and order

CL transfer functions are shown in Figure B-2. and are
given by (3-7), (3-8) and (3-9) on p. 44.

145
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B.1.1 First Order CL Response

From Figure B-1(b) it is possible to see that and
When inserting these equations in (3-7) the

following equation is obtained:

where
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Solving (B-1) for gives (B-2):
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order differential and CM-voltages then become:

B.1.2 Second Order CL Response

The CL order output voltage can easily be found by using the model
of Figure B-2(a), where and are given by (3-7) and (3-8),
respectively. Here, is the circuit excitation indicated by an independent
voltage source. applies feedback in the system. The model is running at
the frequency When inserting (3-7) for with
and (B-5) is obtained. When solving this for
(B-6) results, which is the order output CL response for the non-inverting
opamp configuration.
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B.1.3 Third Order CL Response

The order response is obtained in the same way as the order
response, replacing with given by (3-9). The model (Figure B-
2(b)) is running at the frequency Solving (B-7) for the order
response is given by (B-8). Because of the global feedback loop represented
by the the harmonic will be present at the input terminals of
the opamp. Because of the order nonlinearity this frequency will be
mixed with the fundamental frequency and thus contributes to order
response. This is covered by
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B.2 Inverting Opamp Configuration

The inverting opamp configuration is shown in Figure B-3(a), and the
order model in Figure B-3(b). To derive and order CL responses, the
models used for the non-inverting configurations, shown in Figure B-2(a)
and (b), can also be applied on the inverting configuration. The OL transfer
functions of the opamp are given by (3-7), (3-8) and (3-9) on p. 44.

B.2.1 First, Second and Third Order CL Responses

For the inverting opamp configuration the order can be expressed
as (B-9):
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where

When inserting for and in (3-7), (B-10) is obtained.
Solving this with respect to gives (B-11). Note that the differential
voltage (B-12) and CM-voltage (B-13) are different from the
voltages for the non-inverting configuration, which are given by (B-3) and
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(B-4), respectively. Inserting (B-12) and (B-13) in (B-5) and (B-7) (instead
of the differential and CM-voltage of the non-inverting configuration), and
solving for and gives and order CL responses,
respectively, for the inverting configuration. These are given in (B-14) and
(B-15).
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Appendix C

Open Loop Opamp Transfer Functions

In this appendix a procedure for finding the to orders OL transfer
functions for the cascoded Miller opamp is described. The opamp is shown
in Figure 3-10 in section 3.2.3. The opamp is considered as a two-input
device with the differential and CM voltages as the input variables. The
procedure implements the phasor method carried out on a two-input system.
Nonlinear analysis of two-input systems is described in [1], [2] and [3].
Because of the complexity of the higher order transfer functions, only the
order responses are given here. For and order transfer functions the
procedure is implemented in Maple6 [4].

The small-signal circuit in Figure 3-11 (p. 47) will be used as the model
for the opamp. The circuit equations, using Kirchhoff’s current law and
phasor representation of current and voltages, can be expressed as (C-1).
Here, the equations are arranged such that the circuit excitations are on the
right-hand side, and the node voltages are on the left-hand side. The
admittance matrix is shown in (C-2) and the elements in this matrix in (C-5)
to (C-9). The circuit parameters are related to Figure 3-11. The voltage and
current vectors are shown in (C-3) and (C-4), respectively, where the indexes
n and m are the exponent of the input voltages and respectively. For
instance, when is equal to zero and when The current
vector represents the circuit excitations and are the currents entering the
indexed node, for example is the excitation current entering node 3 in
Figure 3-11. The frequency that this excitation runs at is
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The various OL transfer functions for the opamp can be found using the
following procedure:

Solve the equation-set (C-1) and find the node voltages as  a
function of the excitation currents

1.
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Find the excitation currents for the circuit. These currents are for
order (n+m=1) a direct function of the input voltages. For higher order
(n+m>1) these currents are functions of lower order controlling voltages
of nonlinear elements, which further depends on the input voltages.
Find the output voltage and insert for found in 2.
Find the voltages that control the nonlinear elements and insert for
found in 2. These voltages will be used to derive excitation currents of
higher order.

2.

3.
4.

This procedure has to be repeated for all combination of and

C.1 First Order Responses

The first order response ((3-7) on p. 44) consist of two transfer
functions, and is due to the differential input
voltage and is due to CM input voltage

C.1.1

Here, is set to zero and is applied to the circuit at the frequency
The circuit equations can be expressed as (C-10), with the current excitations
shown in (C-11) and (C-12). (C-13) is obtained by taking the ratio of

and and setting The controlling voltages for the
nonlinear elements are also computed and are denoted and will be used
for computing higher order transfer functions. The gain factors and
which are the gain magnitudes of the input- and output stage, respectively,
are given in (C-14) and (C-15). The dominant and non-dominant poles are
shown in (C-16) and (C-17), respectively.
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Now, is set to zero and is applied to the circuit at the frequency
As for the node voltages are computed by solving a similar set of
equations, the equation-set in (C-18). The excitation currents are expressed
in (C-19) and (C-20). is shown in (C-21), where D is given in (C-
22). In D, and are the mismatch in the small-signal parameters

and respectively, of M1 and M2. The small-signal parameters
without indexes are due to the differential pair. The zero and pole that the
CM-voltage experiences is shown in (C-23) and (C-24), respectively. The
controlling voltages for the nonlinear elements can be computed from
the node voltages found when solving (C-18).

C.1.2
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The and order responses, given in (3-8) and (3-9) (p. 44), can be
found using the same procedure as above. The circuit excitations are then
nonlinear currents of order 2 and 3, respectively.
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