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DSP for In-Vehicle and Mobile Systems

Dedication
To Professor Fumitada Itakura

This book, “DSP for In-Vehicle and Mobile Systems”, contains a collection
of research papers authored by prominent specialists in the field. It is
dedicated to Professor Fumitada Itakura of Nagoya University. It is offered
as a tribute to his sustained leadership in Digital Signal Processing during a
professional career that spans both industry and academe. In many cases, the
work reported in this volume has directly built upon or been influenced by the
innovative genius of Professor Itakura.

While this outstanding book is a major contribution to our scientific literature,
it represents but a small chapter in the anthology of technical contributions
made by Professor Itakura. His purview has been broad. But always at the
center has been digital signal theory, computational techniques, and human
communication. In his early work, as a research scientist at the NTT
Corporation, Itakura brought new thinking to bit-rate compression of speech
signals. In partnership with Dr. S. Saito, he galvanized the attendees of the
1968 International Congress on Acoustics in Tokyo with his presentation of
the Maximum Likelihood Method applied to analysis-synthesis telephony.
The presentation included demonstration of speech transmission at 5400
bits/sec with quality higher than heretofore achieved. His concept of an all-
pole recursive digital filter whose coefficients are constantly adapted to
predict and match the short-time power spectrum of the speech signal caused
many colleagues to hurry back to their labs and explore this new direction.
From Itakura’s stimulation flowed much new research that led to significant
advances in linear prediction, the application of autocorrelation, and
eventually useful links between cepstral coefficients and linear prediction.
Itakura was active all along this route, contributing among other ideas, new
knowledge about the Line Spectral Pair (LSP) as a robust means for encoding
predictor coefficients. A valuable by-product of his notion of adaptively
matching the power spectrum with an all-pole digital filter gave rise to the
Itakura-Saito distance measure, later employed in speech recognition as well
as a criterion for low-bit-rate coding, and also used extensively in evaluating
speech enhancement algorithms.

Itakura’s originality did not escape notice at Bell labs. After protracted
legalities, a corporate arrangement was made for sustained exchange of
research scientists between ATT and NTT. Fumitada Itakura was the first to
initiate the program, which later encompassed such notables as Sadaoki Furui,
Yoh'ichi Tohkura, Steve Levenson, David Roe, and subsequent others from
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both organizations. At Bell Labs during 1974 and -75, Fumitada ventured
into automatic speech recognition, implementing an airline reservation system
on an early laboratory computer. Upon his return to his home company Dr.
Itakura was given new responsibilities in research management, and his
personal reputation attracted exceptional engineering talent to his vibrant
organization.

Following fifteen years of service with NTT, the challenges of academe
beckoned, and Dr. Itakura was appointed Professor of Electrical Engineering
in Nagoya University — the university which originally awarded his PhD
degree. Since this time he has led research and education in Electrical
Engineering, and Acoustic Signal Processing, all the while building upon his
expertise in communications and computing. Sophisticated microphone
systems to combat noise and reverberation were logical research targets, as
exemplified by his paper with colleagues presented in this volume. And, he
has continued management responsibilities in contributing to the leadership of
the Nagoya University Center for Integrated Acoustic Information Research
(CIAIR).

Throughout his professional career Professor Itakura has steadily garnered
major recognition and technical awards, both national and international. But
perhaps none rivals the gratification brought by the recognition bestowed by
his own country in 2003 -- when in formal ceremony at the Imperial Palace,
with his wife Nobuko in attendance, Professor Itakura was awarded the
coveted Shiju-hosko Prize, also known as the Purple Ribbon Medal.

To his stellar record of career-long achievement we now add the dedication of
this modest technical volume. Its pages are few by comparison to his
accomplishments, but the book amply reflects the enormous regard in which
Professor Fumitada Itakura is held by his colleagues around the world.

Jim Flanagan
Rutgers University
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Preface

Over the past thirty years, much progress has been made in the field of
automatic speech recognition (ASR). Research has progressed from basic
recognition tasks involving digit strings in clean environments to more
demanding and complex tasks involving large vocabulary continuous speech
recognition. Yet, limits exist in the ability of these speech recognition systems
to perform in real-world settings. Factors such as environmental noise,
changes in acoustic or microphone conditions, variation in speaker and
speaking style all significantly impact speech recognition performance for
today systems. Yet, while speech recognition algorithm development has
progressed, so has the need to transition these working platforms to real-
world applications. It is expected that ASR will dominate the human-
computer interface for the next generation in ubiquitous computing and
information access. Mobile devices such as PDAs and cellular telephones are
rapidly morphing into handheld communicators that provide universal access
to information sources on the web, as well as supporting voice, image, and
video communications. Voice and information portals on the WWW are
rapidly expanding, and the need to provide user access to larger amounts of
audio, speech, text, and image information is ever expanding. The vehicle
represents one significant emerging domain where information access and
integration is rapidly advancing. This textbook is focused on digital signal
processing strategies for improving information access, command and
control, and communications for in-vehicle environments. It is expected that
the next generation of human-to-vehicle interfaces will incorporate speech,
video/image, and wireless communication modalities to provide more
efficient and safe operations within car environments. It is also expected that
vehicles will become “smart” and provide a level of wireless information
sharing of resources regarding road, weather, traffic, and other information
that drivers may need immediately or request at a later time while driving on
the road. It is also important to note that while human interface technology
continues to evolve and expand, the demands placed on the vehicle operator
must also be kept in mind to minimize task demands and increase safety.

The motivation for this textbook evolved from many high quality papers
that were presented at the DSP in Mobile and Vehicular Systems Workshop,
Nagoya, Japan, April 2003, with generous support from CIAIR, Nagoya
University. From that workshop, a number of presentations were selected to
be expanded for this textbook. The format of the textbook is centered about
three themes: (i) in-vehicle corpora, (ii) speech recognition/dialog systems
with emphasis on car environments, and (iii) DSP for mobile platforms
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involving noise suppression, image/video processing, and alternative
communication scenarios that can be employed for in-vehicle applications.

The textbook begins with a discussion of speech corpora and systems for
in-vehicle applications. Chapter 1 discusses a multiple level audio/video/data
corpus for in-car dialog applications. Chapter 2 presents the CU-Move in-
vehicle corpus, and an overview of the CU-Move in-vehicle system that
includes microphone array processing, environmental sniffing, speech
features and robust recognition, and route dialog navigation information
server. Chapter 3 also focuses on corpus development, with a study on dialog
management involving traffic, tourist, and restaurant information. Chapter 4
considers in-vehicle dialog scenario where more than one user is involved in
the dialog task. Chapter 5 considers distributed task management for car
telematics with emphasis on VoiceXML. Chapter 6 develops an in-vehicle
voice interaction systems for driver assistance with experiments on language
modeling for streets, hotels, and cities. Chapter 7 concentrates more on high
speech error corrective coding for mobile phone applications which are of
interest for car information access. Chapter 8 considers a speech enhancement
method for noise suppression in the car environment. Chapter 9 seeks to
integrate prosodic structure into noisy speech recognition applications.
Effective noise reduction strategies for mobile and vehicle applications are
considered in Chapter 10, and also in Chapter 11. Chapter 12 considers a
small vocabulary speech system for controlling car environments. Chapters
13 and 14 consider transmission and compression schemes respectively for
image and video applications which will become more critical for wireless
information access within car environments in the near future. Chapter 15
follows up with a work on adaptive techniques for wireless speech
transmission in local area networks, an area which will be critical if vehicles
are to share information regarding road and weather conditions while on the
road. Chapter 16 considers the use of audio-video information processing to
help identify a speaker. This will have useful applications for driver
identification in high noise conditions for the car. Chapter 17 considers a
rather interesting idea of characterizing driving behavior based on biometric
information including gas and brake pedal usage in the car. Chapter 18
addresses convolutional noise using blind signal separation for in-car
environments. Finally, Chapter 19 develops a novel approach using multiple
regression of the log spectra to model the differences between a close talking
microphone and far-field microphone for in-vehicle applications.

Collectively, the research advances presented in these chapters offers a
unique perspective of the state of the art for in-vehicle systems. The treatment
of corpora, dialog system development, environmental noise suppression,
hands-free microphone and array processing, integration of audio-video
technologies, and wireless communications all point to the rapidly advancing
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field. From these studies, and others in the field from laboratories who were
not able to participate in the DSP in Mobile and Vehicular Systems Workshop
[http://dspincars.sdsu.edu/] in April 2003, it is clear that the domain of in-
vehicle speech systems and information access is a rapidly advancing field
with significant opportunities for advancement.

In closing, we would like to acknowledge the generous support from
CIAIR for the DSP in Mobile and Vehicular Systems Workshop, and
especially Professor Fumitada Itakura, who’s vision and collaborative style in
the field of speech processing has served as an example of how to bring
together leading researchers in the field to share their ideas and work together
for solutions to solve problems for in-vehicle speech and information
systems.

Hiiseyin Abut, John H.L. Hansen, Kazuya Takeda,
San Diego State Univ.  Univ. Colorado at Boulder =~ NagoyaUniversity
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Chapter 1

CONSTRUCTION AND ANALYSIS OF A
MULTI-LAYERED IN-CAR SPOKEN DIALOGUE
CORPUS

Nobuo Kawaguchi, Shigeki Matsubara, Itsuki Kishida, Yuki Irie, Hiroya
Murao, Yukiko Yamaguchi, Kazuya Takeda and Fumitada Itakura

Center for Integrated Acoustic Information Research, Nagoya University, Furo-cho, Chikusa-
ku, Nagoya 464-8601, JAPAN Email: kawaguti@itc.nagoya-u.ac.jp

Abstract:  In this chapter, we will discuss the construction of the multi-layered in-car
spoken dialogue corpus and the preliminary result of the analysis. We have
developed the system specially built in a Data Collection Vehicle (DCV) which
supports synchronous recording of multi-channel audio data from 16
microphones that can be placed in flexible positions, multi-channel video data
from 3 cameras and the vehicle related data. Multimedia data has been collected
for three sessions of spoken dialogue with different types of navigator in about
60-minute drive by each of 800 subjects. We have defined the Layered Intention
Tag for the analysis of dialogue structure for each of speech unit. Then we have
marked the tag to all of the dialogues for over 35,000 speech units. By using the
dialogue sequence viewer we have developed, we can analyze the basic
dialogue strategy of the human-navigator. We also report the preliminary
analysis of the relation between the intention and linguistic phenomenon.

Keywords: Speech database, spoken dialogue corpus, intension tag, in-vehicle
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1. INTRODUCTION

Spoken dialog interface using spontaneous speech is one of the most
critical modules needed for effective hands-free human-machine interaction
in vehicles when the safety is in mind. To develop framework for this, large-
scale speech corpora play important roles for both of acoustic modelling and
speech modelling in the field of robust and natural speech interface.

The Center for Integrated Acoustic Information Research (CIAIR) at
Nagoya University has been developing a significantly large scale corpus for
in-car speech applications [1,5,6]. Departing from earlier studies on the
subject, the dynamic behaviour of the driver and the vehicle has been taken
into account as well as the content of the in-car speech. These include the
vehicle-specific data, driver-specific behavioural signals, the traffic
conditions, and the distance to the destination [2,8,9]. In this chapter, details
of this multimedia data collection effort will be presented. The main
objectives of this data collection are as follows:

e Training acoustic models for the in-car speech data,

e Training language models of spoken dialogue for task domains
related to information access while driving a car, and

® Modelling the communication by analyzing the interaction among
different types of multimedia data.

In our project, a system specially developed in a Data Collection Vehicle
(DCV) (Figure 1-1) has been used for synchronous recording of multi-
channel audio signals, multi-channel video data, and the vehicle related
information. Approximately, a total of 1.8 Terabytes of data has been
collected by recording several sessions of spoken dialogue for about a period
of 60-minutes drive by each of over 800 drivers. The driver gender
breakdown is equal between the male and female drivers.

All of the spoken dialogues for each trip are transcribed with detailed
information including a synchronized time stamp. We have introduced and
employed a Layered Intention Tag (LIT) for analyzing dialogue structure.
Hence, the data can be used for analyzing and modelling the interactions
between the navigators and drivers involved in an in-car environment both
under driving and idling conditions.

This chapter is organized as follows. In the next section, we describe the
multimedia data collection procedure performed using our Data Collection
Vehicle (DCV). In Section 3, we introduce the Layered Intention Tag (LIT)
for analysis of dialogue scenarios. Section 4 briefly describes other layers of
the corpus. Our preliminary findings are presented in Section 5.
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Figure 1-1. Data Collection Vehicle

2. IN-CAR SPEECH DATA COLLECTION

We have carried out our extensive data collection starting 1999 through
2001 over 800 subjects both under driving and idling conditions. The
collected data types are shown in Table 1-1. In particular, during the first
year, we have collected the following data from 212 subjects: (1) pseudo
information retrieval dialogue between a subject and the human navigator, (2)
phonetically balanced sentences, (3) isolated words, and (4) digit strings.

In the 2000-2001 collection, however, we have included two more
dialogue modes such that each subject has completed a dialogue with three
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different kinds of interface systems. The first system is a human navigator,
who sits in a special chamber inside the vehicle and the navigator converses
and naturally. Second one is a wizard of Oz (WOZ) type system. The final
one is an automatic dialog set-up based on automatic speech recognition
(ASR). As it is normally done in many Japanese projects, we have employed
Julius [3] as the ASR engine. In Table 1-2 we tabulate the driver age
distribution.

Each subject has read 50 phonetically balanced sentences in the car while
the vehicle was idling and subsequently drivers have spoken 25 sentences
while driving the car. While idling, subjects have used a printed text posted
on the dashboard to read a set of phonetically balanced sentences. While
driving, we have employed a slightly different procedure for safety reasons.
In this case, subjects are prompted for each phonetically sentence from a
head-set utilizing a specially developed waveform playback software.

1999’s collection 212.subj.
Spoken dialog with human navigator 11 min
PB sent. (Idling) 50 sent.
PB sent. (Driving) 25 sent.
Isolated words 30 words
Digit Strings 4digit*20
2000-2001’s collection 300*2 subj.
Spoken dialog with human navigator 5min
Spoken dialog with WOZ system Smin
Spoken dialog with ASR system Smin

PB sent. (Idling) 50 sent.
PB sent. (Driving) 25 sent.
Isolated words 30 words
Digit Strings 4digit*20

Table 1-1. Speech Data Specifications

The recording system in our data collection vehicle is custom-designed
equipment developed at CIAIR for this task. It is capable of synchronous
recording of 12-channel audio inputs, 3-channel video data, and various
vehicle related data. The recording system consists of eight network-
connected computers, a number of distributed microphones and microphone
amplifiers, a video monitor, three video cameras, a few pressure sensors, a
differential-GPS unit, and an uninterruptible power supply (UPS).
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Age Male Female Sum
10--19 L. 0 4
20--29 366 162 528
30--39 105 85 190
40--49 46 35 81
50--59 5 2 7

60-- 2 0 2

Sum 528 284 812

Table 1-2. Driver age distribution.

Individual computers are used for speech input, sound output, three video
channels, and vehicle related data. In Table 1-3, we list the recording
characteristics of 12-speech and 3-video channels, five analog control signals
from the vehicle representing the driving behavior of drivers and the location
information from the DGPS unit built into the DCV. These multi-dimensional
data are recorded synchronously, and hence, they can be synchronously
analyzed.

Speech 16kHz, 16bit, 12ch
Video MPEG-1, 29.971ps, 3ch
Control Signal Status of Accelerator and Brake,
Steering Wheel Angle
Engine RPM, Speed: 16bit 1kHz
Location Differential GPS (one reading per sec.)

Table 1-3. Recorded data specifications.

21 Multi-mode Dialogue Data Collection

The primary objective of the dialogue speech collection is to record three
different modes of dialogue mentioned earlier. It is important to note that the
task domain is the information retrieval task for all three modes. The
descriptions of these dialogue modes are:

¢ Dialogue with human navigator (HUM): Navigators are trained in
advance and has extensive information for the tasks involved.
However, in order to avoid a dialogue divergence, some restriction is
put on the way he/she speaks.
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¢ Dialogue with Wizard of OZ system (WOZ): The WOZ mode is a
spoken dialogue platform which has a touch-panel input for the
human navigator and a speech synthesizer output. The system has a
considerable list of shops and restaurants along the route and the
navigator use the system to search and select the most suitable answer
for subjects’ spoken requests (Figure 1-2).

Figure 1-2. Sample Dialogue Recording Scene Using WOZ

e Dialogue with Spoken Dialogue System (SYS): The dialogue
system called “Logger” performs a slot-filling dialogue for the
restaurant retrieval task. The system utilizes Julius[3] for LVCSR
system.

To simplify dialogue recording process, the navigator has prompted each
task by using several levels of a task description panel to initiate the
spontaneous speech. There is a number of task description panels associated
with our task domain. A sample set from the task description panels are as
follows:

‘Fast food’,

‘Hungry’,

‘Hot summer, thirsty’,

‘No money’,and

‘You just returned from abroad’.
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All of our recorded dialogues are transcribed into text in compliance with
a set of criteria established for the Corpus of Spontaneous Japanese (CSJ)
[13]. In Table 14, we tabulate many statistical data associated with our
dialogue corpus. As it can be observed from the first row, we have collected
more than 187 hours of speech data corresponding to approximately one
million morpheme dialogue units.

2.2 Task Domains

We have categorized the sessions into several task domains. In Figure 1-3,
we show the breakdown of major task domains. It is easy to see that
approximately forty percent of the tasks are related to restaurant information
retrieval, which is consistent with earlier studies. In the sections to follow, we
will use only the data from the restaurant task. Our findings for other tasks
and driver behavioral data will be discussed later Chapters 17 and 19.

Sum/ Total
9oHUM | ooHuM | oowoz | oosys | oiHuM | oiwoz | o1sys | Ave. | Hours
Recording
time(s) 141822 94692 95300 77922 93465 93862 78169 675232 187.6
Sessions 209 294 293 288 295 294 287 1960
Avecage 679 322 325 M 317 319 272
duration(s)
ffd‘ ) 98100 69390 50864 | 54056 | 67635 47424 | 48877 | 436346 | 1212
driver | 44722 28085 20159 | 11515 | 26055 18127 | 11001 | 159664 | 44.4
operator | 53328 41305 30705 | 42541 | 41580 29297 | 37876 | 276632 | 76.8
Speech unit 38760 25251 19585 | 24944 | 24178 19993 | 22004 | 175615
driver | 20493 12555 9381 10567 | 11985 9245 10722 | 84948
operator | 18267 12696 9754 14377 | 12193 10748 | 12182 | 90217
Morphemes | 252289 | 174848 | 107010 | 142674 | 176915 | 88450 ‘2201 105352’

driver 109710 68548 49023 27119 64173 44370 25587 | 388530

operator 142579 106300 57987 115555 112742 44089 98431 677683

:.:er:h%:nit 6.71 7.18 5.64 593 170 4.60 5.65 631
driver 5.65 5.78 531 2.79 579 5.24 2.61 4.88
operator 7.85 8.52 597 8.07 9.48 4.10 8.10 7.58
:“:;J,m 6.41 6.53 6.12 6.11 6.52 6.01 5.95 6.28
driver 6.01 6.01 6.07 5.53 6.01 6.06 5.65 5.97
operator 6.86 7.05 6.18 6.54 7.02 5.96 6.21 6.60

Table 1-4. Corpus Statistics
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Event
The others 20

15%

Guidance
10%
Wayinfo
1%
Carlnfo
4%

Restaurant
39%

Total number

Shop/Facility of tasks : 8197

29%

Figure 1-3. Task distribution of the corpus.

3. LAYERED INTENTION TAG

To develop a spoken dialogue system based on speech corpus [4], certain
pre-specified information is required for each sentence corresponding to a
particular response of the system. Additionally, to perform the response to
satisfy the user, we need to presume the intention of the user’s utterances.
From our preliminary trials, we have learned that user’s intention has a wide
range even for a rather simple task, which could necessitate the creation of
dozens of intention tags. To organize and expedite the process, we have
stratified tags into several layers, which have resulted in an additional benefit
of a hierarchical approach in analyzing users’ intentions.

Our Layered Intention Tags (LIT) are described in Table 1-5 and the
structure is shown in Figure 14. Each LIT is composed of four layers. The
discourse act layer signifies the role of the speech unit in a given dialogue,
which are labeled as “task independent tags”. However, some units do not
have a tag at this layer.

Action layer denotes the action taken. Action tags are subdivided into
“task independent tags” and ‘“task dependent tags”. “Confirm” and “Exhibit”
are task independent, whereas “Search”, “ReSearch”, “Guide”, “Select” and
“Reserve” are the task dependent ones.

Object layer stands for the objective of a given action including “Shop”,
“Parking.”

Finally, the argument layer denotes other miscellaneous information about
the speech unit. Argument layer is often decided directly from some specific
keywords in a given sentence. As it is shown in Figure 14, the lower layered
intention tags are explicitly depended on the upper layered ones.
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Discourse Act Action Object Argument
Request(Req) Confirm(Conf) Shop ShopName
Propose(Prop) Exhibit(Exhb) Parking Genre
Express(Expr) Search(Srch) ShoplInfo Price
Suggest(Sugg) ReSearch(ReSe) ParkingInfo Place

Statement(Stat) Guide(Guid) SearchResult Date

Select(Sel) RequestDetail Menu
Reserve(Res) SelectionDetail Count
YesOrNo Time

Table 1-5. Layered Intention Tag List (Partial)

Discourse Act

Figure 1-4. Structure of the Layered Intention Tag. (Partial List)

An example of a dialogue between a human navigator and a subject is
shown in Figure 1-5. We have collected over 35,000 utterances (speech units)
to be individually tagging in our restaurant information retrieval task. In
Table 1-6, we present the statistics of the intention tagged corpus, resulting in
a 3641 tagged tasks. It is thirty eight percent of the overall corpus. Top ten
types of layered intention tags and their frequency of occurrence are given in
Table 1-7. It is interesting to note that the tendencies of the tags are very
similar in the recordings of both human navigator and the WOZ.
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Utterance | LIT
Subject: Umm, I'm looking for a fastfood restaurant.
Req +Srch+Shop
Navigator: Well, there are McDonald's, Mr.Donuts, and Lotteria
near here.
Stat+Exhb+SrchRes
Subject: So, McDonald's please.
Stat+Sel +Shop
Navigator: OK. I'll navigate to the McDonald's restaurant.
Expr+Guid+Shop
Figure 1-5. A sample dialogue transcription with its Layered Intention Tag.
99HUM 00HUM 00WOZ 01HUM 01WOZ
Sessions 7 297 297 295 295
Task: Restaurant 425 793 890, 626 907
Speech unit 4,509 8,133 8,420 5,628 8,331
driver 2,331 3,806 3,760 2,624 3,713
operator 2,578 4,327 4,660 3,004 4,618
Table 1-6. Statistics of the intention tagged corpus
99 00 00 01 01
HUM | HUM WOZ [HUM | WOZ Total
Stat+Exhb+IntDetail 694 1,192 1,442 818 1,549 5,695
Stat+Exhb+SearchResult 665 1,303 1,260 938 1,285 5,451
Req+Srch+Shop 497 811 845 894 910 3,957
Expr+Guid+Shop 353 709 830 568 83 3,294
Stat+Sel+Shop 365 685 749 563 79 3,155
Stat+Exhb+Shoplnfo 733 540 362 336 33 2,308
Req+Exhb+Shoplnfo 655 an 223 259 33 1,852
Stat+Sel+Gerne 46 378 425 325 46 1,640
Req+Sel+Gerne 58 219 379 283 42 1,367
Reg+ReSe+Shop 162 345 205 260 31 1,282,

Table 1-7. Frequency of Occurrence of top ten intention tags
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4. MULTI-LAYERED CORPUS STRUCTURE

Generally, a spoken dialogue system is developed by a sequence of signal
processing sub-units. Starting with front end processing, such as filtering to
avoid aliasing, acoustic-level signal processing including, sampling,
quantization, and parameter extraction for ASR engine. Next the results from
ASR are passed to a language processing unit based on a statistical language
model appropriate for the tasks. Finally, there is an application-specific
dialogue processing stage to carry out the tasks in a particular task domain
such as the restaurant information retrieval application.

In order to use the collected dialogue data effectively in generating a
comprehensive and robust corpus and then to update the system, not only a
simple recording and transcription of speech are needed but a number of more
advanced information is critically important. This necessitated undertaking a
number of linguistic analyses on syntax and semantics of the corpus text.
Thereby, a multi-layered spoken dialogue corpus of Figure 1-6 presented in
the next section has become a method of choice to realize these.

4.1 Corpus with Dependency Tags

We have performed a dependency analysis to the drivers’ utterances.
Dependency in Japanese is a dependency relationship between the head of
one bunsetsu and another bunsetsu. In addition, the bunsetsu, roughly
corresponding to a basic phrase in English, is about the relation between an
utterance intention and the utterance length, and the relation between
utterance intentions and the underlying linguistic phenomena. Especially, we
needed to pay attention to the smallest unit which a sentence can be divided
naturally in terms of its meaning and pronunciation. It is also common to
observe dependencies over two utterance units which are segmented by a
pause. In this case, the dependency as a bunsetsu depending on a forward
bunsetsu is the accepted norm. With these, we have carried out the data
specification for spontaneous utterances. A sample of a corpus with
dependency tags is shown in Figure 1-5. This corpus includes not only the
dependency between bunsetsus but also the underlying morphological
information, utterance unit information, dialogue turn information, and others.
This corpus is used for acquisition of the dependency distribution for
stochastic dependency parsing [14].
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(TIME 01:48:502-01:54:821)
(1 (n(WelD) filler))
> None)
(2 (larai(spicy) adjective )
-> (3 (Taiwanramen-ga (a Taiwanese noodle) noun-particle )))
(3 (Taiwanramen-ga (a Taiwanese noodle) noun-particle ))
> (4 (tabe-tai-n-da-kedo (I can eat) verb-auxiary-noun-auxiary-particle )))
(4 ( tabe-tai-n-da-kedo (I can eat) verb-auxiary-noun-auxiary-particle ))
-> (7 (nai-ka-na (are there) adjective-auxiary-auxiary )))
(5 (dokka (some) noun ))
-> (7 (nai-ka-na (are there) adjective-auxiary-auxiary )))
((6 (o-mise (places) prefix-noun ))
-> (7 (mai-ka-na (are there) adjective-auxiary-auxiary )))
((7 (nai-ka-na (are there) zﬂ;:c:)w—amay—almay )}
>

Figure 1-6. Sample of the corpus with dependency tags.

5. DISCUSSION ON IN-CAR SPEECH CORPUS

In this section, we will be studying the characteristics of our multi-layered
in-car speech corpus of Figure 1-7. In particular, we will explore the
relationship between an intention in a given utterance and the utterance
length, and the relationship between the intentions and the associated
linguistic phenomenon. Especially, we will be comparing the driver’s
conversations with another person (human navigator) and the human-WOZ
dialogues.

51 Dialogue Sequence Viewer

To understand and analyze the dialogue corpus intuitively, we have
constructed a dialogue sequence viewer as depicted in Figure 1-8. For this
task, we have also formed “turns” from speech units or tagged units, to
indicate the event of a speaker change. In this figure, each node has a tag with
a turn number, and the link between any two nodes implies the sequence of
the event in a given conversation. As expected, each turn could have more
than one LIT tag. The thickness of a link is associated with the occurrence
count of a given tag’s connections. For instance, there are only four turns in
Figure 1-8 of the dialogue segment of Figure 14. We have observed that the
average turn count in the restaurant query task is approximately 10.
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Dialogue Structure Request+Search+Shop Ek‘]:nﬁh‘lﬁwdlﬂm.ﬂls
Utterance Intention Request+Search+Shop &glﬁmﬂmwum:lu
. taiwan-ramen-ga . . ;
karai p tabe-tai-n-da-kedo hai Niken
spicy Taiwanese noodle 1 can eat yes o
Dependency e
Structure :
dokka | | o-mise o ons wimasu
some places there're
L)
e e 1
Linguistic (F Well) are there some places I can eat a spicy Taiwanese noodle Yes
Phenomenon e
I i
Basic Form Well, are there some places | can eat a spicy Taiwanese noodle? Yes there're two
I ]
PI'C;‘HOHDOB n karai taiwan-ramen-ga tabe-tai-n-da-kedo dokka o-mise nei-kanas hai niken ari-masu
orm

Figure 1-7. Multi-Layered In-Car Speech Corpus Framework.

We found by employing the dialogue sequence viewer that the majority of
the dialogue sequences pass through typical tags such as ‘“Req+Srch+Shop”,
“Stat+Exhb+SrchRes”, “Stat+Sel+Shop”, and “Expr+Guid+Shop.” We have
also studied the dialogue segments with length 6, 8 and 10 turns. It turns out
that the start section and the end section of dialogues of different lengths are

very similar.
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Figure 1-8. Partial dialogue sequence map in the Layered Intention Tag (LIT) Structure.

5.2 System Performance Differences between Human and
WOZ Navigators

As discussed earlier, we have collected in-car information conversations
using an actual human navigator, Wizard of Oz (WQOZ) setup, and speech
recognition (ASR) system. Since the ASR systems are configured to work in
the system initiated conversation mode and they require considerable training
to learn the speaking habits of drivers -more than 800 in our case- they were
thought to be highly restricted this application. On the other hand, the human
navigator and the WOZ setups have been observed to be very effective and
easy to realize. Hence, we will be presenting some comparative results on
driver behaviour if they converse with a human navigator or the Wizard of
OZ system.

In Figure 1-9, we have plotted the performance of top ten layered intention
tags (LIT) in the restaurant query task, where lines represent the number of
phrases per speech unit in the case of human navigator (H) and the WOZ
system (W). We have also included a bar diagram for the occurrence rate of
linguistic fillers.
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o

Number of Phrases per Speech Unit

Figure 1-9. Driver Behaviour Differences between HUM and WOZ navigators.

Average occurrence of filler was 0.15 per phrase in the case of a human
navigator and the corresponding rate was 0.12 per phrase in the WOZ case.
Therefore, we can conclude that the average dialogue between a driver and
the WOZ is shorter than that of a human navigator. This tendency is observed
to be fairly uniform across all the LITs under study.

The occurrence rate of filler for “Request(Req)” tags is close to average.
Although other tags show sizeable differences, there was not any difference
between the human navigator and then WOZ setup. The differences were
consistently high in other tags. This means that, for the “Req” tags, subjects
frequently tend to speak regardless of the reply from the system. On the other
hand, subjects simply tend to respond to an utterance from the system for
other tags. It is fairly probable that the fluency of the system could affect the
driver’s speech significantly.

Finally, we could also conclude from the number of phrases per speech
unit that the “Req” tagged units are highly complex sentences in comparison
to other tagged units.
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6. SUMMARY

In this chapter, we have presented brief description of a multimedia corpus
of in-car speech communication developed in CIAIR at Nagoya University,
Japan. The corpus consists of synchronously recorded multi-channel
audio/video signals, driving signals, and a differential GPS reading. For a
restaurant information query task domain speech dialogues were collected
from over 800 drivers -equal split between male and female drivers- in four
different modes, namely, human-human and human-machine, prompted, and
natural. In addition, we have experimented with an ASR system for collecting
human-machine dialogues. Every spoken dialogue is transcribed with precise
time stamp.

We have proposed the concept of a Layered Intention Tag (LIT) for
sequential analysis of dialogue speech. Towards that end, we have tagged one
half of the complete corpus with LITs. We have also attached structured
dependency information to the corpus. With these, in-car speech dialogue
corpus has been enriched to turn into a multi-layered corpus. By studying
different layers of the corpus, different aspects of the dialogue can be
analyzed.

Currently, we are exploring the relationship between an LIT and the
number of phrases and the occurrence rate of fillers with an objective of
developing a corpus based dialogue management platform.
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CU-MOVE: ADVANCED IN-VEHICLE SPEECH
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John H.L. Hansen, Xianxian Zhang, Murat Akbacak, Umit H. Yapanel,

Bryan Pellom, Wayne Ward, Pongtep Angkititrakul
Robust Speech Processing Group, Center for Spoken Language Research,

University

of Colorado at Boulder, Boulder, Colorado 80309-0594, USA

Email: John.Hansen@ colorado. edu

Abstract:

In this chapter, we present our recent advances in the formulation and
development of an in-vehicle hands-free route navigation system. The system is
comprised of a multi-microphone array processing front-end, environmental
sniffer (for noise analysis), robust speech recognition system, and dialog
manager and information servers. We also present our recently completed
speech corpus for in-vehicle interactive speech systems for route planning and
navigation. The corpus consists of five domains which include: digit strings,
route navigation expressions, street and location sentences, phonetically
balanced sentences, and a route navigation dialog in a human Wizard-of-Oz like
scenario. A total of 500 speakers were collected from across the United States
of America during a six month period from April-Sept. 2001. While previous
attempts at in-vehicle speech systems have generally focused on isolated
command words to set radio frequencies, temperature control, etc., the CU-
Move system is focused on natural conversational interaction between the user
and in-vehicle system. After presenting our proposed in-vehicle speech system,
we consider advances in multi-channel array processing, environmental noise
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SPAWAR under Grant No. N66001-03-1-8905, in part by NSF under Cooperative Agreement No. IIS-
9817485, and in part by CSLR Center Member support from Motorola, HRL, Toyota CR&D, and
CSLR Corpus Member support from SpeechWorks, Infinitive Speech Systems (Visteon Corp.),

Mitsubishi Electric Research Lab, Panasonic Speech Technology Lab, and VoiceSignal Technologies.
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sniffing and tracking, new and more robust acoustic front-end representations
and built-in speaker normalization for robust ASR, and our back-end dialog
navigation information retrieval sub-system connected to the WWW. Results
are presented in each sub-section with a discussion at the end of the chapter.

Keywords: Automatic speech recognition, robustness, microphone array processing, multi-
modal, speech enhancement, environmental sniffing, PMVDR features, dialog,
mobile, route navigation, in-vehicle

1. INTRODUCTION: HANDS-FREE SPEECH
RECOGNITION/DIALOG IN CARS

There has been significant interest in the development of effective dialog
systems in diverse environmental conditions. One application which has
received much attention is for hands-free dialog systems in cars to allow the
driver to stay focused on operating the vehicle while either speaking via
cellular communications, command and control of vehicle functions (i.e.,
adjust radio, temperature controls, etc.), or accessing information via wireless
connection (i.e., listening to voice mail, voice dialog for route navigation and
planning). Today, many web based voice portals exist for managing call
center and voice tasks. Also, a number of spoken document retrieval systems
are available for information access to recent broadcast news content
including SpeechBot by HP-Compaq)[30] and the SpeechFind for historical
digital library audio content (RSPG-CSLR, Univ. Colorado)[29]. Access to
audio content via wireless connections is desirable in both commercial
vehicle environments (i.e., obtaining information on weather, driving
conditions, business locations, etc.), points of interest and historical content
(i.e., obtaining audio recordings which provide a narrative of historical places
for vacations, etc.), as well as in military environments (i.e., information
access for coordinating peacekeeping groups, etc.).

This chapter presents our recent activity in the formulation of a new in-
vehicle interactive system for route planning and navigation. The system
employs a number of speech processing sub-systems previously developed for
the DARPA CU Communicator[1] (i.e., natural language parser, speech
recognition, confidence measurement, text-to-speech synthesis, dialog
manager, natural language generation, audio server). The proposed CU-Move
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system is an in-vehicle, naturally spoken mixed initiative dialog system to
obtain real-time navigation and route planning information using GPS and
information retrieval from the WWW. A proto-type in-vehicle platform was
developed for speech corpora collection and system development. This
includes the development of robust data collection and front-end processing
for recognition model training and adaptation, as well as a back-end
information server to obtain interactive automobile route planning
information from WWW.

The novel aspects presented in this chapter include the formulation of a
new microphone array and multi-channel noise suppression front-end,
environmental (sniffer) classification for changing in-vehicle noise
conditions, and a back-end navigation information retrieval task. We also
discuss aspects of corpus development. Most multi-channel data acquisition
algorithms focus merely on standard delay-and-sum beamforming methods.
The new noise robust speech processing system uses a five-channel array with
a constrained switched adaptive beamformer for the speech and a second for
the noise. The speech adaptive beamformer and noise adaptive beamformer
work together to suppress interference prior to the speech recognition task.
The processing employed is capable of improving SegSNR performance by
more than 10dB, and thereby suppress background noise sources inside the
car environment (e.g., road noise from passing cars, wind noise from open
windows, turn signals, air conditioning noise, etc.).

This chapter is organized as follows. In Sec. 2, we present our proposed
in-vehicle system. In Sec. 3, we discuss the CU-Move corpus. In Sec. 4, we
consider advances in array processing, followed by environmental sniffing,
and automatic speech recognition (ASR), and our dialog system with
connections to WWW. Sec. 5 concludes with a summary and discussion of
areas for future work.

2. CU-MOVE SYSTEM FORMULATION

The problem of voice dialog within vehicle environments offers some
important speech research challenges. Speech recognition in car environments
is in general fragile, with word-error-rates (WER) ranging from 30-65%
depending on driving conditions. These changing environmental conditions
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include speaker changes (task stress, emotion, Lombard effect, etc.)[16,31] as
well as the acoustic environment (road/wind noise from windows, air
conditioning, engine noise, exterior traffic, etc.).

Recent approaches to speech recognition in car environments have
included combinations of basic HMM recognizers with front-end noise
suppression[2,4], environmental noise adaptation, and multi-channel
concepts. Many early approaches to speech recognition in the car focused on
isolated commands. One study considered a command word scenario in car
environments where an HMM was compared to a hidden Neural Network
based recognizer[5]. Another method showed an improvement in
computational requirements with front-end signal-subspace enhancement
used a DCT in place of a KLT to better map speech features, with recognition
rates increasing by 3-5% depending on driving conditions[6]. Another
study[7] considered experiments to determine the impact of mismatch
between recognizer training and testing using clean data, clean data with car
noise added, and actual noisy car data. The results showed that starting with
simulated noisy environment train models, about twice as much adaptation
material is needed compared with starting with clean reference models. The
work was later extended[8] to consider unsupervised online adaptation using
previously formulated MLLR and MAP techniques. Endpoint detection of
phrases for speech recognition in car environments has also been
considered[9].  Preliminary speech/noise detection with front-end speech
enhancement methods as noise suppression front-ends for robust speech
recognition have also shown promise[2,4,10,11]. Recent work has also been
devoted to speech data collection in car environments including
SpeechDat.Car[12], and others [13]. These data concentrate primarily on
isolated command words, city names, digits, etc. and typically do not include
spontaneous speech for truly interactive dialogue systems. While speech
recognition efforts in car environments generally focus on isolated word
systems for command and control, there has been some work on developing
more spontaneous speech based systems for car navigation [14,15], however
these studies use a head-worn and ceiling mounted microphones for speech
collection and limit the degree of naturalness (i.e., level of scripting) for
navigation information exchange.

In developing CU-Move, there are a number of research challenges which
must be addressed to achieve reliable and natural voice interaction within the
car environment. Since the speaker is performing a task (driving the vehicle),
a measured level of user task stress will be experienced by the driver and
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therefore this should be included in the speaker modeling phase. Previous
studies have clearly shown that the effects of speaker stress and Lombard
effect (i.e., speaking in noise) can cause speech recognition systems to fail
rapidly[16]. In addition, microphone type and placement for in-vehicle speech
collection can impact the level of acoustic background noise and ultimately
speech recognition performance. Figure 2-1 shows a flow diagram of the
proposed CU-Move system. The system consists of front-end speech
collection/processing tasks that feed into the speech recognizer. The speech
recognizer is an integral part of the dialogue system (tasks for Understanding,
Discourse, Dialogue Management, Text Generation, and TTS). An image of
the microphone used in the array construction is also shown (Figure 2-2). The
back-end processing consists of the information server, route database, route
planner, and interface with the navigation database and navigation guidance
systems. Here, we focus on our efforts in multi-channel noise suppression,
automatic environmental characterization, robust speech recognition, and a
proto-type navigation dialogue.
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Figure 2-1. Flow Diagram of CU-Move Interactive Dialogue System for In-Vehicle Route
Navigation
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3. CU-MOVE CORPUS DEVELOPMENT

As part of the CU-Move system formulation, a two phase data collection
plan was developed. Phase I focused on collecting acoustic noise and probe
speech from a variety of cars and driving conditions. The outcome of Phase I
was to determine the range of noise conditions across vehicles, and select one
vehicle for Phase II collection that is representative of the typical noise
domains experienced while driving. Eight vehicles were used in Phase I
analysis (e.g., compact and two mid-size cars, small and medium pickup
trucks, passenger van, sport utility vehicle (SUV), cargo van). We considered
14 noise conditions in actually driving scenarios. Figure 2-2 summarizes
some of the results obtained from the study, with further details presented in
[26]. The noise level was highest with windows open 2 inches traveling
65mph on the highway, and most quiet when the car was idle at a stop light.
After detailed analysis, we determined the SUV represented the mid-range
noise conditions (noise levels were high for compact cars and low for pickup
trucks).

Next, Phase II speech collection was performed. Since the speaker is
experiencing some level of stress by performing the task of driving the
vehicle, this should be included in the speaker modeling phase. While
Lombard effect can be employed, local state and federal laws in the United
States limit the ability to allow subjects in this data collection to operate the
vehicle and read prompts from a display. We therefore have subjects seated in
the passenger seat, with prompts given on a small flat panel display attached
to the dashboard to encourage subjects to stay focused on the roadway ahead.
Speech data collection was performed across 6 U.S. cities that reflect regional
dialects. These cities were selected to be mid-size cities, in order to increase
the prospects of obtaining subjects who are native to that region. A balance
across gender and age brackets was also maintained. The driver performed a
fixed route similar to what was done for Phase I data collection so that a
complete combination of driving conditions (city, highway, traffic noise, etc.)
was included. The format of the data collection consists of five domains with
four Structured Text Prompt sections and one Wizard-of-Oz (WOZ) dialog
section:

Navigation Phrases: collection of phrases useful for In-Vehicle navigation
interaction [prompts are fixed for all speakers]. Examples include: “Where is
the closest gas station?”” “How do I get to 1352 Pine Street?” “Which exit do I
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take?” “Is it a right or left turn?” “How do I get to the airport?” “I’m lost.
Help me.”

Digit Sequences: each speaker produced 16 digit strings from a
randomized 75 digital string set. Examples include: telephone numbers (425-
952-5400), random credit card numbers (1234-5621-1253-5981), and
individual numbers (0,0,#86, *551).

Say and Spell Addresses: a randomized set of 20 strings of
words/addresses were produced, with street names spelled. Some street names
are used for all cities, some were drawn from local city maps. Examples
include: Park Place, Ivy Circle, 3215 Marine Street, 902 Olympic Boulevard.

Phonetically Balanced Sentences: each speaker produced a collection of
between 20-30 phonetically balanced from a set of 2500 sentences [prompts
are randomized]. Examples include: “This was easy for us.” “Jane may earn
more money by working hard.”

Dialog Wizard - of - Oz Collection: each speaker from the field called an
on-line navigation system at CSLR, where a human wizard-of-oz like (WOZ)
operator would guide the caller through three different navigation routes
determined for that city. More than 100 potential destinations were previously
established for each city between the driver and WOZ human operator, where
detailed route information was stored for the operator to refer to while the
caller was on the in-vehicle cell-phone. The list of establishments for that
city were points of interest, restaurants, major intersections, etc. (e.g., “How
do I get to the closest police station?”, “How do I get to the Hello Deli?”).
The user calls using a modified cell-phone in the car, that allows for data
collection using one of the digital channels from our recorder. The dialog was
also recorded at CSLR where the WOZ operator was interacting with the field
subject.

The 500 speaker corpus was fully transcribed, labeled, spell checked,
beamformed/processed and organized for distribution. The un-processed
version contains well over 600GB of data, and the processed version consists
of a hard-disk release of approximately 200GB. Figure 2-3 shows the age
distribution of the CU-Move corpus (further details presented in [26,27]).
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Figure 2-2. (a) Analysis of average power spectral density for low (0-1.5kHz) and high (1.5-
4.0kHz) frequency bands for 14 car noise conditions from Phase-I data collection. Overall
average noise level is also shown. (b) Photos show corpus collection setup: constructed
microphone array (using Knowles microphones), array and reference microphone placement,
constructed multi-channel DAT recorder (Fostex) with channel dependent level control and
DC-to-AC converter.
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In addition, a number of cross-transcriber reliability evaluations have been
completed on the CU-Move corpus. Three transcribers were on the average,
in agreement the majority of the time for parts 1-4 (prompts), with a 1.8%
substitution rate when comparing transcriber hypotheses two at a time. When
we consider the spontaneous route navigation WOZ part, transcriber files
naturally had a higher difference, with a substitution rate of 3.0%. These
numbers will depend on the clarity and articulation characteristics of the
speakers across the six CU-Move dialect regions.

4. IN-VEHICLE SUB-SYSTEM FORMULATION

In this section, we discuss the formulation of our microphone array
processing front-end, environmental sniffing, robust speech recognition
system, and proto-type dialogue system.

d,(n) d(n) + Output yin}
X,in) O— <.
‘\
.
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v "\
® > o
leg? Xm O
5
Xim) O
Speech Adaplive Beamforming MNoise Adaplive Beamforming
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> Constraint
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Figure 2-4. Flow diagram of the Proposed Constrained Switched Adaptive Beamforming (CSA
-BF) algorithm.
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4.1 Constrained Switched Adaptive Array-Processing
(CSA-BF)

The proposed CSA-BF array processing algorithm consists of four parts: a
constraint section (CS), a speech adaptive beamformer (SA-BF), a noise
adaptive beamformer (NA-BF) and a switch. Figure 2-4 shows the detailed
structure of CSA-BF, for a 5-microphone array. The CS is designed to
identify potential speech and noise locations. If a speech source is detected,
the switch will activate SA-BF to adjust the beam pattern and enhance the
desired speech. At the same time, NA-BF is disabled to avoid speech leakage.
If however, a noise source is detected, the switch will activate NA-BF to
adjust the beam pattern for noise and switch off SA-BF processing to avoid
the speech beam pattern from being altered by the noise. The combination of
SA-BF and NA-BF processing results in a framework that achieves noise
cancellation for interference in both time and spatial orientation. Next, we
consider each processing stage of the proposed CSA-BF scheme.

4.1.1 Constraint Section

Many source localization methods have been considered in the past with
effective performance for large microphone arrays in conference rooms or
large auditoriums. Their ability to perform well in changing noisy car
conditions has not been documented to the same degree, but is expected to be
poor. Here, we propose three practical constraints that can be used to separate
speech and noise sources with high accuracy.

e C(Criterion 1 (Maximum averaged energy): Since speech coming from the
driver’s direction will have on average the highest intensity of all sources
present, therefore, we calculate the averaged signal TEO energy [18]
frame by frame, and if this energy is greater than some threshold (Please
refer to [19] for the details, we take the current signal frame as speech
candidate.

e Criterion 2 (LMS adaptive filter): In order to separate the front-seat driver
and passenger, we choose the adaptive LMS filter method and incorporate
the geometric structure of the microphone array to locate the source.

e (Criterion 3 (Bump noise detector) This final criterion is set to avoid
instability in the filtering process which is affected by impulsive noise
with high-energy content, such as road impulse/bump noise.
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Finally, we note that the signal is labeled as speech if and only if all three
criteria are satisfied.

4.1.2 Speech Adaptive Beamformer (SA-BF)

The function of SA-BF is to form an appropriate beam pattern to enhance
the speech signal. Since adaptive filters are used to perform the beam
steering, we can change beam pattern with a movement of the source. The
degree of adaptation steering speed is decided by the convergence behavior of
the adaptive filters. In our implementation, we select microphone 1 as the
primary microphone, and build an adaptive filter between it and each of the
other four microphones. These filters compensate for the different transfer
functions between the speaker and the microphone array. A normalized LMS
algorithm updates the filter coefficients only when the current signal is
detected as speech. There are two kinds of output from the SA-BF: namely
the enhanced speech d(n) and noise signal e,(n), which are given as follows,

LORRHUGEND 0
e, (n)= wlrl(n)xl(n)—wlri(n)xi(n) (2)

w,(n+l)=w;(n)+ e, (n)x,(n) (3)

2
x! (n)x,(n)

for channels i=2,3,4,5, where w, (n) is a fixed filter.

4.1.3 Noise Adaptive Beamformer (NA-BF)

The NA-BF processor operates in a scheme like a multiple noise canceller,
in which both the reference speech signal of the noise canceller and the
speech free noise references are provided by the output of the SA-BF. Since
the filter coefficients W,; are updated only when the current signal is
detected as noise, they form a beam that is directed towards the noise, thus the
reason to name it a noise adaptive beamformer (NA-BF). The output response
is given as,
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y(n)=d (n)w; (n)— Zw;‘ (n)e,;(n) 4

Wy (n+l)=wy(n)+ e (n)d(n) ©)

K
eITi (n)eli (n)
for microphone channels i=2,3,4,5.

414 Experimental Evaluation

In order to evaluate the performance of the CSA-BF algorithms in noisy
car environments, we process all available speakers in Release 1.1a
[21,26,27] of the CU-Move corpus using both CSA-BF and DASB
algorithms, and compared the results. This release consists of 153 speakers, of
which 117 were from the Minneapolis, MN area. We selected 67 of these
speakers that include 28 males and 39 females, which reflects 8 hours of data.
In order to compare the result of CSA-BF with that of DASB thoroughly, we
also investigated the enhanced speech output from SA-BF. For evaluation, we
consider two different performance measures using CU-Move data. One
measure is the Segmental Signal-to-Noise Ratio (SegSNR) [22] which
represents a noise reduction criterion for voice communications. The second
performance measure is Word Error Rate (WER) reduction, which reflects
benefits for speech recognition applications. The Sonic Recognizer [23,25] is
used to investigate speech recognition performance. During the recognizer
evaluation, we used 49 speakers (23 male, 26 female) as the training set, and
18 speakers (13 male, 5 female) as the test set.

Table 2-1 summarizes average SegSNR improvement, average WER,
CORR (word correct rate), SUB (Word Substitution Rate), DEL (Word
Deletion Rate) and INS (Word Insertion Rate). Here, the task was on the
digits portion of CU-Move corpus (further details are presented in [19]).
Figure 2-5 illustrates average SegSNR improvement and WER speech
recognition performance results. The average SegSNR results are indicated by
the bars using the left-side vertical scale (dB), and the WER improvement is
the solid line using the right-side scale (%).
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Method | +n3 | DASB | SA-BF | CSA-BF
Measure

Ave. (dB)

SCESNR 9.35 10.24 10.51 14.79
WER (%) 14.8 11.9 12 11
SUB (%) 7.9 6.8 6.6 6.2
DEL (%) 4.3 2.5 2.8 S
INS (%) 2.5 2.6 2:5 2.4
CORR (%) 87.7 90.7 90.5 91.3

Table 2-1. Average SegSNR (segmental signal-to-noise ratio), WER (word-error-rate), CORR
(word correct rate), SUB (word substitution rate), DEL (word deletion rate) and INS (word
insertion rate) for Reference Channel 3 Microphone (chan3) and three Array/Beamforming
Scenarios: DASB (delay-and-sum beamforming), SA-BF (speech adaptive beamforming),
CSA-BF (constrained switched adaptive beamforming).
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Figure 2-5. SEGSNR and WER Results for Reference Channel 3 Microphone (Chan3) and
Array Processing/Beamforming Scenarios using 67 speakers from the CU-Move Corpus. Bar
graph represents SegSNR in dB (using the left side scale), and line plot represents Avg. word
error rate improvement (in %) (using the right side scale).
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From these results (Table 2-1, Figure 2-5), we draw the following points:

1. Employing delay-and-sum beamforming (DASB) or the proposed speech
adaptive beamforming (SA-BF), increases SegSNR slightly, but some
variability exists across speakers. These two methods are able to improve
WER for speech recognition by more than 19%.

2. There is a measurable increase in SegSNR and a decrease in WER when
noise cancellation processing is activated (CSA-BF). With CSA-BF,
SegSNR improvement is +5.5dB on the average, and also provides a
relative WER improvement of 26%.

4.2 Environmental Sniffing

In this section we discuss our novel framework for extracting knowledge
concerning environmental noise from an input audio sequence and organizing
this knowledge for use by other speech systems. To date, most approaches
dealing with environmental noise in speech systems are based on assumptions
concerning the noise, or differences in collecting and training on a specific
noise condition, rather than exploring the nature of the noise. We are
interested in constructing a new speech framework which we have entitled
Environmental Sniffing to detect, classify and track acoustic environmental
conditions in the car environment (Figure 2-6, see [24,32]). The first goal of
the framework is to seek out detailed information about the environmental
characteristics instead of just detecting environmental changes. The second
goal is to organize this knowledge in an effective manner to allow smart
decisions to direct other speech systems. Our framework uses a number of
speech processing modules including the Teager Energy Operator (TEO) and
a hybrid algorithm with T>-BIC segmentation, noise language modeling and
broad class monophone recognition in noise knowledge estimation. We
define a new information criterion, Critical Performance Rate (CPR), that
incorporates the impact of noise into Environmental Sniffing performance by
weighting the rate of each error type with a normalized cost function. We use
an in-vehicle speech and noise environment as a test platform for our
evaluations and investigate the integration of Environmental Sniffing into an
Automatic Speech Recognition (ASR) engine in this environment.
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We evaluate the performance of our framework using an in-vehicle noise
database of 3 hours collected in 6 experimental runs using the same route and
the same vehicle on different days and hours. Fifteen noise classes are
transcribed during the data collection by a transcriber sitting in the car. The
time tags are generated instantly by the transcriber. After data collection,
some noise conditions are grouped together, resulting in 8 acoustically
distinguishable noise classes.
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Figure 2-6. Flow Diagram for In-Vehicle Environmental Sniffing

We identified the following primary noise conditions of interest: (N1- idle
noise consisting of the engine running with no movement and windows
closed, N2- city driving without traffic and windows closed, N3- city driving
with traffic and windows closed, N4- highway driving with windows closed,
N5-highway driving with windows 2 inches open, N6- highway driving with
windows half-way down, N7- windows 2 inches open in city traffic, NX-
others), which are considered as long term acoustic environmental conditions.
Other acoustic conditions (idle position with air-conditioning on, etc.) are
matched to these primary classes having the closest acoustic characteristic.

Since the Environmental Sniffing framework is not a speech system itself,
and must work with other speech systems, noise knowledge detection
performance for each noise type should be calculated by weighting each
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classification error type by a term which is conditioned on the importance that
error type plays in the subsequent speech application employing
Environmental Sniffing. In [32], we specialized the formulation of CPR to a
specific case where Environmental Sniffing framework is used for model
selection within an ASR system. The Environmental Sniffing framework
determines the initial acoustic model to be used according to the
environmental knowledge it extracts. The knowledge in this context, will
consist of the acoustic condition types with time tags. For this task, we can
formulate the Critical Performance Rate as:

CPR =1-diag{C-&"}-a", (6)

where &' denotes the transposed error matrix for noise classification, and C is
the normalized cost matrix. Since some noise conditions occur more
frequently than others, each noise condition will have an a priori probability
denoted as a. Each cost value is proportional with WER difference between
the matched case and the mismatched case, which is the performance
deviation of the ASR engine by using the wrong acoustic model during
decoding instead of using the correct acoustic model. The goal, in terms of
performance, is to optimize the critical performance rate rather than
optimizing the environmental noise classification performance rate, since it is
more important to detect and classify noise conditions that have a more
significant impact on ASR performance.

In our evaluations, we degraded the TI-DIGIT database at random SNR
values ranging from -5 dB to +5 dB (i.e., -5,-3,-1,+1,+3,+5 dB SNR) with 8
different in-vehicle noise conditions using the noise database from [24]. A
2.5-hour noise data set was used to degrade the training set of 4000
utterances, and the 0.5 hour set was used to degrade the test set of 500
utterances (i.e., open noise degrading condition). Each digit utterance was
degraded with only one acoustic noise condition.

Using the sniffing framework presented in Figure 2-6, each utterance was
assigned to an acoustic condition. Using the fact that there was only one
acoustic condition within each utterance, the Environmental Sniffing
framework did not allow noise transitions within an utterance. A noise
classification rate of 82% was obtained. Environmental condition specific
acoustic models were trained and used during recognition tests. The Cost
matrix C is calculated by testing different acoustic conditions using different
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acoustic models. The overall critical performance rate (CPR from Eq. (6))
was calculated as 92.1%

Having established the environmental sniffer, and normalized cost matrix
for directing ASR model selection, we now turn to ASR system evaluation.
We tested and compared the following 3 system configurations: S1-model
matching was done using a priori knowledge of the acoustic noise condition
(i.e., establish theoretical best performance — matched noise conditions), S2-
model matching was done based on the environmental acoustic knowledge
extracted from Environmental Sniffing, S3-all acoustic condition dependent
models were used in a parallel multi-recognizer structure (e.g., ROVER)
without using any noise knowledge and the recognizer hypothesis with the
highest path score was selected.
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Figure 2-7. Word Error Rates for Digit Recognition Tests: S1 — matched noise model case, S2
—environmental sniffing model selection (1 CPU for sniffing, 1 CPU for ASR), S3 (ROVER) -
employs up to 9 recognizers (i.e., CPUs) trained for each noise condition with ROVER
selection.
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As Figure 2-7 shows, system S1 achieved the lowest WER (i.e., 3.01%)
since the models were matched perfectly to the acoustic condition during
decoding. The WER for S2 was 3.2% using 2 CPU’s (1 CPU for digit
recognition, 1 CPU for sniffing acoustic conditions), which was close to the
expected value of 3.23% (Note: in Figure 2-7, we plot system S2 with 2
CPU’s even though only 1 ASR engine was used). S3 achieved a WER of
3.6% by using 8 CPU’s. When we compare S2 and S3, we see that a relative
11.1% WER improvement was achieved, while requiring a relative 75%
reduction in CPU resources. These results confirm the advantage of using
Environmental Sniffing over an ASR ROVER paradigm.

There are two critical points to consider when integrating Environmental
Sniffing into a speech task. First, and the most important, is to set up a
configuration such as S1 where prior noise knowledge can be fully used to
yield the lowest WER (i.e., matched noise scenario). This will require an
understanding of the sources of errors and finding specific solutions assuming
that there is prior acoustic knowledge. For example, knowing which speech
enhancement scheme or model adaptation scheme is best for a specific
acoustic condition is required. Secondly, a reliable cost matrix should be
provided to the Environmental Sniffing so the subsequent speech task can
calculate the expected performance in making an informed adjustment in the
trade-off between performance and computation. For our experiments, we
considered evaluation results for Environmental Sniffing where it is employed
to find the highest possible acoustic condition so that the correct acoustic
dependent model could be used. This is most appropriate for the goal of
determining a single solution for the speech task problem at hand. If the
expected performance for the system employing Environmental Sniffing is
lower than the performance of a ROVER system, it may be useful to find the
n most probable acoustic condition types among N acoustic conditions. In the
worst case, the acoustic condition knowledge extracted from Environmental
Sniffing could be ignored and the system will reduce to the traditional
ROVER solution. The goal therefore in this section has been to emphasize
that direct estimation of environmental conditions should provide important
information to tailor a more effective solution to robust speech recognition
systems.
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4.3 Robust Speech Recognition

The CU-Move system incorporates a number of advances in robust speech
recognition including a new more robust acoustic feature representation and
built-in speaker normalization. Here, we report results from evaluations using
CU-Move Release 1.1 A data from the extended digits part aimed at phone
dialing applications.

Capturing the vocal tract transfer function (VITF) from the speech signal
while eliminating other extraneous information, such as speaker dependent
characteristics and pitch harmonics, is a key requirement for robust and
accurate speech recognition [33, 34]. The vocal tract transfer function is
mainly encoded in the short-term spectral envelope [35]. Traditional MFCCs
use the gross spectrum obtained as the output of a non-linearly spaced
filterbank to represent the spectral envelope. While this approach is good for
unvoiced sounds, there is a substantial mismatch for voiced and mixed sounds
[34]. For voiced speech, the formant frequencies are biased towards strong
harmonics and their bandwidths are misestimated [34,35]. MFCCs are known
to be fragile in noisy conditions, requiring additional compensation for
acceptable performance in realistic environments [45,28].

Minimum Variance Distortionless Response (MVDR) spectrum has a long
history in signal processing but recently applied successfully to speech
modeling [36]. It has many desired characteristics for a spectral envelope
estimation method, most important being the fact it estimates the spectral
powers accurately at the perceptually important harmonics, thereby providing
an upper envelope which has strong implications for robustness in additive
noise. Since the upper envelope relies on the high-energy portions of the
spectrum, it will not be affected substantially by additive noise. Therefore,
using MVDR for spectral envelope estimation for robust speech recognition is
feasible and useful [37].

4.3.1 MYVDR Spectral Envelope Estimation:

For details of MVDR spectrum estimation and its previous uses for speech
parameterization, we refer the reader to [36,37,38,39,40]. In the MVDR
spectrum estimation, the signal power at a frequency, w;, is determined by
filtering the signal by a specially designed FIR filter, h(n), and measuring the
power at its output. The FIR filter, h(n), is designed to minimize its output
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power subject to the constraint that its response at the frequency of interest,
®y, has unity gain. This constrained optimization is a key aspect of the MVDR
method that allows it to provide a lower bias with a smaller filter length than
the Periodogram method [41]. The Mth order MVDR spectrum can be
parametrically written as;

1 1

M = 12
> utkye  |BE™)
k=~-M

Py (o) = (7N

The parameters, f(k), can be obtained using the linear prediction (LP)
coefficients, ax, and the prediction error variance P [41].

M-k
o %—Z(MH—k—Zi)a,.a;k, k=0,..M ®
- e i=0
u‘(—k) k = ‘—‘M,...,_l

4.3.2 Direct Warping of FFT Spectrum

The aim of using a non-linearly spaced filterbank is to remove the
harmonic information that exists in voiced speech and smooth out the
spectrum. MVDR, on the other hand, can handle voiced speech by accurately
modeling spectral powers at the perceptually important harmonics. Therefore,
it is both useful and safe to remove the filterbank structure and incorporate the
perceptual considerations by directly warping the FFT spectrum. The warping
can be incorporated via a first order all pass system [42]. In fact, both Mel and
Bark scales can be implemented by changing only one system parameter, d.
We use the phase response of the first order system in Eq. (9) as the warping
function given in Eq. (10),
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where a determines the degree of warping. For 16kHz sampled signals,
a=0.42 and a=0.55 approximates the Mel and Bark scales, respectively.

4.3.3 PMVDR Algorithm
We can summarize the PMVDR algorithm as follows [37];

e Step 1: Obtain the perceptually warped FFT power spectrum,

e Step 2: Compute the “perceptual autocorrelations” by using IFFT on the
warped spectrum,

e Step 3: Perform an Mth order LP analysis via Levinson-Durbin recursion
using perceptual autocorrelation lags [41],

e Step 4: Calculate the Mth order MVDR spectrum using Eq. (7) from LP
coefficients [36],

e Step 5: Obtain Cepstrum coefficients using the straightforward FFT-based
approach [43].

A flow diagram for the PMVDR algorithm is given in Figure 2-8. The
algorithm is integrated into the CU-Move recognizer as the default acoustic
feature front-end, (further information and code can be obtained from the CU-
Move web site [27]).
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Figure 2-8. Flow Diagram ofthe PMVDR acoustic feature front-end
434 Experimental Evaluation

We evaluate the performance of PMVDR on the CU-Move extended digit
task [27,28,37] using our SONIC [23,25] LVCSR system. Sonic incorporates
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speaker adaptation and normalization methods such as Maximum Likelihood
Linear Regression (MLLR), Vocal Tract Length Normalization (VTLN), and
cepstral mean & variance normalization. In addition advanced language-
modeling strategies such as concept language models are also incorporated
into the toolkit.

The training set includes 60 speakers balanced by age and gender, whereas
the test set employs 50 speakers which again are age and gender-balanced.
The word error rates (WER) and relative improvements of PMVDR with
respect to MFCC are summarized in Table 2-2.

Gender/Sys. MFCC PMVDR Rel. Imp [%] |
Female 9.16 5.57 39.2

Male 13.22 8.76 33.7
Overall 11.12 7.11 36.1%

Table 2-2. WERs[%] and relative improvements for CU-Move task

The optimal settings for this task were found to be M = 24 and « = 0.57
(close to the Bark scale). The 36.1% reduction in error rate using PMVDR
features is a strong indicator of the robustness of these features in realistic
noisy environments. We tested these features on a number of other tasks
including clean, telephone and stressed speech and consistently obtain better
results than that for MFCCs. Therefore, we conclude that PMVDR is a better
acoustic front-end than MFCC for ASR in car environments.

4.3.5 Integration of Vocal Tract Length Normalization (VTLN)

VTLN is a well-known method of speaker normalization in which a
customized linear warping function in the form of f = ff in frequency
domain is used for each speaker [43]. The normalization factor, f3, is a
number which is generally less than 1.0 for female speakers and more than
1.0 for male speakers to account for different average vocal tract lengths. The
normalization factor is determined by an exhaustive search as the one
maximizing the total likelihood of a speaker’s data using specifically trained
models containing only 1 Gaussian for each phoneme cluster for a decision-
tree state clustered HMM setting. The VTLN integrated with PMVDR
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requires two consecutive warpings; one for VITLN and one for incorporation
of perceptual considerations.

Gender/Sys. | No VTLN VTLN BISN
Female 3.57 4.08 4.25
Male 8.76 7.17 7.10
Overall 7.11 5.57 5.62

Table 2-3. WERs [%)] for Speaker normalization performance on CU-Move Corpus

In the PMVDR formulation, we used a first order system to perform
perceptual warping. This warping function can also be used for speaker
normalization in which the system parameter is adjusted to each speaker [44].
Rather than performing two consecutive warpings, we could simply change
the degree of warping, (i.e., a), specifically for every speaker. This will
enable us to perform both VTLN and perceptual warping using a single warp.
The estimation of the VTLN-normalizing a can be done the same way as f.
Such an integration of VTLN into the PMVDR framework yields an acoustic
front-end with built-in speaker normalization (BISN). Table 2-3 summarizes
our results with the conventional VTLN and BISN in the PMVDR
framework.

The BISN yields comparable results to VILN with a less complex front-
end structure hence is an applicable speaker normalization method in ASR.
The total WER reduction compared to the MFCC baseline is around 50%
using PMVDR with BISN. The average warping factor for females was
=0.55 and for males a,,=0.59. Females require less warping than males due
to shorter vocal tract length which conforms to VTLN literature.

Finally, experiments here were conducted on raw speech obtained from
one microphone in our array. Using array processing techniques discussed in
Sec. 4.1 and integrating the noise information obtained using techniques
discusses in Sec. 4.2 will boost performance considerably when used in
cascade with the robust acoustic front-end (PMVDR) and built-in speaker
normalization (BISN). It is also possible and feasible to apply noise
adaptation techniques such as Jacobian adaptation and speaker adaptation
techniques such as MLLR to further improve performance[28]. Front-end
speech enhancement schemes before acoustic feature extraction was also
found to be useful in improving performance [28].
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4.4 Proto-type Navigation Dialogue

Finally, we have developed a prototype dialog system for data collection
in the car environment [46]. The dialog system is based on the DARPA
Galaxy Communicator architecture [47,49] with base system components
derived from the CU Communicator system [1,17]. Users interacting with the
dialog system can enter their origin and destination address by voice.
Currently, 1107 street names for Boulder, Colorado area are modeled. The
dialog system automatically retrieves the driving instructions from the
internet using an online WWW route direction provider. Once downloaded,
the driving directions are queried locally from an SQL database. During
interaction, users mark their location on the route by providing spoken
odometer readings. Odometer readings are needed since GPS information has
not yet been integrated into the prototype dialog system. Given the odometer
reading of the vehicle as an estimate of position, route information such as
turn descriptions, distances, and summaries can be queried during travel (e.g.,
“What’s my next turn”, “How far is it”, etc.).

The system uses the University of Colorado SONIC [23,25,48] speech
recognizer along with the Phoenix Parser[1] for speech recognition and
semantic parsing. The dialog manager is mixed-initiative and event driven
[1,17]. For route guidance, the natural language generator formats the driving
instructions before presentation to the user by the text-to-speech (TTS) server.
For example, the direction, “Park Ave W. becomes 22nd St.” is reformatted
to, “Park Avenue West becomes Twenty Second Street”. Here, knowledge of
the task-domain can be used to significantly improve the quality of the output
text. The TTS system is based on variable-unit concatenation of synthesis
units. While words and phrases are typically concatenated to produce natural
sounding speech, the system can back off to smaller units such as phonemes
to produce unseen words.

S. DISCUSSION

In this study, we have considered the problem of formulating an in-vehicle
speech dialogue system for route navigation and planning. We discussed a
flow diagram for our proposed system, CU-Move, and presented results from
several sub-tasks including development of our microphone array CSA-BF
processing scheme, environmental sniffing, speech enhancement processing,
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robust PMVDR features with built-in vocal tract length normalization, and a
proto-type dialogue interface via the WWW. We also discussed our speech
data corpus development based on Phase I: In-Vehicle Acoustic Noise
measurements and Phase II: speech/speaker dialogue collection. Clearly, a
number of challenges exist in the development and integration of a natural
interactive system in such diverse and changing acoustic conditions. We
believe that the processing tasks and results presented reflect useful steps in
both the formulation of the CU-Move speech system, as well as contributing
to a better scientific understanding of how to formulate dialogue systems in
such adverse conditions. Finally, while the prospect of natural hands-free
dialog within car environments is a challenging task, we feel that true
fundamental advances will only occur if each of the processing phases are
capable of sharing knowledge and leveraging their individual contributions to
achieve a reliable overall working system.
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Abstract:

Keywords:

Spoken corpora provide a critical resource for research, development and
evaluation of spoken dialog systems. This chapter describes the spoken dialog
corpus used in the design of CAMMIA (Conversational Agent for Multimedia
Mobile Information Access), which employs a novel dialog management
system that allows users to switch dialog tasks in a flexible manner. The corpus
for car telematics services was collected from 137 male and 113 female
speakers. The age distribution of speakers is balanced in the five age brackets of
20’s, 30’s, 40’s, 50’s, and 60’s. Analysis of the gathered dialogs reveals that the
average number of dialog tasks per speaker was 8.1. The three most frequently-
requested types of information in the corpus were traffic information, tourist
attraction information, and restaurant information. Analysis of speaker
utterances shows that the implied vocabulary size is approximately 5,000
words. The results are used for development and evaluation of automatic
speech recognition (ASR) and dialog management software.

Spoken Dialog Corpus, Telematics, Speech Recognition, Dialog Tasks.
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1. INTRODUCTION

The term telematics refers to the emerging industry of communication,
information, and entertainment services delivered to motor vehicles via
wireless network technology. A telematics system must provide a human-
machine interface (HMI) that allows drivers to operate the device, system or
service easily and without any risks regarding traffic safety. A spoken dialog
system is considered to be the most suitable HMI for telematics, since it
allows the driver to keep “hands on the wheel, eyes on the road”.

The Conversational Agent for Multimedia Mobile Information Access
(CAMMIA) provides a framework for client-server implementation of spoken
dialog systems in mobile, hands-free environments[1][5]. The goal of
CAMMIA is to realize large-scale speech dialog systems that can handle a
variety of information retrieval tasks. CAMMIA is based on VoiceXML, a
markup language for speech dialog systems which has been proposed as a
standard by W3C [7]. The client is an in-vehicle terminal with an automatic
speech recognition (ASR) system, a VoiceXML interpreter, and a text-to-
speech (TTS) system; the server is a separate computer which runs a Dialog
Manager (DM) module [5]. The client recognizes the driver’s utterances
according to the VoiceXML dialog scenarios, and transmits the recognition
results in the form of requests to the server. The server then searches its
database and transforms the search results into VoiceXML files which are
transmitted to the client as a response.

One novel aspect of CAMMIA is the natural conversational interaction
between the user and the system, supported by a DM module that allows the
user to change dialog tasks flexibly. Many of the system requirements
associated with natural spoken dialog can be ascertained by studying human
behavior as observed in large collections of spoken or written data.
Specifically, the analysis includes defining a lexicon and grammar for ASR,
as well as designing suitable dialog scenarios for use by the DM.

Human-computer dialog differs from human-human dialog in various
aspects, including linguistic complexity[2]. However, the examination of
human-human dialogs is a natural first step in the process of modeling human
dialog behavior [3]. The modeling approach requires very large quantities of
task-oriented linguistic data. To meet this requirement, we collected a spoken
dialog corpus for car telematics services. In this Chapter, Section 2 outlines
the system architecture of CAMMIA. Section 3 explains the spoken dialog
corpus collection. Section 4 describes the analysis of the corpus, followed by
conclusions.
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2. SYSTEM ARCHITECTURE

Figure 3-1 depicts the current system architecture of CAMMIA, which
consists of in-vehicle terminals and the server which are connected by a
wireless network. The client consists of an ASR, a VoiceXML interpreter,
and a TTS, whereas the server consists of a DM, a database, and a set of
dialog scenarios. The DM makes a VoiceXML text according to a dialog task
using a Dialog Scenario database and delivers it to an in-vehicle terminal. In
the in-vehicle terminal, the VoiceXML interpreter receives the VoiceXML
text and real dialog interactions between a used and the system can be carried
over. A spoken dialog corpus was used to evaluate the lexicon and grammar
of ASR and suitable dialog scenarios that represent particular dialog tasks
such as traffic information. The corpus was also used to evaluate the system’s
coverage of different dialog tasks; these evaluations are discussed in Section 5.

In-vehicle Ter minal/Client Center/Server
Pro mp} Internet
44— TTS HVoice XML DM
Utteranc Interpreter Wl
—p{ASR 3
N -~
Task ] Traff
Scenario 4 Di2log e
Lexicon Scenario B
Grammar
Database
Spoken Dial ogCor pus

Figure 3-1. System Architecture of CAMMIA.

3. COLLECTION OF SPOKEN DIALOG CORPUS

The collection of a spoken dialog corpus consists of three steps: speaker
selection, experimental setup, and task configuration. The most difficult and
important thing is to encourage the speakers to interact spontaneously and
effectively. The experimental setup and task configuration have a significant
impact on their ability to do so. This section focuses on the experimental
setup and task configuration which was employed.
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Figure 3-2. Collection timeline of spoken dialog corpus.

3.1 Speaker Selection and Collection Timeline for the
Spoken Dialog Corpus

The nature of the dialog task and the lexicon and grammar which describe
a speaker’s utterances vary significantly according to the gender and age of
the speaker. Therefore, it is desirable to balance the gender and age range of
the speakers in the set of experimental subjects. We collected the spoken
dialog corpus from 250 speakers, consisting of 137 males and 113 females.
The age distribution of speakers was also balanced in the five age brackets of
20’s, 30’s, 40’s, 50’s, and 60’s years old. All were residents of the Tokyo
Metropolitan Area and 235 of them held driver’s licenses; fifty of the subjects
had prior experience with car navigation systems.

We divided the 250 speakers into five groups, G1 to G5, consisting of
approximately 50 speakers per group. The spoken dialog corpus was collected
from G1 to G35, in order, according to the timeline depicted in Figure 3-2. The
numbers of speakers in G1 to G5 are also shown under the arrows in the
figure. The number of speakers in each group differed because it was
necessary to arrange the data collection according to the individual schedules
of the subjects. After collecting data from each group, we improved the
experimental setup and the task configuration before proceeding with the next
group. The most significant improvements were introduced after collecting
data from G1. Therefore, in this article we refer to the data collection from G1
as Phase I, and the data collection from G2 through G5 as Phase II. The next
section discusses the difference of the experimental setup and task
configuration between Phase I and II.



3. A Spoken Dialog Corpus for Car Telematics Services 51
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(Driver) |} (Dialog System)

I'm looking for i There are
arestaurant. three
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Recording
Figure 3-3. Experimental setup (Phase I).
3.2 Collection of Spoken Dialog Corpus — Phase 1
3.2.1 The Experimental Setup

The spoken dialog corpus was recorded in a studio in Tokyo. The studio
consisted of two rooms as depicted in Figure 3-3. The left room represented a
car equipped with an in-vehicle terminal, whereas the right room represented
the remote server. In the left room, the speaker assumed the role of driver, and
in the right room, the operator assumed the role of the dialog system. The
speaker and the operator talked to each other using connected microphones
and headsets; the two rooms were completely separated so that no nonverbal
interactions took place between speaker and operator. The dialogs that took
place between the speaker and the operator were recorded on audiotape. The
operator answered queries from the speaker by acting as a travel agent with
access to the following information:

Real-time traffic information

Restaurant information

Sightseeing information

Hotel and ryokan (Japanese inn) information

In order to support task-oriented dialogs including detailed tourist
information, the operator role required expertise in travel information in
addition to the ability to speak correct Japanese. To meet these requirements,
we employed a professional female announcer with prior job experience in a
travel agency to act in the role of operator.
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Figure 3-4. Sightseeing areas employed in the task (Phase I and II).

3.2.2 The Task and Instructions

A preliminary survey of 302 drivers indicated that the three most desirable
types of driving information are traffic information, restaurant information,
and sightseeing information. As a result, data was gathered for three
predefined dialog tasks:

Task 1: Obtain route guidance to a particular destination.
Task 2: Find a restaurant for lunch.
Task 3: Find tourist attractions to visit after lunch.

The speaker was instructed to pretend that he/she was in a car equipped
with an in-vehicle terminal, traveling on an overnight trip to one of two
sightseeing areas outside Tokyo. The number of possible destinations was
limited to two because it was difficult for the operator to prepare sufficient
driving information for multiple sightseeing destinations in advance. The
chosen destinations were chosen to be sufficiently popular to motivate the
speakers to generate ample questions. In addition, the destinations were
chosen to be not too far from Tokyo (destinations that are far from Tokyo
require use of expressways, which renders route guidance less useful).

Keeping these constraints in mind, we selected Hakone and Izu as the
possible tourist destinations (see Figure 3-4). Both of these sightseeing areas
have many hot springs and tourist attractions, and are very popular to
residents in the Tokyo Metropolitan Area. There are several ways to reach
each of these areas from Tokyo.
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The speaker was instructed to talk with the operator and obtain appropriate
driving information for Tasks 1 through 3 listed above. Each task was printed
in a handout, and each speaker utilized this handout during dialogs with the
operator.

33 Collection of Spoken Dialog Corpus — Phase 11

This section describes the improvements we introduced to the collection
of spoken dialog corpus after Phase I.

3.3.1 The Task and Instructions

Phase I collection revealed several problems in the task and instructions.
The first problem stemmed from the use of handouts. The speakers tended to
recite the texts from the handout verbatim when they initiated a dialog. For
example, suppose the handout read “Task 2: You’ve just arrived in Hakone.
Find a restaurant for lunch.” If the operator started the dialog by saying
“Driving information center. May I help you?”, the speaker might respond
with “Uh, I’ve just arrived in Hakone, Please find a restaurant for lunch.”
This phenomenon prevented us from collecting spontaneous speech samples
in some cases.

The second problem was that the predefined tasks did not adequately
encourage the speakers to pretend that they were on a real trip, such that they
failed to generate questions relevant to the tasks. As a result, the operator
sometimes had to halt the conversation and instruct the speakers regarding the
types of questions they could ask to make the dialog more realistic.

To address these initial problems, we divided the remaining 201 speakers
into 40 groups, each of which consisted of five or six speakers. Each group
was instructed to choose Hakone or Izu as their destination, and to discuss a
driving plan for an overnight trip according to their interests. After the
discussion, each speaker generated two sets of dialog tasks, A and B, relevant
to the driving plan. Set A and set B listed the questions to obtain information
required before starting the trip on the first day, and before leaving the hotel
on the second day, respectively (see Figure 3-5). The recording of the dialog
was also divided into two sessions, A and B which corresponded to the first
day and the second day, respectively.

In addition, we found that it was necessary to provide the speaker with
additional details for the task, such as the date of the trip and the travel
expense limit. Road congestion was varied based on a distinction between
weekday and weekend travel, and the operator altered the route guidance
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accordingly. The specified dtravel expense limit forced the speaker to
construct a reasonable travel plan. In order to avoid the previously mentioned
problems associated with providing these details on a text handout, we used
concrete physical objects to represent the travel details. For example, a
calendar with a particular day marked was used to indicate the day of the trip,
and a wallet containing banknotes was used to indicate the travel expense
limit.

Home
15t day ﬁ'm R @otel
_—L/\\ =

Before starting Before leaving
the trip the hotel

= 3 A J é;:::J

Discussion of driving plan ~ Task set

Figure 3-5. The task and instructions (Phase II).

Next Speaker Speaker
(Passenger)  (Driver)

I

Figure 3-6. The experimental setup (Phase II).

3.3.2 The Experimental Setup

We also improved the experimental setup following Phase I. In order to let
the next speaker warm up and to ease nervousness, we had the next speaker
sit beside the current speaker and act as a passenger, as depicted in Figure 3-
6. The next speaker can then monitor the conversation between the speaker
and the operator.
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We found that introducing the next speaker first as a passenger had an
additional effect of eliciting additional questions from the current speaker; for
example:

a) The next speaker nudged the current speaker when the current speaker
forgot to ask a pertinent question;

b) When the operator paused the dialog to search for requested information,
the current speaker and the next speaker conferred regarding what to ask
next, as shown in Figure 3-7.

These improvements helped the current speaker to generate appropriate
questions more easily. The operator commented that the speakers in Phase II
were more proactive than Phase I. Analysis of the corpus revealed that the
initial 49 speakers in Phase I required 68 instruction explanations from the
operator, whereas the following 201 speakers in Phase II required only one
instruction explanation.

Operator: “I'll search the estimated time of arrival to Lake Ashinoko.
Hold on a minute, please.”

Speaker: “Do you think the operator knows the names of the shops?”

Next speaker: “l think she does."”

Operator: “Thank you for waiting. The estimated time of arrival is ..."

Figure 3-7. Example discussion between the current speaker and the next speaker (Phase II).

4. TRANSCRIPTION AND TAGGING OF SPOKEN
DIALOG CORPUS

Each dialogue was transcribed into text by hand from audio tape. Each
dialog was segmented into individual utterances; the prefixes ‘L:” and ‘R:’
were used to label operator and speakers utterances, respectively.

Proper nouns in the text were annotated using the bracketted format {X
name}, where X is one of the 5 letters {A, P, R, S, W} representing tourist
attractions, places, railway facilities, shops/restaurants, and traffic facilities,
respectively. Traffic facilities include the names of roads, entrances/exits of
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expressways, etc. Annotating proper nouns is useful for designing the lexicon
and grammar for ASR. It is also convenient for designing class N-grams used
by the ASR, where proper nouns with the label X form a class X.

Next, we tagged each of the speaker utterances using the labels to
distinguish the type of task to which they belonged. We defined the following
ten task labels:

Introduction
Traffic
Restaurant
Tourist attraction
Shopping

Hotel

Parking

Weather

Facility

General

The ‘Introduction’ label indicates utterances belonging to the introductory
part of the next task, which is typically attested at the beginning of the dialog
and explains the speaker’s intent to the operator.

The ‘Parking’ label indicates utterances belonging to the task of locating
parking lot information. However, we do not label utterances as ‘Parking’
when the speaker is talking about parking lots for other facilities, such as
restaurants and tourist attractions. For example, the utterance ‘Does the
restaurant have a parking lot?” would be labeled as ‘Restaurant’.

The ‘Facility’ label indicates utterances belonging to information about
facilities such as gas stations, ATMs, toilets, etc.

The ‘General’ label indicates utterances that may appear in any type of
task. For example, “Yes.” and “I see.” are labeled as ‘General’.

Figure 8 shows an example of a transcribed text. English translations
appear below the utterances. The annotated proper nouns are “Tokyo Station”
and “Hakone”. The task labels are shown using the notation ‘::<Task label>’.
The dialog starts with the operator utterance “Driving information center, may
I help you?” The speaker desires route guidance from Tokyo Station to
Hakone. The speaker’s second and third utterances are labeled as ‘Traffic’.
Other speaker utterances, ‘Yes.” and ‘Well,...” are labeled as ‘General’.

Figure 3-9 shows examples of utterances labeled as ‘Introduction’. With
these utterances, the speaker explains that she is going to Izu for the first time
before asking about hotel information.



3. A Spoken Dialog Corpus for Car Telematics Services 57

LIIWSAFRIBLE2-TT
Driving information center, may I help you?
RIVLEEA
Well,...
:General
Li13Ly
Yes.
RA —(REFERIHDS
Er, I wold like to go from {R Tokyo Station}
= Traffic
LiZiy
Yes.
RA—{PRIB)ETOITERERATVIIZILLWA TN
er, to {P Hakone}, please give me the route guidance.
:Traffic
LI3W A (WHERBR) DA —(PFIR) T h—
From {W Tokyo Station} to {P Hakone} ?
RiIIy
Yes
. General

Figure 3-8. Example of Transcribed Text.

S. ANALYSIS OF THE SPOKEN DIALOG CORPUS

The spoken dialog corpus plays several roles in the design of CAMMIA:
a) as a reference for creating the ASR grammar; b) as a test suite for testing
the ASR grammar; c) as a resource for lexicon development; d) as a guide for
identifying the highest frequency sentences and words; and e) as a reference
for possible task scenarios.
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LIFVFS 1758 2-TT
Driving irfonmation ceter, may [help you?
RILILEA
Well,
1 Gremeral
L:fdLe
Yes.
RAEPZFEINDS
Er, Iwould like to gofroan {P Futagotanagowa}
:Idrodaction
L:f3Ls
Yes.
RAPFRIDIEFSITTEFHATTIThES
to {P Ima}.
::Idrodaction
Ly
Yes.
RAEMOHTIKOT
Since it ¥ the first time to visit there,
Introduction
e (I
Yes
REIOERMEENHDLILE EAIITEHNATT i
Ivwrould like to stay ina Japanese style hotel with hot spring facilities.
::Hotel

Figure 3-9. Examples of utterances labeled as ‘Introduction’.

The spoken dialog corpus consists of 450 conversations comprising
34,612 operator utterances and 33,773 speaker utterances. As described in
Section 3, we improved the task configuration, instruction and experimental
setup significantly in Phase II. Therefore, we focus on the analysis of the
corpus acquired in Phase II. In this section, we discuss the statistical analysis
of speaker utterances to develop a lexicon for ASR. We also discuss the types
of individual tasks attested in the corpus.
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Tourist
attraction
31%

Figure 3-10. Ratio of vocabulary size of proper nouns.
5.1 Statistics of Speakers Utterances

The number of speakers in Phase II was 201. Six of the speakers
misunderstood the instructions, and the corresponding dialogs were removed
from the corpus. We analyzed the remaining 195 dialogs, which are referred
to as the “spoken dialog corpus of Phase II” in the following discussion. The
corpus consisted of 390 conversations which included 28,334 operator
utterances and 27,509 speaker utterances.

The spoken dialog corpus was segmented into morphemes using
ChaSen[4], a Japanese morphological analyzer. The vocabulary size for
speakers’ utterances was 4,533 words, consisting of 762 proper nouns and
3,771 words other than proper nouns. The set of proper nouns varied
according to the sightseeing area selected. The remaining words were more
general to the overall set of dialog tasks. From these observations, we
concluded that the lexicon for ASR would be approximately 4,000 to 5,000
words to support recognition of speaker utterances for this general family of
tasks.

Figure 3-10 provides a categorization of annotated proper nouns. Four
types of proper nouns (places, tourist attractions, shops and traffic facilities)
comprised about 98% of the proper nouns attested in the corpus.
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5.2 Statistics of Tasks

In Phase I, we specified a sequence of three tasks: 1) traffic; 2) restaurant;
and 3) tourist attraction. In Phase II, we did not specify and ordered set of
tasks. Speakers could switch dialog tasks freely during their interactions with
the operator. This is a less restrictive approach for corpus collection, and a
more varied set of dialog tasks appear in Phase II. Therefore, it is of much
interest to analyze the number and types of dialog tasks as well as the task
transitions attested in the corpus collected from Phase II.

Shopping_ Parking Facility Parking  Weather
0, o,
Weather 2% 0% 2% 1% o

=% Traffic Shopping Tourist
Fracilty 23% 9% attraction
- Traffic 31%
Hotel by
10%
Restaurant htfc;%L;leon
16%
i Reataurant Introduction
Tourist 16% s
attraction
18%
Task set 4 Task set B

Figure 3-11. Task frequency ration in the set A and B.

Analysis of the collected dialogs revealed that the total number of dialog
tasks in Phase II was 1,593, indicating an average number of tasks per speaker
of 8.1. As described in Section 3.3, speakers in Phase II generated two sets of
dialog task sets (A and B) according to their interests. These two sets
corresponded to the task before starting the trip on the first day, and the task
before leaving the hotel on the second day, respectively. The total number of
tasks in sets A and B were 1,002 and 591, respectively, indicating that the
average number of tasks per set per speaker was 5.1 and 3.0, respectively.

Figure 3-11 contains a comparison of the task frequency ratios in the set A
and B. The three most desired types of information in the corpus were traffic
information, tourist attraction information, and restaurant information.
Naturally, the desire for hotel information disappeared in task set B. The most
frequently requested information (task) on the first day was traffic
information. On the other hand, the most frequently requested information on
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the second day was tourist attraction information. This suggests that speakers
are most interested in traffic information before starting a trip, and tourist
attraction information before leaving the hotel, which coincides with the
intuition of most drivers. It is also worthwhile to note that the frequency of
the shopping task increased from 2% to 9% on the second day, since many
speakers were interested in purchasing souvenirs on their way home on the
last day of their trip. Although the spoken dialog corpus was collected in a
studio, these observations support the idea that realistic travel experiences
were reflected in the experimental tasks, thus validating the task setting and
the instructions described in Section 3.

Possibly, the general tasks of type ‘Introduction’ are part of the
fundamental nature of human-human dialog. The ratio of ‘Introduction’
utterances as shown in Figure 3-11 will most likely decline when human-
machine dialog is implemented.

0
37
2
65
42
19
20
3
T
1

Tourist
From\ To Traffic Introduction  attraction Restaurant  Hotel Faciity =~ Weather Shopping Parking </d>
<d> 37 148 4 2 2 2 1 1] 0
Traffic 0 19 43 58 27 41 8 1 1
Introduction 101 '] 28 30 21 8 6 3 0
Tourist attraction 24 5 0 36 20 17 3 6 3
Restaurant 16 13 47 0 20 18 0 1 1
Hotel 20 ] 33 10 0 4 0 5 0
Facility 22 T 19 15 4 1] 2 2 0
Weather 8 1 4 2 1 1 0 0 0
Shopping [ 0 0 4 1 0 0 o o
Parking 1 0 1 1 1 0 1] 0 ]
(a) Task transition frequency of Task 4
Tourist
From\ To attraction IntroductionRestaurant Traffic  Shopping  Facility Parking  Weather </d>
=d= 43 112 16 18 4 0 1 0 0
Tourist attraction 0 8 38 34 15 6 3 1 7
Introduction 72 0 29 19 9 2 1 0 0
Restaurant 29 -] 0 12 19 4 1 1] 41
Traffic 22 3 18 0 4 2 0 0 47
Shopping 6 2 9 11 0 ] 0 0 26
Facility 2 0 1 1 3 0 0 0 7
Parking 2 1 1 1 0 0 0 0 1
Weather 0 0 0 0 0 0 0 0 1

(b) Task transition frequency of Task B.

Table 3-1. Task transition frequency of Phase II.
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Table 3-1 shows the task transition frequencies of Task A and B. The
symbols <d> and </d> indicate the beginning and end of the dialog,
respectively. For instance, the first row of Table 3-1(a) indicates that 148
dialogs of Task A started with an introduction. By following the most
frequent task transitions in Table 3-1 (a), we obtain the task transition <d> -
introduction - traffic - restaurant - tourist attraction - </d>, which suggests
that the typical dialog steps of Task A were: 1) explain to the operator about
the driving plan; 2) ask for traffic information en route to the destination; 3)
ask for restaurant information for lunch; and 4) ask for tourist attraction
information after lunch. On the contrary, the path of the most frequent task
transitions in Table 3-1(b) is <d> - introduction - tourist attraction - </d>,
which does not give us a clear idea of typical dialog steps; this indicates that
the driving plan varies according to the speaker. However, this result
supports the hypothesis that speakers were most interested in tourist
attractions on the second day, as explained above.

The operator sometimes asked the speaker if he/she had any further
questions when the dialog halted. In such cases, the information summarized
in Table 3-1 could be used to suggest a new task to the speaker (to encourage
smooth dialog). For example, the dialog system can suggest the restaurant
task and the traffic task after providing guidance on tourist attractions on the
second day, e.g. “Where would you like to eat lunch?” and “Do you need
traffic information? Traffic congestion is anticipated in the afternoon.”

cc388883

Figure 3-12. Average number of utterances per one task.
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Figure 3-12 illustrates the average number of speaker and operator
utterances per task. The number suggests the complexity of the task. The
greater the number is, the more complex the task is, indicating that the task
has many conditions to consider. For example, the hotel information task has
the following conditions: 1) the location of the hotel; 2) the style of the hotel
(Western or Japanese); 3) the number of persons; 4) the room charge; 5)
facilities; 6) tourist attractions near the hotel; etc. The restaurant task has the
following conditions: 1) the location of the restaurant; 2) the type of food; 3)
price range; 4) acceptability of credit card payments; 5) parking availability;
etc. Mixed initiative dialog scenarios must be introduced to handle these
tasks in a responsive manner, since speakers do not want to answer question
on a one-by-one basis. Narrowing down the conditions to feasible values by
considering the context and the driver‘s preferences is also a necessity. For
example, the operator might narrow the alternatives to two or three by
considering the driving route plan and the locations of the alternatives. The
dialog patterns and tactics selected by the operator in the spoken dialog
corpus are being examined in order to design responsive HMI dialog
scenarios.

6. CONCLUSIONS

A spoken dialog corpus for car telematics services was collected from 137
males and 113 females. Analysis of the spoken dialog corpus revealed that the
vocabulary size for speaker utterances was 4,533 words, consisting of 762
proper nouns and 3,771 words other than proper nouns. The average number
of dialog tasks per speaker was 8.1. The three most requested types of
information in the corpus were traffic information, tourist attraction
information and restaurant information. These results are being used to
develop and evaluate ASR as well as the dialog scenarios used in the
CAMMIA system.

The spoken dialog corpus has several issues which should be addressed in
the development of ASR grammars and the dialog scenario for HMIs:

(1) The operator does not talk like a computer.

¢ The operator uses ambiguous expressions, such as “the route is
congested a little bit heavily”.

¢ The operator does not always state things in a succinct way.

(i1) The speaker does not act like he is talking to a computer
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113 ”

e Many occurrences of filler words such as “eto”, which roughly
corresponds to “ummm” in English, are attested in the corpus; humans
typically do not inject these filler words into their dialogs with an
HMI.

To address these problems, we are planning to use the first prototype
dialog system (based on the human-human spoken dialog corpus) to collect
human-machine dialogs, which will be used to improve the dialog system in
subsequent incremental refinement.
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Abstract:  Currently, most spoken dialogue systems only deal with the interaction between
the system and one speaker. In some situations, interactions may occur between
several speakers and the system. New functions and improvements need to be
made in order to handle a multi-user situation. Studies of the human computer
interaction system that involve multiple users are in their initial stages and any
papers, lectures or studies on the subject are very limited. For these reasons we
are motivated to conduct a further study on multi-speaker dialogue systems. In
this chapter, the interactions between the multiple speakers and the system are
classified into three types: independent, cooperative, and conflicting
interactions. An algorithm for the multi-speaker dialogue management is
proposed to determine the interaction type, and to keep the interaction going
smoothly. The experimental results show that the proposed algorithm can
properly handle the interaction that occurs in a multi-speaker dialogue system,
and provides useful vehicular information to the speakers.

Keywords: multi-speaker dialogue, mobile, vehicular information, dialogue management,
microphone array
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1. INTRODUCTION: FROM SINGLE-SPEAKER TO
MULTI-SPEAKER DIALOGUE SYSTEM

It has been several decades since the development and release of the first
spoken dialogue system (SDS). Although SDS’s can provide convenient
human-computer interface (HCI) and many useful functions, most current
SDS’s address only the interaction between the system and one speaker. In
some situations, it is natural and necessary to be able to handle the interaction
between multiple speakers and the system. For example, if several passengers
in a car are determining where to go for lunch, traditional SDSs would need to
be improved in order to deal with the multiple speaker interaction. This
motivates the present investigation into the study of multi-speaker dialogue
systems (MSDS).

There are many factors to be considered when multiple parties are
engaged in an HCI system. Studies of HCI systems that involve multiple
users are in their initial stages and any papers, lectures or studies on the
subject are very limited. Among the reported studies, Young developed the
discourse structure for multi-speaker spoken dialogs based on stochastic
model [1]. Bull and Aylett [2] analyzed the timing of turn-taking in dialogues;
cross-speaker anaphora was reported by Poesio [3]. This research was based
on theoretical studies or the analyses of tagged text-based multi-speaker
interactions. Similar papers can be found [4,5,6,7]. Besides these theoretical
studies, Matsusaka et al. [8] built a robot that could communicate with multi-
users using a multi-modal interface. The robot was equipped with several
workstations and cameras to track and process the speaker input. So, in all,
previous multi-speaker research [1,2,3,4,5,6,7] either focused on the
theoretical discussion of dialogues or required additional expensive
heterogeneous hardware for multi-modal input, as reported in [8,9,10,11,12].
The issue that previous research has failed to analyze is the interactions
between a dialogue system and speakers. This chapter focuses on the analysis
of such interactions and proposes an algorithm for dialogue manager to
handle various interactions occurring in an MSDS. Note that two kinds of
interaction may occur in a multi-speaker dialogue, as classified below. The
first one is the interaction between a speaker and the system (referred to as
inter-action), and the other is the interaction between speakers (intra-action).
This chapter discusses only the former.

Observation of many multi-speaker interactions lead to the conclusion that
during a dialogue, one speaker may either interrupt the utterance of another
speaker or wait until the input is finished. That is, the speakers are either
making simultaneous input or they utter the input in turn. If an MSDS can
handle simultaneous speech inputs, we call it a simultaneous MSDS
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(Sim_MSDS); otherwise, it is called a sequential MSDS (Seq_MSDS). In a
Seq-MSDS, utterances of speakers are buffered first, and then they are
processed together. In this chapter we only consider Seq_MSDS.

In multi-speaker dialogues, speakers may cooperate to accomplish a
common goal or negotiate to solve conflicting opinions to achieve the same
goal. We defined two types of goals in MSDS (i.e., the individual goal and
the global goal). The individual goal is the answer that one speaker wants to
know from the inquiry. Since individual goals may conflict with each other,
the system should maintain a global goal in which it can integrate the
individual goals. The following examples will demonstrate different cases in
which individual goals do and do not conflict with each other. Depending on
the relationship between two individual goals, the interactions between
speakers and the system are classified as one of three types: independent,
cooperative, and conflicting. Examples are shown below, where S, and S; are
different speakers:

(i) Independent interaction: speakers S;and S;have independent goals
S;: What'’s the weather in Taipei?
S2: Where is the Tainan train station?

In the first example, the individual goal of each speaker is different and
independent.

(i) Cooperative interaction: speakers have a common goal
S,: Please find a place to eat.
S5,: I want to eat Japanese noodles.

In second example, the individual goal of S1 is to find a restaurant, and
the goal of S; is to eat Japanese noodles. The dialogue manager should detect
and integrate these individual goals to form the global goal, i.e., a place where
Japanese noodles are available.

(iii) Conflicting interaction: speakers have conflicting goals
S,;: Tell me a Chinese restaurant.
S,: I think we should go to an Italian restaurant.

In third example, S; wants to go to a restaurant which supplies Chinese
food while; in contrast, S; wants to go to an Italian restaurant. Their intentions
are similar, but the destinations conflict. The global goal should be adjusted
when speaker S, has an individual goal different from that of S;.



68 Chapter 4

In an MSDS, the interactions between the speakers and the system should
be handled carefully to keep the dialogue going smoothly. This task is often
accomplished by the dialogue manager and is the major issue discussed in this
chapter. This chapter is organized as follows: 1) Section 2 describes the major
components of an MSDS; 2) Section 3 illustrates the algorithm of a multi-
speaker dialogue manager, together with several examples; 3) Section 4
shows the experimental results; finally, the concluding remarks are given in
Section 3.

2. FUNDAMENTAL OF MSDS

According to the model provided by Huang et al., [13], a traditional
single-speaker SDS can be modeled as a pattern recognition problem. Given a
speech input X, the objective of the system is to arrive at actions A (including
a response message and necessary operations) so that the probability of
choosing A is maximized. The optimal solution, i.e., the maximum a posterior
(MAP) estimation, can be expressed as following equation:

A :arg;naxP(AlX,S,,_.) (1)

~argmax P(4]8,)> P(S, | F,S, )P(FX,S,.,)
4.5, I3

where F denotes the semantic interpretation of X and S,, the discourse
semantics for the nth dialogue turn. Note that Eq. (1) shows the model-base
decomposition of an SDS. The probabilistic model of an SDS can be found in
the work of Young [14, 15].

For the case of multi-speaker dialogue system, assuming that only single-
thread speech input is allowed, and speech is input from multiple microphone
channels, Eq. (1) can be extended to the formulation below.

A" ~argmax P(4|G,)P(G,|S) ,...8" .G,_)
A

)

where G, denotes the integration of m discourse semantics for the nth
dialogue turn, it contains all the information in 8. And, m is the number of
speakers. The discourse semantics S, can be derived using Eq.(3) shown
below:

,';. =argr_naxZP(S,’; |FL8EVPFT XL ST OVPXT U
s, Fi

3)
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where U denotes the multiple input from the multiple microphones and i is the
speaker index. Based on Eq. (3), an MSDS can be decomposed into five
components as described below:

L.

Active speaker determination: deciding the active speaker i and their
speech input X, using model P(X'|U). In order to aid in the determination
of the active speaker along with multiple microphone input, the matched
filter can be a useful technique. The output of the matched filter from each
microphone is compared with a predetermined threshold to decide the
primary channel, i.e., the active speaker. The signals from secondary
channels are used to estimate the noise using an adaptive filter. The
enhanced signal (i.e., the target speech) is obtained by subtracting the
estimated noise from the primary channel signal.

Individual semantic parser: performing the same parsing process, as in the
case of traditional SDS, for each speaker. The semantic model P(FX, 5,

) to parse sentence X' into semantic objects F'. This component is often
divided into individual target speech recognition and sentence parsing.
The speech recognizer translates each speaker’s utterance into a
word/keyword lattice. Current development of keyword spotters allows
them the ability to detect thousands of keywords and yields acceptable
results for the applications of SDS. It would be suitable to make use of a
keyword spotter in an MSDS in order to detect the meaningful part of a
speaker utterance. Our proposed MSDS uses the technique developed by
Wu and Chen [16]. Furthermore, we adopt the partial parser which
concentrates on describing the structure of the meaningful clauses and
sentences that are embedded in the spoken utterance.

Individual discourse analysis: the discourse model P(S’},]F; 8.1 is used
to derive new dialogue context §',. This process is also performed for each
speaker.

Multiple discourse integration: the discourses semantics of all speakers
are integrated using model P(G,| 8’y ,..., 8"s ,G,.)). The discourse
integration model together with the individual discourse analysis model
combines and integrates each speaker’s dialogue semantics. The result of
discourse integration is sent to the multi-speaker dialogue manager.

Multi-speaker dialogue manager: to determine the most suitable action by
the model P(A|G,). After multi-speaker speech input is handled properly
by these modules, the dialogue manager is responsible for maintaining the
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dialogue and keeping it going smoothly. It plays an important role in an
MSDS that is described in the next section.

\’ Y

/ ~ Response

LJ\ / \Jand actions | Multi-speaker Multiple

\U! dialogue discourse DISCOUI'SG
manager Integranon semanhcs

‘ Multiple . i Indlv:dual

speech input fles: _uucd r discourse
| | —| analysis

Dialogue
hisory | -

L’/// Semantic
] objects
-_ indlwdual e ——_:‘jj Individual

/ / Targel s target speech /f/ Word / sentences
speech | rElCOgﬂltIClI"l # sequences mterpretatlon

Figure 4-1. Basic components of a multi-speaker dialogue system. The rectangle blocks are the
processing units; the parallelograms are multiple outputs derived from the processing units.

Active speaker
determination

3. DIALOGUE MANAGEMENT FOR MSDS

Once the active speaker is determined, the target speech is sent to the
speech recognition and natural language processing components. The
keyword spotting and partial parsing techniques that are popular in the field
of spoken language processing can be adopted in an MSDS. The parsed result
will be the most likely words sequence with their part-of-speech tags. They
are then fed to the dialogue manager. The dialogue manager maintains the
interaction among the system and the multiple speakers and keeps it going
smoothly. Fig. 4-1 shows the block diagram of the multi-speaker dialogue
management.

In an MSDS, each speaker may have his own individual goal for
information retrieval. In contrast to the individual goal, the global goal is the
integration of each individual goal. The management of the multi-speaker
dialogue has several functions: 1) to interpret intentions and semantics of each
individual speaker in order to detect if there is a conflict between speakers, 2)
to integrate individual goals into global goals, 3) to determine whether a
specific goal is completed, and 4) to generate the response. In this section, we
illustrate how the management of MSDS works by giving an algorithm and
some examples.
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Each time the system receives input from a speaker, natural language
processing (as introduced in Sec. 2) is applied to understand the intention and
semantics of this speaker. We used a data structure, semantic frame SF, to
record this information, which is defined below (assuming there are n
speakers):

SE; = (Vi Vo Vey Vg o) s i=1~n

For speaker i, y; represents the domain that speaker mentioned; y;, is the
primary attribute for this domain, i.e., the purpose of the query; and Vi is the
secondary attributes which specifies additional information needed for this
query. Note that the number of secondary attributes varies with domain. Take
the inquiry “please show me the route to the train station” as example, the
semantic frame will be:

SF = (“NAVIGATION”, “DESTINATION”, “train station”, Null...).

The semantic frame of the current dialogue turn is combined with the
previous ones to determine if the goal completed. This determination is based
on whether essential information needed for a specific query is enough. For
example, if the speaker is querying the weather forecast, the essential
information would be the location (ex. city name), the weather type (ex.
temperature or rainfall density), and the time (ex. tomorrow or this afternoon).
Once a goal is completed, the system may perform database queries and
generate a proper response to the speaker. If some essential information is
missing or the speaker interactions are in conflict, further confirmation and a
repair processes should be undertaken to realize the final intention of the
speakers.

In examples 1,2, and 3, we illustrate the cases of 1) speakers who have
independent individual goals, which can be solved easily; 2) speakers with
conflicting individual goals, in which the system must resolve this problem
before further information can be relayed to the speakers; and 3) speakers
who have a common goal, which requires that they provide the necessary
information for the system in a mutually cooperative fashion.
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Input: Partial parsing results of speech recognition for each speaker, denoted as PP,
PP,, ..., PP,, where m is the number of total speakers.

Output: response to speakers.

Step 1: Initialization

[ ) Initialize the semantic frames SF; to be NULL.
SF, = (V. Veys V;;{I)V.S{{z gor) 5 I=1~m

For speaker i, p; represents the mentioned speaker domain; ) is the primary
domain attribute; and p/ ~are secondary attributes, where j varies with the domain.
54j

L] Initialize the dialogue history lists, Hi, for each speaker to NULL.
Step 2: Determine the semantic frame
Apply NLP techniques to PP, to determine the corresponding semantic frame SF;.
Semantic frame SFi for this turn is copied to the history Hi.
Step 3: Determine interaction type for any speaker pair (i, j)
v} =7}
if Vo, # K‘{‘ thexj} Cooperative interaction
else_if V,, =V}, then Conflicting interaction
else_if V) 2V
then Independent interaction
Step 4: Semantic integration
SF;'s and H,’s are integrated to determine if a goal is completed.
(Detailed method for semantic integration is listed in Section 3.1.)

Step 5: Determine the accomplished goal(s)
For each speaker, check if the necessary information slots for completing a goal are
filled or not. A goal is completed <> (¥p Null) AND (¥py Null) AND (Vg
Null)

Step 6: Decision
If any goal is completed, go to Step 7; else go to Step 8.
Note that the conditions for a goal to be completed are definable for each domain.

Step 7: Response: Perform database query and generate response to the user
according to the goal(s) found in Step 3. Go to Step 8.

Step 8: Iteration: Accept next input and go to Step 2.

Figure 4-2. Algorithm 1: The algorithm for multi-speaker dialogue management
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Figure 4-3. Block diagram of the multi-speaker dialogue manager

Example 1. Speakers have different individual goals.

b Action Content
index
1  (Speaker,) inputs “I want to go to the city hall”.
2  (Speaker,) inputs *“Tell me the weather in Taipei”
3 (System) derives SF;=(“NAVIGATION", “ROUTE", "city hall”, Null...)
SFi SF,=("WEATHER”, “LOCATION", “Taipei”, Null...)
4  (System) checks goal Speaker,=TRUE
completeness Speaker,=TRUE
5  (System) checks if NO
conflict happened
6  (System) generates “The weather in Taipei is rainy.”

response

*“The city hall is about 450 meters away, please follow the
instructions.”
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Example 2. Speakers have conflicting individual goals.

Time
Action Content
index
1 (Speaker;) inputs “Find me a Chinese food restaurant”.
2 (Speaker,) inputs “No, I want to eat Italian food”

3 (System) derives SFi  SF;=("NAVIGATION", “ROUTE”,
“destination=restaurant”, “attribute=Chinese food”,
Null...)
SF,=(“"NAVIGATION", “ROUTE",
“destination=restaurant”, “‘attribute=Italian food”, Null...)
4 (System) checks goal Speaker,=TRUE

completeness Speaker,=TRUE

5 (System) checks if YES
conflict

6  (System) resolves “Please specify again, do you want Chinese food or Italian
conflict food”

Example 3. Speakers have a common goal.

'_Tlme Action Content

index

1 (Speaker;) input “I want to know the route to ...”.

2 (System) derives SFi  SF;=(“"NAVIGATION", "ROUTE”, Null...)

3 (System) checks goal Speaker;=FALSE, (no DESTINATION)
completeness

4 (System) generate “Please specify the destination.”
response

5 (Speaker;) input *“To the nearest gas station”

6 (Speaker,) input “And, how far is the gas station?”

7 (System) combines new SF;=(“NAVIGATION”, "ROUTE”, “destination=gas
SFi with old ones station”, “attribute=nearest” Null...)

SF,=(“NAVIGATION", “DISTANCE”, “destination=gas
station”, “attribute=nearest”, Null...)

8 (System) checks goal Speaker;=YES
completeness Speaker,=YES

9 (System) checks if NO
conflict

10 (System) generates “The nearest gas station is 540 meters ahead, please
response continue straight ahead.”
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These examples demonstrate three types of interaction between two
speakers. For the cases in which more than two speakers are involved, the
same approach is applied to check the interaction type and goal completeness,
and generate the response to the speakers.

4. EXPERIMENTAL RESULTS

To test whether the proposed methods were feasible, an experimental
environment was set up in a 1,600 CC automobile. The recording device was
a notebook computer together with a PCMCIA multi-channel recording card
and four omni-directional microphones. We developed an MSDS which was
capable of answering user queries in three application domains, i.e., route
guidance, weather forecasting, and stock prices. A GPS (global positioning
system) receiver was mounted on the car to acquire its current position. The
information about weather forecasts and stock prices was stored in a remote
server that was able to get up-to-date information through the Internet. When
inquires about these domains were made, a short message was issued from an
embedded cell phone to the server. After a database query on the server-end,
the query result, in short message format, was sent back to the cell phone and
was interpreted, resulting in the desired information.

Thirty-two speakers aged 17 to 35 participated in our experiment. Before
the experiment, testers were briefly informed regarding the capability and
domains of the system. Two types of experiment were carried out in our work.
The first was for active speaker determination because knowing the active
speaker is essential in order for the dialogue manager to make a correct
response. The second was the evaluation of the proposed MSDS; both
subjective and objective evaluation metrics are reported in our experiments.

4.1 Experimental Results of Active Speaker
Determination

For the experiment of active speaker determination, we set up four
different configurations of microphone placement, as shown in Figure 4-4.
Four speakers, Sy, S, S3, and Sy, were in the upper-left, upper-right, lower-left,
and lower-right corner of the car, respectively, as indicated in Configuration 1
of Figure 4-4.



76 Chapter 4

= | IR fR &30 = = |
G=p | L] 4 & L ie &b |L|e @)
= P g il = s = e e e = & e
[ @ | == o | P~ == | — =
i A sl Js+fl) s L2 el | gt o e L U@ @) L
Vil Configuration 1 | Configuration 2 W Configuration ] I / Configuration 4
(@) ®) © @

Figure 4-4. Different configurations of microphone placement in the car environment: (a) A
microphone was placed in front of each speaker in the car; (b) Four microphones, linear
formation, were placed above the windshield of the car. The distance between two
microphones was 20 cm; (c) Four microphones, in square formation, were placed in the center
of the car ceiling. The side length of the square is 20 cm; (d) The microphones were attached
on the seat belts of each passenger.

We assessed the rate of correct active speaker determination. Each tester
uttered thirty short words for testing. Three conditions of car speed were
maintained in this experiment, i.e., idle, in-city, and on-highway conditions.
The idle condition means that the car was ignited but remained stationary. For
the in-city and on-highway conditions, respectively, the car speed was kept at
0~50 km/h and 70~100 km/h. Table 4-1 shows the speech identification
results of our experiments.

As shown in Table 4-1, the 4th configuration achieved the best
performance of ASD, since the vibration caused by the car’s engine was
absorbed by the soft seatbelt. Configuration 3 was the worst because the
threshold was hard to determine (the difference between speakers was not
noticeable). For speakers in the front seats, configurations 1, 2 and 4 yielded
similar results. The reason was that under these configurations, the signals
from primary and secondary channels contained noticeable differences.
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Figure 4-5. Correct rate of the active speaker determination. The experimental setup was: four
speakers S1, S2, S3, and S4 sat in different corner of the car; microphones were placed in the
car in four configurations; and the speeds of car were maintained for three conditions (idle,
city, and highway).

4.2 Statistics of the interactions in an MSDS

In order to determine the interactive behavior in a multiple speaker
dialogue, the thirty-two testers were divided further into eight groups for the
second experiment. Each group of testers performed multi-speaker dialogues
six times. Each tester was given the freedom of deciding whether he wanted
to join in the dialogues. That is, during a multi-speaker dialogue, the number
of parties could be one, two, three, or four. Also, the testers were free to
choose one of the three task domains, i.e., navigation guide, weather
information, or stock price information. Within this paradigm, we computed
three statistics about the interactions of an MSDS. The first was how many
parties engaged in each MSDS. The second was the percentage of interaction
types that occurred in the MSDS. The last was the rate of correct interaction
type determination.
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# of # of Percentage of the interaction types
parties diglopues Independent Cooperative Conflict Total
performed
1 5 10 % NULL NULL 10 %
2 19 15 % 17 % 8 % 40 %
3 19 10 % 8 % 13 % 31%
4 9 7 % 7 % 5% 19 %
Total 48 42% 32% 26% 100%

Table 4-1. Statistics of the interactions in the experiments.

The results of the first two experiments are shown in Table 4-1. As shown
in Table 4-1, it would be natural for multiple persons to interact together in
order to derive their desired information. Only five dialogues (10%) are
single-speaker dialogues. It can also be observed from Table 4-1 that the three
interaction types happened with almost the same probability. The statistics in
Table 4-1 suggest that the study of MSDS is a necessary one.

As mentioned in Section 3, the determination of interaction type involved
comparing the domain (Vp), primary feature (Vps), and secondary features
(Vsa) for speakers. The correct rates of interaction type determination were
98.3%, 95.7% and 94.1% for independent, cooperative, and conflict
interactions, respectively. The wrong determinations occurred in cases in
which the speaker omitted the domain slot and provided just primary or
secondary feature slot information. The system “guessed” the domain slot
based on the identification of the other slots, which may have resulted in
incorrect determinations of the interaction type.

4.3 Experimental Results for the MSDS Evaluation

The evaluation of a spoken dialogue system can be classified as objective
and subjective as indicated by Danieli and Gerbino [17], Hirschman and Pao
[18], and Walker et al. [19]. Objective metrics can be calculated without
human judgment, and in many cases can be logged by the SDS so that they
can be calculated automatically. Subjective metrics require subjects using the
system, and/or human evaluators to categorize the dialogue or utterances with
various qualitative measures. Both subjective and objective evaluations were
used in the experiment. The metrics were:

1. percentage of different interaction types (i.e., independent, cooperative,
conflict)
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Metrics 1 to 7 are the objective evaluations while the others are subjective.
For the evaluation of the MSDS, we adopt the 4th microphone configuration
(i.e., microphones are embedded on the seatbelts of each speaker). The testers
were divided into three groups, namely cooperative, independent, and
conflicting groups of speakers. Before the experiment, the scenario that
describes the interaction of these three types is given to the testers. The

experimental results are shown in Table 4-2.

As shown in Table 4-2, the task completion times seem a little lengthy.
This is caused by the SMS (short message system) communication between
the embedded cell phone and the server. More than half of the testers were
satisfied with the system’s ability and performance, and about half of the
testers were willing to use this system if it became commercially available.

Metrics Independent Cooperative Conflicting Average
1. Interaction types (%) 42 32 26 33.33
2. Task completion rate (%) 80.2 76.3 72.5 76.33
3. Average number of turns 6.2 8.5 10.1 8.27
4. Task completion time (secs) 37.1 48.2 45.7 43.67
5. Mean system response time 1.9 2.1 24 2.13
(secs)
6. Mean length of utterances 9.1 7.5 6.3 7.63
(words)
7. Correct answers (%) 83.6 71.3 80.1 78.33
8. User satisfaction (0~10) 6.03 6.62 5.92 6.19
9. Willingness to use system 63.1 70.5 52.7 62.1
|_again (%)

Table 4-2. Experimental results of different evaluation metrics for the MSDS system under

different interaction types



80 Chapter 4

S. CONCLUSIONS AND FUTURE WORK

In this chapter, we have addressed important issues for the development of
a multi-speaker dialogue system. The interaction types between the speakers
and the system are analyzed, and, an algorithm of the multi-speaker dialogue
management is presented. Based on the proposed techniques, an MSDS
system was built to provide vehicular navigation information and assistance
in the car environment where every passenger may want to interact with the
system. The proposed MSDS system can interact with multiple speakers and
resolve conflicting opinions. Speakers are also able to acquire multi-domain
information independently or cooperatively.

Since our research is in the initial stage, only interaction (c.f. intra-action)
between speakers is studied in this manuscript. To model both the interaction
and intra-action in an MSDS is a more difficult task and requires further
studies, both in the theoretical as well as in the practical arena. Research
concerning multi-speaker spoken dialogue systems (MSDS) is in its initial
stage and we hope that our works will help to encourage further research into
the techniques of MSDS.

As future works, we plan to investigate the communication model for both
inter-action and intra-action in an MSDS. We will try to combine blind source
separation (BSS) techniques to deal with simultaneous MSDS, i.e., to allow
speakers to utter simultaneously in order to provide a more natural and
convenient MSDS system.
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Abstract: This chapter describes a dialog management architecture for car telematics
systems. The system supports spontaneous user utterances and variable
communication conditions between the in-car client and the remote server. The
communication is based on VoiceXML over HTTP, and the design of the
server-side application is based on DialogXML and ScenarioXML, which are
layered extensions of VoiceXML. These extensions provide support for state-
and-transition dialog programming, access to dynamic external databases, and
sharing of commonly-used dialogs via templates. The client system includes a
set of small grammars and lexicons for various tasks; only relevant grammars
and lexicons are activated under the control of the dialog manager. The server-
side applications are integrated via an abstract interface, and the client system
may include compact versions of the same applications. The VoiceXML
interpreter can switch between applications on both sides intelligently. This
helps to reduce bandwidth utilization, and allows the system to continue even if
the communication channel is lost.

Keywords: VoiceXML, Dialog Management, Telematics, Speech Recognition.
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1. INTRODUCTION

Spoken dialog management in car telematics is a challenging topic for
speech and language technology research. The various challenges include
efficient creation of dialog scenarios, accurate analysis of the user’s
utterances, and management of the communication between the client and the
server. Because of strict limitations on computational resources and
communication bandwidth, the client and the server systems need to divide
their tasks in an appropriate manner. VoiceXML[1] provides a useful basis
for the design of a system architecture where the server system provides the
minimal information necessary to guide the dialog, and the client system
transmits the minimal information necessary to describe the user’s input.

Carpenter, et al.[2] have proposed a framework for server-side dialog
management; since VoiceXML does not directly support the modeling of
dialogs as state-transition networks, their framework assumes that the dialog
manager[3] controls the entire flow of the dialog, and sends small segments of
VoiceXML (representing single dialog turns) to the client. However, for
mobile applications such as car telematics systems, the communication
channel is narrow and unstable, and we therefore prefer to send the client a
single VoiceXML document that includes several dialog turns. In previous
work, we have proposed two extensions to VoiceXML: DialogXML and
ScenarioXML[4]. DialogXML supports a higher-level model of dialog flow
using states and transitions; ScenarioXML provides a systematic mechanism
for smooth transition between multiple active dialogs, along with access to
external databases and information sources. These extensions are essential for
dialog management in car telematics systems. The ScenarioXML dialogs
written by the developer are compiled into VoiceXML documents that can be
interpreted by the client. On the server side, following the work reported in
[2] and [4], Java Server Pages (JSP)[S] are used by the dialog manager to
create VoiceXML documents dynamically, so that a particular application
may also incorporate information from external databases which is accessed
inreal time.

Another challenge for an in-vehicle dialog system is accurate analysis of
the user’s utterances. In a system that has rich computational and/or
communication resources, such as a telephony gateway, a large-vocabulary
continuous speech recognition (LVCSR) system (e.g., SPHINX[6]) and a
large scale natural language processing (NLP) system (e.g., KANTOOI[7])
can be integrated. However, in a client system with limited resources, the
complexity of the analysis algorithms must be simplified. Our system uses a
simple speech recognizer with a regular grammar, and a set of small
grammars and lexicons for NLP processing. A (grammar, lexicon) pair
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defines a task, and the dialog manager can activate one or more tasks by
enumerating a specific set of (grammar, lexicon) pairs. Using this approach, a
developer can develop a robust dialog system for a particular task in a
straightforward manner. Such grammars and lexicons may be created by
hand, or derived from corpora that exemplify typical sentences from the
specified task.

The third challenge addressed by our system is task switching between the
client and the server systems. Sometimes the in-vehicle client loses its
connection to the remote server, and must continue to interact with the user as
a stand-alone system. In such situations, the client system continues the
dialog in a reduced way, providing limited information to the user. After the
connection is re-established, the client and the server negotiate to synchronize
the current dialog context, and start or continue the next task as appropriate.

Client Server
] ASR Dialog gram,
Scenario & Ef-
- TTS \
L HTTP -
VoiceXML > Dialog
Interpreter [« I'Compiler Manager
Voice A
- XML
app.| |gram. Internet
& lex h 4
I External database ]

Figure 5-1. System architecture.

2. SYSTEM ARCHITECTURE

Figure 5-1 illustrates the architecture of the car telematics system
described in this chapter. In the client system, the VoiceXML Interpreter
interacts with the user via automatic speech recognition (ASR) and text-to-
speech (TTS) interfaces. We use the VoiceXML Interpreter developed by
Hitachi CRL[8]; it supports most of the functions defined in VoiceXML
2.0[1], and also includes an additional input/output channel to allow
asynchronous communication with an internal application such as a GPS
navigator. Therefore, although the system usually communicates by sending
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HTTP requests to the Dialog Manager (DM) and receiving VoiceXML
documents in return, it can also work in standalone mode by utilizing internal
applications. For example, an asynchronous signal from a GPS module can
interrupt an ongoing dialog (e.g., a query about restaurant information) when
the vehicle approaches an intersection where a turn is required. Grammars
and lexicons are stored in the client and the server, and the DM specifies the
location of the grammar and the lexicon to use, simply by including a specific
URI in the VoiceXML document. If a server-side grammar and lexicon are
required for the task, they are sent with the VoiceXML document. On the
server side, the DM provides centralized coordination and controls the dialog
according to pre-defined dialog scenarios. In order to create a VoiceXML
dialog that includes dynamic data (such as specific navigation directions), the
DM communicates with external databases through the Internet. External
databases provide various types of static and dynamic information, such as
traffic and parking conditions, nearby restaurant names, and the current
weather forecast. The VoiceXML compiler is a part of the DM and it
compiles the ScenarioXML into VoiceXML format for the VoiceXML
Interpreter. Grammars and lexicons are stored on the server side, and the DM
transmits them along with the VoiceXML output if the client side system does
not already contain them.

3. EXTENSIONS OF VOICEXML

Layered extensions of VoiceXML have been proposed as a way to realize
straightforward development of VoiceXML applications with dynamic
content [4]. The DialogXML layer was proposed to enable the developer to
write any dialog flow using a state-and-transition model. Although it is
possible to write an equivalent form-filling and if-then style VoiceXML
document by hand, state-and-transition style dialog creation is more efficient
for developers, especially as dialogs grow beyond simple menu selection to
more complex dialogs. The DialogXML compiler translates DialogXML
dialogs into VoiceXML, which is generally much longer (by at least a factor
of two or three) and more difficult to read than the original DialogXML. The
ScenarioXML layer was proposed as a way to specify transitions between
active dialogs, and to support dynamic content retrieved from external
databases and other information sources. Since most information is dynamic
in real-life applications, it is necessary to generate the DialogXML output
with up-to-date information included at run-time. In our system, JSP
technologies are used for that purpose. The higher-level control of the JSP
engine is useful when writing dialog scenarios, since a dialog template can be
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integrated with Java calls that insert dynamic content. A ScenarioXML
compiler was developed to translate  ScenarioXML documents into
DialogXML [4].

Figure 5-2 shows an example of ScenarioXML; a loop of similar states is
described in a higher level programming style, and a Java function with an
incrementing argument is called to access the external database. In this
example, each function call gets the next instruction for route guidance. After
providing the instruction, execution moves to the next state and gets another
instruction. Figure 5-3 shows another example of ScenarioXML. Since there
are some typical patterns that could be used anywhere in the dialog, those
patterns are described as common arcs. In this example, the Help dialog can
be accessed from any other active dialog if the appropriate common arc is
inserted.

Fig. 5-4 shows a segment of DialogXML generated from the examples of
Fig. 5-2 and Fig. 5-3 by invoking the ScenarioXML compiler. Each state has
an action and a set of arcs. In this example, the action and the first arc were
generated from the main ScenarioXML shown in Fig. 5-2, and the second arc
was added as a common arc from Fig. 5-3. Since route guidance tasks consist
of several steps (directions from an origin to the destination), they will
include several states that are similar to this example. Finally, the DialogXML
document is compiled again to generate the VoiceXML that can be
interpreted by the VoiceXML Interpreter.

<javaloopstates namebase="s" array="Route" final="sx" index="i">
<action><prompt>
<javaval expr="<javaloopstates namebase="s" array="Route" final="sx" index="i{">
<action><prompt>
<javaval expr="(String)Route.get(i)" ~
</fprompt></action>
<arc>
<grammar src="next.gram" type="application/k-hgf" fieldlist="next'~
<gotoloopnext’
</arc>
</javaloopstate>

Figure 5-2. Example of ScenarioXML: Loop and access to external database.
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<jumplist>

<arc name="help">

<grammar src="help.gram" type="application/-hgf" fieldlist="help"~
<destination dialog="help.xml" />

</arc>

</jumplist>

Figure 5-3. Example of ScenarioXML: common arc.

<state name="s1">
<action><prompt>
Go straight on Fifth Avenue.
</fprompt></ction>
<arc>
<grammar src="next.gram" type="applicationk-hgf" fieldlist="go"/~
<dest state="s2"/~
</arc>
<arc>
<grammar src="help.gram" type="applicationk-hgf" fieldlist="help" 4
<push dialog="help.xml" 4~
</arc>
</ftate>

Figure 5-4. Example of DialogXML.

A more complicated example is shown in Fig. 5-5. There are two flows of the
main dialog and two types of common arcs. In this figure, every arc is related to a
specific grammar. It means that the control of the dialog flow is tightly related with
grammar selection. This principle is described in detail in the following section.

4. GRAMMARS AND LEXICONS

In VoiceXML, a grammar specifies (for a particular dialog state) the set of
allowed words and the structure(s) of allowable sentences using those words
(defined in terms of legal part-of-speech sequences). To avoid confusion, we
refer to the former aspect of VoiceXML grammars as a “lexicon”, and the
latter aspect as a “grammar”; the pairing of a lexicon and a grammar in
VoiceXML is referred to as a “<grammar>.” A <grammar> operates on an
input to capture a set of attribute-value pairs from the user’s utterance. One
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can claim that the widest coverage of the user’s utterance could be achieved
by using a LVCSR module and a statistical language model. In such a case,
an NLP module must be used to extract information about a specific attribute-
value pair. However, it is not reasonable to implement such modules in the
client system because the computational resources are limited in the vehicle.
Therefore, we use a simple speech recognizer with a regular grammar and a
small lexicon, defined as a <grammar>, in the ASR part of the client system.

Main dial

PARKING PARKING

Ore®
nextgram \fnextgnm

HELP HELP

directions.gram

next.gram
HELP HELP
Common arcs

parking.gram ok.gram

i j help.graml ‘ ok.gram

next.gram next.gram

PARKING HELP

Figure 5-5. Transitions and grammars.

Another important role of a <grammar> is control of the dialog flow. Fig.
5-5 shows that each arc includes a <grammar>, specified by a filename with
the “.gram” extension. Since the VoiceXML specification allows us to include
multiple <grammar>s in a single form, we can easily split the flow of the
dialog by checking which <grammar> covers the user’s utterance. If we have
the table of <grammar> names and the table of attribute-value pairs allowed
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in each <grammar>, the developer can write Scenario XML documents simply
by referring to the appropriate <grammar>s.

In speech systems, it is important to keep <grammar>s small; as perplexity
increases, the likelihood of recognition errors will also increase. Therefore,
building <grammar>s requires a balance between two competing constraints:
minimizing the <grammar> size for optimal recognition accuracy, and
expanding the grammar to achieve sufficient coverage for the given task. A
skilled programmer may be able to construct such <grammar>s by hand, but
it would be useful to have a system that can create such <grammar>s
automatically.

Figure 5-6 describes a procedure for automatic <grammar> creation using
a corpus[9]. We refer to this process as “grammar compilation”; a basic
grammar is written by hand and then compiled into a form that is harder for
humans to read, but more suitable for the specific task. First we create a
unification grammar (UG)[10] that is written in a human-readable format that
is familiar to computational linguists. The UG is then compiled into a
context-free grammar (CFG) by expanding all constraints. For a single UG
rule, a set of CFG rules is created where each CFG rule corresponds to a
single set of legal feature-value assignments on the right-hand side of the
original UG rule. Then the CFG is compiled to a regular grammar (RG) by
introducing an upper limit of the number of recursions allowed for recursive
rules[11]. The derived RG can be expressed as a finite state machine (FSM),
as shown in Figure 5-6. Then the FSM is used to parse the sentences in the
corpus. After parsing all sentences, only the nodes and arcs in the FSM that
were activated by at least one sentence are retained, and other nodes and arcs
are deleted. This procedure creates a reduced regular grammar that covers all
sentences in the corpus and is smaller than the original grammar.

On the other hand, we have yet to create an automatic procedure for
lexicon compilation. If we use only the words from the original corpus that
were recognized by arcs in the grammar, the reduced grammar’s coverage
will be very weak. The utterance “How can I get to Tokyo?” would not be
covered, even if the corpus includes the utterance “How can I get to Kyoto?”.
However, if we generalize arcs to recognize any words matching the
appropriate part of speech, the degree of generalization would be too strong,
resulting in poorer speech recognition performance. To boost grammar
coverage, we currently utilize semantic word recognition categories (e.g.,
LOCATION) which are created for each dialog task. Automatic lexicon
compilation using a corpus is part of our ongoing research.
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Figure 5-6. Grammar compilation using corpus.

S. SWITCHING EXTERNAL/INTERNAL
APPLICATIONS

In car telematics systems, communication between the server and the
client can be unstable. The system must exhibit robust behavior when a
communication channel is suddenly disconnected without warning. The
VoiceXML specification includes an “error.badfetch” event, which signals
that an error occurred when fetching a requested document. Our VoiceXML
documents therefore include event handlers for “error.badfetch” that switch
dialog control to a local, compact dialog management application residing on
the client side. For example, if the dialog is about traffic guidance, the
internal application may know the route from the current position to the
desired destination, but it will not have access to dynamic (real-time)
information such as current traffic conditions. If the user asks about traffic
conditions in the absence of an established communication channel, the
system would reply “I'm sorry. Currently I can’t access that information.” The
local dialog manager will enter a wait state, and poll the remote server
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periodically in an attempt to re-establish the communication channel until it is
forced to proceed to the next dialog task by the user’s command.

It is also possible to store the complete DM application on the client side
if the application does not require any dynamic information. For example,
voice control of the vehicle air conditioner can be achieved on the client side
with no need for server-side dialog management. By using client-side
applications for such small tasks, we can reduce bandwidth utilization
between the client and the server.

As described in Section 2, client-side applications can use the “back door”
of the VoiceXML Interpreter to communicate with it asynchronously. This
mechanism can be utilized if we want the system to interrupt a local (client-
side) dialog as soon as it re-establishes a network connection with the remote
server. However, it is also possible to implement substantial client-side
applications simply by storing and accessing static VoiceXML documents
within the client.

6. INITIAL PROTOTYPE SYSTEM

We have developed an initial prototype system that is integrated with the
ScenarioXML and DialogXML compilers. Control of the dialog flow using
grammars and lexicons as described in Section 4 has also been implemented;
automatic grammar compilation from a corpus is currently being evaluated in
a separate prototype system. The task switching described in Section 5 is also
being tested in a separate prototype.

The initial prototype system was modified to communicate with an
internal GPS module, as described in Section 2. Figure 5-7 shows a schematic
diagram for the initial prototype system; the data flow sequence for a typical
route guidance dialog is illustrated in detail. The GPS simulator, which
provides functionality equivalent to a GPS module in a vehicle, plays the role
of internal application as described in Fig. 5-1. The Route Planner is an
example of an external database or information service, but it was
implemented on the client side in the prototype because it requires frequent
communication with the GPS simulator.

In this system, the user first asks the VoiceXML Interpreter to send an
HTTP request, which includes the current position given by the GPS
simulator and the destination given by the user’s voice command. When the
Dialog Manager receives the request, it asks the Route Planner how to get to
the desired destination. The Route Planner provides directions in the form of a
set of sentences, each of which is to be delivered to the user at a
predetermined landmark point (e.g. intersection). Landmark point information
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is stored in the client system in order to align the dialog flow with the
movement of the vehicle. The Dialog Manager combines the direction
sentence set with the dialog scenario, which is pre-stored in ScenarioXML
form; an appropriate VoiceXML document is created via intermediate
compilation to DialogXML. As a result, the server can provide the client with
a VoiceXML document that includes several turns of the dialog. The
VoiceXML Interpreter receives the document, initiates the dialog, and then
pauses after the first instruction is given to the user. When the vehicle
approaches the next landmark point, the GPS simulator sends a trigger to the
VoiceXML Interpreter via the asynchronous communication channel. Each
time the VoiceXML Interpreter receives such a trigger, the next instruction is
given to the user, and the Interpreter pauses and waits for the next trigger.

The interaction with the user may trigger other dialogs; for example, the
user may inquire about parking facilities close to their desired destination.
When the user triggers a new topic, the current dialog is suspended, and a
new dialog is generated by the Dialog Manager. This new dialog will be
aborted if a new trigger comes from the GPS simulator, and the suspended
directions dialog will be re-activated so that the next instruction can be given
to the user. To realize this capability, it is necessary for the system to
recognize these asynchronous triggering events in all dialogs; fortunately, this
does not require additional dialog development work on the part of the
developer, because such triggering events can be defined as common arcs in
the ScenarioXML representation.

Client Server
(1) HTTP
Voice 110 <] VoiceXML |[= Dquest »| Dialog | |
Interpreter | (4) VoiceXML Manager

A
i (2) route
(5) trigger query { Dialog

. Scenario
Display <4< GPS Simulator

(.------.....-u.—‘

1~ (3) route
Route Planner guidance Parking info etc.

(upon request)

Figure 5-7. Schematic diagram of the initial prototype system.
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From Fig. 5-7, we see that steps (1) to (5) represent the data flow sequence
of a typical route guidance dialog. This architecture has a distinct advantage
when compared to standard client-server dialog systems, since it can continue
the route guidance dialog even if the communication between the client and
the server is disconnected. In addition, the DM can provide dynamic
information to the user whenever the connection to the remote server is
established.

The new dialog (i. e. parking dialog) must be aborted by a trigger, because
the only mechanism for embedding dialogs in VoiceXML is via the
<subdialog> directive, which pushes the original dialog (e. g. directions
dialog) down on a dialog stack and invokes a new dialog. As a result, when
the user re-activates a previous (parking) dialog after the trigger was
processed in the original dialog, the default VoiceXML action would be to
push a new dialog and start it in its initial state (rather than returning to
whatever the last active state was in a previously-activated dialog). However,
if the server uses session variables to maintain a history of suspended dialogs
and their last active state, it is possible to restart a dialog from the point at
which it had been suspended. This capability represents an enhancement to
our prototype system, and is under active development.

7. CONCLUSIONS

In this chapter, we described a dialog management architecture for car
telematics systems. The architecture consists of a client and a server, and is
designed to minimize the bandwidth of communications between them. On
the server side, the Dialog Manager controls the current interaction with the
user according to pre-defined scenarios written in ScenarioXML. The
developer can define state-and-transition dialog scenarios using various
predefined templates, which support integration of dynamic information from
external databases and information services. Analysis of each user utterance
within a dialog is achieved through application of a pre-selected grammar and
lexicon, so that the developer has only to select appropriate sets of grammars
and lexicons for each dialog state. These grammars may be written by hand,
but it is also possible to construct them automatically using sample dialogs for
each task. Finally, we described how the system switches control between the
server and the client according to the current status of the communication
channel. The system is robust in the presence of sudden network
disconnections, and bandwidth utilization can be reduced by the use of client-
side applications for simple tasks which do not require real-time access to
dynamically changing information.
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Our initial prototype system implements much of the architecture
described above. Dialog scenarios are written in ScenarioXML, which
combines the pre-defined dialog structure with dynamic information provided
by the Route Planner in real time. The VoiceXML file includes several turns
of the dialog, and the asynchronous communication channel of the
VoiceXML Interpreter is used to advance the dialog in accordance with the
vehicle’s movement.

In the current system, context switching (between multiple active dialog
instances) is realized by a push-and-pop style manipulation of a dialog stack.
We are currently testing an extension of our architecture which uses session
variables to enable switching between multiple (parallel) active dialogs.
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This chapter presents an advanced dialogue system based on in-car hands-free
voice interaction, conceived for obtaining driving assistance and for accessing
tourist information while driving. Part of the related activities aimed at
developing this “Virtual Intelligent Codriver” are being conducted under the
European VICO project. The architecture of the dialogue system is here
presented, with a description of its main modules: Front-end Speech Processing,
Recognition Engine, Natural Language Understanding, Dialogue Manager and
Car Wide Web. The use of a set of HMM recognizers, running in parallel, is
being investigated within this project in order to ensure low complexity,
modularity, fast response, and to allow a real-time reconfiguration of the
language models and grammars according to the dialogue context. A corpus of
spontaneous speech interactions was collected at ITC-irst using the Wizard-of-
Oz method in a real driving situation. Multiple recognition units specialized on
geographical subdomains and simpler language models were experimented
using the resulting corpus. This investigation shows that, in presence of large
lists of names (e.g. cities, streets, hotels), the choice of the output with
maximum likelihood among the active units, although a simple approach,
provides better results than the use of a single comprehensive language model.

Automatic speech recognition, in-car dialogue system, driving assistance,
language models.
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1. INTRODUCTION

The application of telematics in the car environment involves the
integration of onboard computer, onboard devices, global positioning and
wireless communication systems.

As a safe, reliable and comfortable interaction with these systems is of
particular relevance while driving, Automatic Speech Recognition (ASR)
technology in the car environment has gained more and more interest for the
emerging automotive applications appearing on the market.

Robustness and flexibility of hands-free ASR systems in adverse
environment are still challenging topics of research [1]-[4]. Speech signals
acquired by hands-free systems on a moving car are generally characterized
by low SNR and are affected by various sources of corruption. Engine and
tyres contribute mainly low frequency noise, while aerodynamic turbulence,
predominant at high speed, has a broader spectral content. Other noise
components are unstationary and unpredictable (e.g., road bumps, rain, traffic
noise, etc.).

A further reduction of the speech recognizer accuracy is caused by
acoustic effects of the car enclosure, spontaneous speech phenomena and
speaking style modifications (i.e. Lombard effect), especially in conjunction
with the word confusability induced by large vocabularies.

The European project VICO (Virtual Intelligent CO-driver) has the goal of
developing an advanced in-car dialogue system for the vocal interaction in
natural language with an agent able to provide services as navigation, route
planning, hotel and restaurants reservation, tourist information, car manual
consultation [5],[6]. The planned system includes a robust hands-free speech
recognizer, connected with a natural language understanding module allowing
for spontaneous speech interaction and an advanced and flexible dialogue
manager able to adapt itself to a wide range of dialogue situations. A further
module constitutes the interface for a dynamic information retrieval and an
efficient data extraction from databases containing geographic and tourist
information. Voice interaction can be in English, German or Italian. ITC-irst
has in charge the development of the ASR engine for Italian, while the
corresponding engines for English and German are developed by Daimler
Chrysler AG [7].

All the modules are integrated into a CORBA system architecture, and a
common interface was specified to connect the recognizers of different
languages to the same natural language understanding module. Due to the
need of alignment among language models for the different languages as well
as to the need of reducing the complexity while managing large vocabularies
(e.g., lists of streets and points of interest in a city, cities in a region, etc.), a
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framework was realized, based on the concept of several speech recognition
units that run in parallel and use class-based statistical language models or
grammars.

The objective of this chapter is that of investigating on a simple selection
method to choose the most likely output among those provided by a set of
recognition units fed with a common input signal [8]. A corpus of real
spontaneous speech utterances acquired in the car is employed to test the
accuracy of the resulting speech recognizer. The chapter is organized as
follows: section 2 introduces the general system architecture and presents
some details about the principal subsystems; section 3 describes the test
database collected through Wizard-of-Oz (WOZ) and some experiments with
multiple recognition units. In the final section, we draw some conclusions and
describe future developments.

2. SYSTEM ARCHITECTURE

The general architecture of the VICO system is shown in Figure 6-1,
where the blocks “Front-end processing”, “Recognition engine” and
“Recognizer output selector” constitute the subsystem used in the experiments
described later in this chapter.

The front-end processing is based on robust speech activity detection,
noise reduction and feature extraction. The recognition module is conceived
as a set of Speech Recognition Units (SRU) working in parallel, each one
with its own specialized Language Model (LM), followed by an output
selection module. The aim of this configuration is that of looking for a more
reliable input to the Natural Language Understanding (NLU) module, than
what would be obtained when using a single comprehensive Language Model
(LM) and a related very large vocabulary.

As shown in the figure, we assume that the Dialogue Manager (DM) can
dynamically load new LMs and activate or deactivate the single recognition
units at each dialogue step (i.e. recognition process) according to the context
of the dialogue interaction. If no one of the outputs of the units is judged
reliable, the DM can load new LMs and ask for a further recognition step on
the given input utterance.

Note that the SRUs, once loaded, can be selected to be running at the same
time, which means that a user utterance is being processed in parallel by all
active SRUs in a very efficient manner, this way avoiding the delay that
would be introduced by any equivalent sequential recognition approach.
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Figure 6-1. System Architecture.

The diagram also shows the other modules of the VICO system. It is
worth noting that the Car Wide Web (CWW) module is an interface to a set of
databases using an XML-Schema based protocol to communicate with the
DM module. Presently, it allows a fast access to a tourist database that
includes most of the relevant information about the italian Trentino region
(produced by Azienda per la Promozione Turistica del Trentino) and to a
geographical-topographical database (produced by TeleAtlas) for any query
concerning navigation.

The dialogue between the system and the user is based on information
resident in static or dynamic databases. A static database may contain
historical information regarding a city being visited, a dynamic database
(through an Internet connection) may contain weather news or could allow a
hotel reservation. CWW primary task is to understand the queries coming
from the DM and to retrieve the data from the databases. The actual
connection to the data is delegated to a specific API, so CWW maintains a
certain independence from the physical structure of the databases.

2.1 Front-end processing
Basic noise reduction algorithms are an easy and effective way to reduce

mismatch between noisy conditions and clean HMMs, and can also be used
with some benefits in matched conditions, as was shown in [9]. On the basis
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of that work, magnitude spectral subtraction and log-MMSE estimation were
adopted for background noise reduction, together with quantile noise
estimation.

In [10] an optimal set of parameters was determined for the use of spectral
subtraction and log-MMSE on a connected digit recognition task; the same set
is used here. The noise subtraction module is used only for far-microphone
input processing. The front-end processing includes a Voice Activity
Detection (VAD) module. It is based on the energy information in the case of
close-talk input and on a spectral variation function technique applied to the
output of the Mel-based filter bank in the case of far-microphone signal.
According to preliminary experiments on SpeechDat.Car material [11], both
techniques allow recognition performance equivalent to that determined by
using manually segmented utterances, except for cases of unstationary noise
events.

The feature extraction module processes the input signal pre-emphasizing
and blocking it into frames of 20 ms duration from which 12 Mel scaled
Cepstral Coefficients (MCCs) and the log-energy are extracted. MCCs are
normalized by subtracting the current MCC means. The log-energy is also
normalized with respect to the current maximum energy value. The resulting
MCCs and the normalized log-energy, together with their first and second
order time derivatives, are arranged into a single observation vector of 39
components.

2.2 Recognition Engine

The recognition engine for the Italian language is composed of a set of
standard HMM recognition units. Each of them runs independently and
processes the features provided by the front-end module. The HMM units are
based on a set of 34 phone-like speech units. Each acoustic-phonetic unit is
modeled with left-to-right Continuous Density HMMs with output probability
distributions represented by means of mixtures having 16 Gaussian
components with diagonal covariance matrices. HMM training is
accomplished through the standard Baum-Welch training procedure. Phone
units were trained by using far-microphone (and close-talk) signals available
in the Italian portion of SpeechDat.Car corpus. The training portion of this
corpus consists in about 3000 phonetically rich sentences pronounced by 150
speakers.

A crucial aspect is the selection of the output to feed NLU module. For a
given input utterance, the outputs provided by the different active units have
to be compared each other in a reliable way. Although more sophisticated
approaches are possible [12], in this work the simplest decision policy is
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adopted, which is based on the selection of the output having the maximum
likelihood.

23 Natural Language Understanding

The Natural Language Understanding (NLU) module (being developed at
Daimler-Chrysler AG) has to take care of the spontaneous speech input and
possible incomplete or ungrammatical sentences. The parser must be able to
deal with all these factors and provide a semantic representation of the user’s
sentence. The whole structure of an utterance is not currently checked for
consistency, rather single elements containing the phrase have to be
identified. The resulting semantic representation is composed by a set of slots
instantiated by the meaningful words of the utterance, taking into account the
context of the on-going dialogue.

24 Dialogue Manager

At the core of the spoken dialogue system, the Dialog Manager aims at
reacting appropriately to the user’s spontaneous requests in all circumstances.
The input to this module is the semantic information delivered by the NLU;
the output consists of queries to the databases through the CWW module,
instructions to the Response Generator, and the selection of grammars for the
language understanding module according to the dialogue status. Basically,
the DM must be able to identify the current task requested by the user and to
obtain the information needed to fulfill it. This has to be done also in case of
incomplete, ambiguous or erroneous input, to integrate or clarify the
information provided by the driver, and to accept a request of modification in
a possible negotiation step.

The implemented DM is based on a description of the application, which
is basically characterized by a set of contexts, each one containing some
semantically relevant concepts, and by a set of procedures that describe the
actions to be performed during the dialogue. The goal of the DM is to fill the
concepts of the active context in a consistent way, then to require some
external actions and finally to move to another context.

The Dialog Manager should be aware of the profile of the user, retrieved
via the Car Wide Web. The user profile should contain information about
user’s preferences and habits, like preferred hotel chains, restaurants,
familiarity with the system. For example DM should be able to customize the
interaction in order to avoid to be petulant with expert users or to be too
concise with novice users. A sample dialogue is reported in Figure 6-2 as an
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exemplification of the typical interaction between the driver and the virtual
co-driver.

USER: | want to get information about hotels in the center of Trento.

VICO: In the center of Trento there are hotels from 1 to 3 stars.
Which category do you prefer?

USER: | want the cheapest.

VICO: A single room in the hotel Adige costs 25 Euro, is that ok?
USER: Yes. | need there a room reservation.

VICO: From when?

USER: From Thursday one night.

VICOQO: 5th to 6th of June?

USER: Yes. Is there also a parking lot at the hotel?

Figure 6-2. Sample dialogue.

2.5 Car Wide Web

The Car Wide Web is the module responsible for the retrieval of the data
needed by the system. Almost all the dialogue that takes place between the
system and the user is based on information resident in databases, which can
be static or dynamic. A static database may contain historical information
regarding a city being visited; a dynamic database (through an Internet
connection) may contain weather forecasts or could allow a restaurant
reservation. CWW primary task is to understand the queries coming from the
DM and to retrieve the data from the databases. The actual connection to the
data is delegated to a specific API (see Section 2.6), so CWW maintains a
certain independence from the physical structure of the databases.
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In order to have a flexible and standard formalism to exchange the data
between CWW and DM, all the queries and responses are wrapped in an
XML format. It has been decided to define two XSDs, one for the data going
to the CWW and another for the data returning back to the DM. XSDs can be
seen as grammars defining the format of XML files by putting some
restrictions on the structure of the files and on the values contained. Using
such a formalism, it comes easy to discover errors and missing data in both
the structure and the content of the requests. This leads to an efficient error
handling that avoids wrong calls to the database’s API [13].

Typical data retrieval tasks fulfilled by the currently implemented CWW
are:

e Hotel Information Retrieval: Given some constraints, all the suitable
hotels of a certain area are returned, each one with all the information
available (prices for single/double room, phone number, stars, full
address, available services, parking and restaurant inside).

e Hotel and Restaurant Reservation: Once a hotel has been identified,
rooms can be reserved for a certain number of days. A reservation can
be done even for the restaurant, if the hotel has one inside. Reservations
are simulated at the moment since a real Internet connection with the
Hotels is not yet available.

¢ Point Of Interest (POI) Retrieval: Given a POI type (i.e. petrol station,
museum, etc.) and specified a certain area, all the matching POIs present
are returned, each one with all the information available (currently the
full address).

o Simple Route Query: This query is the fundamental query for the route
planning. A given address (even incomplete) is checked for its existence.
Possible inconsistencies and ambiguities are reported to the DM in order
to take a suitable action and interrogate the user.

2.6 Databases and API

The data used by the Dialog Manager may come from static or dynamic
databases. Static data needed during the interaction are stored in a MySQL
database installed in the in-car PC. This database includes information on
hotels (name, hotel type, hotel chain, stars, number of rooms, prices, phone
number, services offered, complete address, hotel surroundings) and on POlIs
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(name, brand name for special cases like petrol stations, complete address).
The geographic part of the database includes streets, places, municipalities,
provinces and countries, organized in a hierarchical structure in such a way
that every lower order entry is contained in one higher order entry (each place
is contained in one municipality, which is contained in one province). These
geographic entries are linked with the tourist part of the database using
special codes to easily identify the position of each hotel and each POI in the
geographic hierarchy and to quickly respond to conditional queries (such as
“I'm looking for a hotel X in the municipality Y’ ). Both tourist and
geographic data have been geocoded, their entries contain information on
position coordinates to allow the introduction of a navigation system in the
prototype.

The API developed to access the database is able to check the addresses
for consistency and uniqueness. When it receives an address as a S-element
object (province, municipality, place, street, street number), it automatically
checks whether there are zero, one or more than one correspondence in the
database. In the first case, which means that the system is receiving an
inconsistent request from the user, it incrementally drops elements and tries to
redo the query with fewer restrictions until it finds at least one item. In this
way the API is able to return to CWW a suggestion on what may be the
wrong element in the query. This will be returned to the Dialog Manager that
will take an opportune action with the user.

Foreseen improvements of the database content include:

e insertion of phonetic transcription for names and insertion of multiple
names. The database will contain phonetic transcriptions in three
languages in order to let the system dynamically build speech recognition
grammars. Moreover, it will have multiple names of hotels, POIs and
streets, to deal with the problem of users that say only a part of the name
or that use different names for the same POI.

e insertion of descriptive information on POI. This information will be
structured in different levels of detail. Starting from a general description
of the POI, the user will be given the possibility to obtain more specific
information. For example, in the case of a castle, the first description
could be a general single sentence on the castle that offers the user the
possibility to ask for the history, the art or the architecture of the building.
These topics correspond in the database to more specific descriptions that
in turn will lead to even more detailed ones, such as the construction of the
castle, its middle age history, its modern day history. In this way the user
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is not overwhelmed with synthesized information of a POI but may
explore only the desired information.

e POIs will be enriched with information about opening hours, tickets and
phone numbers.

Other functionalities are planned to expand the current prototype as follows:

¢ the database will contain the car manual, hierarchically organized to
allow consultation via a speech interaction.

e when the Internet connection will be available, the database will contain a
dynamic part which automatically downloads news from various web sites
and which is able to show the user the latest news according to his/her
preferences (finance, weather, politics, etc.).

e all the information that concerns user habits and preferences will be
stored in a user profile database and loaded by the Dialog Manager during
dialogue start-up.

3. EXPERIMENTAL SETUP

Some recognition experiments were conceived to evaluate the
convenience of using multiple recognition units in order to increase the
system performance without reducing the language coverage. Another aspect
under investigation is the reliability of the sentence likelihood as score for the
selection of the most promising recognized sentence among the unit outputs.

Data were collected with the “Wizard of Oz” (WOZ) technique. This
method allowed to acquire speech of real drivers using an apparently fully
functioning system (the codriver), whose missing recognition capabilities
were supplied by an hidden human operator (the wizard).

3.1 WOZ Database

An Italian WOZ-based data collection was organized in order to
reconstruct a real situation in which the driver tries to fulfill, by voice
interaction, tasks as:

Reach a Point-Of-Interest (POI) in Trento city

ask for hotel/restaurant information and book a room or reserve a table
ask information about the car

ask information about a museum, a church, etc.
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These represent the typical scenarios taken into consideration by the VICO
project.

During recordings, a co-driver was always in the car to describe each goal
the driver had to pursue by voice interacting with the system. The wizard was
at ITC-irst labs, connected to the mobile phone of the car. A specific setup
was designed in order to simulate an interaction as realistic as possible and to
allow a synchronous speech acquisition through two input channels, one
connected to a close-talk head-mounted microphone (denoted as “CT”) and
the other to a far-microphone placed on the ceiling (denoted as “Far”). The
audio prompts were produced by using a commercial text to speech
synthesizer.

The present release includes 16 speakers (8 males + 8 females), that
uttered a total of 1612 spontaneous speech utterances (equivalent to 9150
word occurrences). The total speech corpus duration is 132 minutes (mean
duration of utterance is 4.9 sec) and the total vocabulary size is 918 words.

Note that all of the speakers were naive to the use of this type of systems
and that the wizard behavior was based on an interaction model, previously
defined, that comprised the simulation of recognition errors typical of the
foreseen real scenario. As a result, many sentences include typical
spontaneous speech problems (e.g. hesitations, repetitions, false starts, wrong
pronunciations, etc.) and often consist in many words (in a few cases the input
utterance contained more than 25 words). The realism of the experiment is
also shown by the fact that at the end of the experiment, after more than one
hour, all the speakers declared they were not aware of the fact that a human
was interacting with them.

3.2 Recognition experiments

The present architecture is based on parallel recognizers covering distinct
application domains and/or geographical clusters. The baseline performance,
shown in Table 6-1, is evaluated using a single class-based language model,
trained on a corpus of about 3000 sentences that cover different applications
domains such as navigation, hotel reservation, address book management,
questions about the car. The geographic coverage of this LM, indicated by the
suffix Cgl, is the whole Trentino province, including names of cities, streets,
hotels, restaurants, POIs (churches, castles, museums). Equal probability has
been assigned to all the items within each geographical class. The derived LM
includes about 12000 words and has a Out-Of-Vocabulary (OOV) rate
(evaluated on the WOZ data) of 1.1 %.
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LM ooV WRR WRR
Vocabulary  Rate (CT) (Far)
size
Dgl- 12k 1.1% 58.8% 46.1%
Cgl

Table 6-1. Baseline performance for the CT and Far input channels.

Here and in the following the various language models are named
according to the domain (denoted by letter D) covered by data used in the
training phase. If a LM contains geographical classes, its name includes
information about the cluster (denoted by letter C) which contributes the lists
of names (cities, streets, hotels, etc.) used to expand the classes. Therefore,
for example, Dgl-Cgl denotes the LM trained on the global (g/) domain with
classes expanded with the global (g/) lists of names.

There are different options for building smaller LMs that contribute to
provide the complete coverage of the application domains foreseen in the
VICO system. A simple solution is to reduce the contents of the classes
associated to the large lists (cities, streets, hotels, etc.) introducing some
geographic clusters and building several LMs, each one covering only a
reduced area: in our setup Trentino has been divided in 7 geographic clusters
(C1,C2,C3,C4,C5,C7).

Another possible strategy in order to exploit different recognition units is
to build LMs not containing the classes associated to the big lists. This idea
derives from the observation than a generic dialogue contains a relatively low
number of sentences including the pronunciation of a noun associated to a
big list: this leads to the introduction of 2 further small LMs, namely Dge and
Dcmd, that have been trained removing from the corpus the sentences with
geographic class contents (e.g. cities, streets, hotels, POIs). In particular
Dcmd is a very restricted LMs (the vocabulary size is 130) and it should
handle only confirmation/refusal expressions and short commands to the
system.

Table 6-2 shows the results for these new LMs: Dgl denotes the original
global LM while the suffix Ci specifies the geographic cluster covered. The
higher WRRs obtained with Dgl-CI are motivated by the fact that the WOZ
material regards geographic items mainly associated to C1, i.e. the Trento city
area, where the acquisition took place. It is worth mentioning that although
WRR of Dge and Dcmd is rather low, the relative string recognition rate
shows that these LMs cover adequately a relevant part of the corpus.
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LM Vocabulary ooV WRR WRR
Size rate (CT) (Far)

Dgl- 3.0k 2.7% 62.5% 55.9%
Cl

Dgl- 25k 4.6% 58.1% 50.6%
Cl

Dgl- 35k 4.6% 55.2% 46.2%
Cl

Dgl- 3.1k 4.8% 57.4% 50.3%
Ci

Dgl- 3.8k 4.5% 57.8% 49.5%
Ci

Dgl- 42k 4.8% 57.4% 49.9%
Cl

Dgl- 48k 4.2% 57.4% 49.0%
Cl

Dge 1.3k 16.7% 46.2% 40.2%

Demd 130 65.6% 12.4% 8.3%

Table 6-2. Vocabulary size, OOV and recognition results on the overall WOZ corpus for the
restricted LMs.

A critical issue related to the multiple units approach is how to select the
most reliable output on the basis of a confidence score. Anyway, even
adopting the simplest strategy of selecting the output string on the basis of its
likelihood (ML), a considerable improvement has been observed, as shown in
Table 6-3. Moreover, once the recognition engine is integrated on the
complete system, the DM is in principle able to predict the most likely
domains of the following interaction step, or to assign a proper weight to the
members of the geographical classes. Only a few recognition units should
therefore remain active, on the basis of the DM’s prediction.
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WRR WRR
(CT) (far)
Dgl-Cgl 58.8% 46.1%
ML Dgl-Cf1-7] 62.7% 51.4%
ML Dgl-Cgl+Dcmd+Dge 61.4% 49.2%
ML Dgl-Cf1- 64.2% 53.9%
7]+Dcmd+Dge

Table 6-3. Recognition results in the multiple units framework: the maximum likelihood
criterion (ML) selects the most promising output among the different recognized strings.

4. CONCLUSIONS AND FUTURE WORK

This work represents a preliminary step in the development of a dialogue
system for in-car voice interaction with advanced services of navigation
assistance and tourist information access. As the system complexity in the
given framework is a crucial aspect, our research focuses on the development
of multiple fast recognition units and a suitable combination strategy that may
lead to better performance than the adoption of a single full-coverage
recognizer.

Even if the application of a maximum likelihood criterion to select the
recognition output represents the simplest choice, it offers some advantages in
terms of performance and also complexity, assuming the ability of the
dialogue manager to predict at each interaction step the most likely domain in
terms of geographic area as well as of dialogue context. The geographic
clustering seems to be effective in presence of large list of names (cities,
streets and hotels names) that give rise to a considerable acoustic
confusability. Work is under way for what regards the selection of more
reliable outputs, on the basis of confidence measures and word hypotheses
graphs.
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In recent years, the transmission speed of a cellular phone of the next generation

has reached 100Mbps, and the transmission speed of optical communication
amounts to 40 Gbps. Accordingly, demand for robust error correction code
with high-speed processing of a Gbps class is increasing. The proposed code
“High dimensional torus knot code” performs well in a field with many errors.
In a performance comparison with the Reed-Solomon code, the performance of
the proposed code is better than the Reed-Solomon code in an environment
with 107'-10%error. Moreover, doing a simulation in a CDMA communication
environment, fluttering of error property has not occurred with the product
code of convolutional codes (as inner code: the rate is 1/2) and the proposed
code (as outer code: the rate is 0.53). Alternatively, under the same conditions,
a fluttering error occurred in the Turbo cord. By applying the LSI technology,
we developed ASIC of the proposed code, and FPGA for the high-speed
MPEG communication device. We developed the three-dimensional, size-nine
3Dm9 and 4Dm5 chip. More specifically, the 3Dm9-code chip (developed in
2001) having a rate of 0.70 and block length of 729 bits was burnt onto a 100-
kilogate, 0.35-micron-order LSI chip, and the 4DmS5-code chip (r=0.41,
block=625, developed in 1999) was burnt onto a 50-kilogate, 0.6-micron-order
LSI chip. Moreover, the 3Dm9-code chip was operated at a clock speed of
66.6MHz with throughput of 48Gbps. Finally, after applying the developed
FPGA, the high-speed MPEG communication device can transmit a movie
signal of 33Mbps.

High-Dimensional Discrete Torus Knot Code, Robust error correction code,
High-throughput(48 Gbps) Coder and Decoder, Wired logic
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1. INTRODUCTION

Recently, transmission speed of radio communications represented by
LAN and cellular phones has largely increased. Hence, there is an increasing
demand for robust and high-speed error correction code. As for the high-
speed and robust error correction code, the Reed-Solomon code is mentioned
first, but its correction capacity is inferior to the proposed code in an
environment with an error of 10™ to 107 Moreover, the Turbo code does not
perform well in a practical environment.

In order to meet requirements, we have proposed a topological new code
“High dimensional torus knot code.” The proposed code is resistant to a
random error of 10”" to 10, and to the burst errors. This code can be realized
as a high-speed circuit, which makes full use of parallel operation and wired
logic technology, because it consists of simple parity operations. We
successfully realized the hardware implementation of the proposed code on
an ASIC and FPGA with throughput of 6 to 48 Gbps, and we developed the
high-speed MPEG communication device by applying the proposed code.
The proposed code will be expected to work well in degraded channel
situations such as cellular phone [1].

2. ARCHITECTURE OF HIGH DIMENSIONAL
DISCRETE TORUS KNOT CODE

Figure 7-1 represents a schematic diagram of the proposed code that
shows data flow from input to output. The proposed code consists of two
processing blocks, which are a high-dimension parity code and a torus knot
scramble.

Burst & Random Error

Diatis Hi-D Torus Torus Hi-D Data
[:} Parity [:> knot knot [> Parity [>
In Out
Encode Scramble Descramble Decode
y Channel

L.
A Y
Proposed Code Block Size Scrambling Proposed Code
(Encode) (Decode)

S

Figure 7-1. Schematic diagram of proposed code.
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The high-dimension parity code has an n dimensional discrete cubical
structure in Figure 7-2. Each dimensional axis has a size of m, and the axis
consists of m code points. The code is denoted as nDm, where n is dimension
and m is size. For example, 3Dm5 means that dimension of the code is three
and size is five. Each axis has one single redundant digit and m-1 data digits,
which satisfies the even parity. There are n such independent parity axes,
which form m" code points. The nDm code has (m-1)" data digits, totaling m"
digits including parity redundant digits, and has a transmission rate of R=(1-
1/m)". On the decoding side, each digit is checked by n parity check lines
and is corrected when the number of failed parity check lines exceeds the
threshold value.

On these code points, the transmission order runs obliquely to form a
discrete torus knot similar to the number change in Figure 7-3. Therefore, the
errors that appear on the block are uniformly distributed on each code axis.

Parity

r2

Figure 7-2. Hi-dimension parity code, an example of 3Dm4.

3. PERFORMANCE OF THE PROPOSED CODE

Figure 7-4 illustrates the results of the proposed code to the Reed-
Solomon code. Simulation conditions are summarized in Table 7-1.
Although the performance of the Reed-Solomon code is higher than the
proposed code in an area with few errors, but in an area with many errors, the
performance of the proposed code is higher than the Reed-Solomon code.

When the proposed code is constituted into the high dimension structure
as four dimensions, the number of uncorrectable patterns extremely
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decreases. This is the reason why the performance of the proposed code is
better than the Reed-Solomon code in an area with many errors. An error of
10" from 107 encounters frequently in the radio communications.

Figure 7-3. Transmission order (Torus scramble), an example of 2Dm4.

Input Random error generated
error type by 512 bits M-sequence
Code Type Block size Rate
Reed- 2040 bit 0.62
Solomon
(255,159,8)
Reed- 2040 bit 0.79
Solomon
(255,203,8)
Proposed 6551 bit 0.62
code (4Dm9)
Proposed 104976 bit 0.79
code (4Dm18)

Table 7-1. Simulation parameters.
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A radio communications in a cellular phone is a degraded channel.
Accordingly, the proposed code’s performance in CDMA, which is the
communication system of a cellular phone of the current generation, was
evaluated using simulator. The tool used for the simulation was a MATLAB,
and the CDMA environment was built using the attached IS-95 library in the
MATLAB. The proposed code has a disadvantage in radio communications
because it decodes by hard decision. In analog channel, introducing a soft-
decision code can raise a correction ability. When we used the product code,
an outer code was the proposed code, and an inner code was the
convolutional code. Simulation conditions are summarized in Table 7-2.
Figure 7-5 indicates that a fluttering error occurred in the characteristic curve
of the Turbo code, and the Turbo code did not reduce the error to the 107,
Alternatively, the proposed code made a 107 reduction in error.

1.LE-01
1.E-02
1.E-03
1.E-04
1.E-05
1.E-06
1.E-07

RS(255,159,8) -

RS(255,203,8)

Decoded BER

1.LE-08
1.E-09

1.E-10 :

1.E-03 1.E-02 1.E-01
Input BER

Figure 7-4. Results of comparing reed-solomon code with the proposed code.

Figure 7-6 shows the improvement in the decoded bit error rate versus
Eb/No for AWGN environment. At the decoded BER of 10'5, the required
input BER of the proposed code is 0.020 and 0.026 for 4Dm6 and 4DmS5,
respectively. In contrast, the coding gain of the 8-PSK TCM is given by the
minimum Euclidean distance of {22+2+( /)z} =3 141(6.61dB) against the



118 Chapter 7

distance of 42 (3.01dB) of uncoded 4-PSK. Therefore, the required Eb/No of
the proposed code with 8-PSK TCM is estimated as 2.0 to 2.5dB for 4Dm5
and 4Dm6 codes to obtain 10”. The value is sufficiently competitive to that
of the Turbo code with interleaver of 1024, especially for high-grade BER
ranges less than 107. The performance is also similar to the concatenated
code of the Reed-Solomon (204,188) with the 3/4 punctured convolution
code for digital TV and for space communications [2,3,4,5].

1.LE+00

Conv+4Dm?7
Conv [ ‘ﬁ-: e Vehicular-C
il N | ekl . i TS
1LE-0I S e e o S
V-C Turbo %
™ -
S~
i | 0 SRR --.,*_ e S
. Conv o. e - x
Conv
B LE-03
i 4 Vehicular-B
T V-B Turbo
2
) g NG 9
8 1E0 'V-A Turbo —'X
Aa :
Conv+4Dm7
(6 iy SRS L Lt
- Vehicular-A
Conv+4Dm7
1.E-06
1.LE-07 -
5 0 15 20

s 10
SNR(dB)

Figure 7-5. Results ofthe simulation in CDMA environment.

4. HARDWARE IMPLEMENTATION

The proposed code consists of a simple parity check code. Therefore, we
discovered the simple relation between parity and data digits. Accordingly, a
significant part of the encoding and decoding processes are substituted with
wired connections between memory cells. We developed a program to
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automatically generate a VHDL source program, adjusting to its code
dimension and size. VHDL is a hardware description language, which
translates software programs into hardware configurations. Installation of
hardware circuitry through software language is especially suitable for the
circuitry that consists of repetition or regularity. By applying this program, it
is possible to generate the encoder and decoder for three to five dimensional
codes.

Communication CDMA(IS-95)Standard
Parameter Modulation Type:BPSK/QPSK
Speed:9.6kbps

Defuse code:LongPN,64Walsh, PairPN
Defuse rate:128

Input error type AWGN-+Multipath-fading
(Used Model is Vehicular-A,B,C, Doppler
frequency 200Hz)
Code Type Rate
Convolutional code (k=9,G (753,561) ,8bit soft decision) 1/2

Turbo Code (iteration6) Convolution (k=3,G(7,5) ,8bit soft 1/3
decision)

Inner code:Convolutional code(k=9,=1/2,G (753,561),8bit soft 1/4
decision)

Quter code: Proposed code (4Dm7, R=0.53)

Table 7-2. Simulation parameters.

Figure 7-7 shows the decoding circuit. The data received are fed to the
memory cells of the torus-connected shift register. The connection order of
the shift register is the same as the order of the encoder output shift register.
The register contents are then transferred in parallel to the parity calculation
circuit as well as the majority logic circuit to decide the digit. The majority
logic circuit is a principal part of decoding, and whether or not the value
exceeds the given threshold, each digit is corrected by a majority decision of
the n independent parity checks. To improve the decoding characteristics, the
decision of the majority logic circuit is repeated several times by varying the
threshold value, and the digit value determined by the logic circuit is fed
back to the input side register. After completion of decoding, only the data
digit is transferred to the output shift register.
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Figure 7-6. Improvement in decoded BER for random error by concatenation of the proposed
code with convolution code with three memory cells.

Chip-Spec
Circuit Size 100kGate NAND
Process 0.35 micron m
Chip Size 31.2*31.2mm
Package QFP256Pin
Clock Speed
4.1.1.1.1 66.6MHz
Through-put 48Gbps
Input-Output 66.6*16M bps
Code-P
Code 3-Dimension Size 9
(3Dm9)
Block Size 729 bit
Data Size 512 bit
Rate 0.70

Table 7-3. Outline of developed-chip for 3-dimension code
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The outline of the LSI chip of the 3 dimensional size 9 code is shown in
Table 7-3. The LSI chip consists of 100k gate of 0.35 micron, and has an
input-output speed of 1 Gbps and a decoding throughput of 48Gbps. The LSI
chips have been successfully applied to a trial radio transmission equipment

of image of a Gbps class.
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Figure 7-7. Decoder configuration
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S. CONCLUSION

We proved that the hardware implementation of a torus knot code was
effectively realized by using a unique circuit configuration, which maximizes
the cyclic and symmetrical properties of the code. Furthermore, through
performance simulations, the code was proven to have robust decoding
characteristics with a degraded channel such as one hundredth to one tenth.
In the near future, the high dimensional torus knot code is expected to find
wide applications in the field of high-speed radio communications.
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Abstract:  In this chapter, we present a modified cerebellar model articulation controller
(MCMAC) to be used together with the amplitude spectral estimator (ASE) for
enhancing noisy speech. The MCMAC training overcomes the limitations of
the CMAC technique we have employed noise/echo cancellation in a vehicular
environment. While the CMAC in the training mode has trained only the
trajectory it has visited by controlling the reference input, the modified
MCMAC-ASE system architecture proposed in this work includes multiple
MCMAC memory trainable for different noise sources.

Keywords.‘ Cerebellar model articulation controller (CMAC), speech enhancement, echo
cancellation, in-car noise, amplitude spectral estimation, Wiener filtering,
Kohonen’s self-organizing neural network (SFON), Grossberg learning rule,
neighborhood function, and MOS.

1. INTRODUCTION AND CEREBELLAR MODEL
ARITICULATION CONTROLLER

In this chapter, we present first a cerebellar model articulation controller
(CMAC) block diagram as shown in Figure 8-1, which can be described as
an associative memory that can be trained to implement non-linear functional
mappings.
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Figure 8-1. Cerebellar Model Articulation Controller (CMAC) Block Diagram.

The CMAC network in Figure 8-1 can be viewed as two layers of
neurons, and hence, its operation can be decomposed into two separate
mappings. The input vector is transformed to a vector of binary values,
which, in turn, produces at the output the sum of weights that link itself to
the corresponding input vector of value one. Given an input vector, the
desired output at the output layer can be approximated by modifying its
connection weights through the use of an adaptation process, commonly
known as the training mode in the perceptron theory.

While there have been many studies in the area of CMAC memory and its
associated architectures, most of them were concentrated in adaptive control
problems and a simple two-dimensional CMAC configuration was sufficient
for them.

In the case of signal processing applications, in particular, in speech and
image processing problems because of the data sizes involved and the
locally-stationary and locally ergodic nature of the underlying processes,
there are a number of factors affecting the performance. These, in turn,
require more sophisticated setups. In an earlier work, we have used the
CMAC concept in speech enhancement and echo cancellation with
encouraging results [6]. In particular, the CMAC was used in the Wiener
filtering stage of an Amplitude Spectral Estimation (ASE) for noise and/or
echo cancellation in moving vehicles.
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A major challenge in that study was the need to train the system, which
was unacceptably long. In this current modified configuration called
MCMAC, we have attempted to overcome this drawback and yet to improve
the performance even further.

It is difficult to train the CMAC memory because the characteristic
surface has to be learned while a classical model controller controls the plant.
For a particular control setting, the plant output typically follows a certain
trajectory. Hence, only the weights of the output neurons (cells) visited by
the path of this trajectory are updated, i.e., not every cell in the memory. This
poses a major problem in many control situations that require on-line
learning for which the control rules are not readily available.

We will now present the mathematical inner workings of the CMAC,
which will be used later in the proposed MCMAC configuration. The CMAC
memory of Figure 8-1 consists of a two-dimensional array that stores the
value of the signal x,(kT) as the content of an element in the array with
coordinates #,j [1]. The value at location at i, j is obtained by quantizing the
reference input ¥, (kT) and the plant outputy,(kT). This quantization
process can be described in the form of:

”(J’(kT)”ymm)

max ymin

Q(kT)) ={

] (1)

where
Ymax = Maximum value of y(1),
Ymin = Minimum value of y(#), and
n = Resolution of the CMAC memory.

In addition, & represents a discrete step and T is the sampling period. During
the initial operation, the plant receives almost all of its control input from the
classical controller, while the CMAC memory is initialized to a set of preset
values. During each subsequent control step, the classical control actuation
signal x,.(kT) is used for building a CMAC characteristic surface, which
converges to the final surface at the end of the process.

The CMAC memory defined in previous few paragraphs can be
visualized alternatively as a neural network consisting of a cluster of two-
dimensional self-organizing neural networks (SOFM) in the field of expert
systems. However, instead of a random initialization of the neural net
weights, as it is normally done, here they are fixed such that they form a two
dimensional neural grid as depicted in Figure 8-2.

The winning neuron in the CMAC memory at time step k is identified as
the neuron with weights Q(redkT)) and Q(y,(kT-T)), given the input values
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Yre(kT) and y,(kT-T). The weights are effectively the coordinates (i, j) of the
location of the neuron in the SOFM. The output of the winning neuron is
obtained from the weight w; of the output neuron.

i=Q(x,(kT))

OoO-® OO

'O
1
n
r ;
2 .
i
J=00(,((k=-DT) __— n1 " winner neuron

¥/

Figure 8-2. CMAC Memory Architecture.

As in the Kohonen’s neural networks framework, the practice in CMAC
learning is a competitive learning process and follows the well-known
SOFM learning rules. With a simple caveat, since the weights of the cluster
of neurons that represent indices to the CMAC memory are fixed, learning
occurs only at the output neuron. To implement this, the learning rule for
CMAC has been based on the well-known Grossberg competitive learning
rule and it is applied only at the output layer. Furthermore, no competitive
Kohonen learning rule is applied to the input layer. Therefore, the CMAC
learning rule can be represented by [2]:

i=00,y (kT)), j=Q(y,(kT =T)); i,jeN

k+1 k k
Wi = j> + Ax(kT)) - w! J?)

)

where

A
x(kT)

Learning parameter,

Plant input at step %,
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Y, (kT) = Reference input at step &,

¥, (kT —T) = Plant output at step k — 1,
(%)

w;; = Contents of CMAC cell with coordinates i,j at step k, and
QO(0) = Quantization function defined by equation (1).
2. MODIFIED CMAC (MCMAC) STRUCTURE

The Modified CMAC architecture, abbreviated by MCMAC, has been
proposed [3] to overcome this problem by using the plant closed loop error
e.(kT) and the plant output y,(kT") during the training. This allows on-line
training as well as ease in the planning of the training trajectory. The training
path can now be more directly controlled using the reference plant
input Vier (kT) . The proposed MCMAC block diagram is depicted in Figure

-3.

ieN Q

i

yﬂ”(k.r) + ” Ec(kn Y Q ieN " c?}% Xn(kn - Plant yo(kT
e roler
Update T

value

e:(KT)

Figure 8-3. Proposed Modified Cerebellar Machine Articulation Controller (MCMAC).

The architecture of the proposed MCMAC is quite similar to a CMAC,
except that the quantized closed loop error is employed, which is simply:

e, (kT) = ¥, (kT) =y, (KT)

This error signal and the plant output y,(kT) point to a two-dimensional
MCMAC memory array instead of the original y,, (kT and y,(kT —T)
in the CMAC configuration. The learning rule for this modified architecture
can be formulated by the following set of equations:
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m=Q(e (kT)), n=Q(y,(kT)); mneN
WD = ® 4 Ae (KT

man m,n

=wh 1 h (Al-a)e,(kT)+arw')

m.n m.n m,n

for|m—-i|l<N,|n-j|<KN; i,jeN

-lr - .|2/20'2

A —e mn i,
m,n
(k1) _ Gl _ (k)
AM’m,n = "mn wm,n
where
(m,n) = Cell coordinates,

kT = Sampling instant
A = Learning parameter,
a = Momentum parameter,
Y, (kT) = Reference input at step &,
»,(kT) = Plant output at step &,

e, (kT) =y, (kT) -y, (kT); closed-loop error,

Chapter 8

3)

4)

&)

(6)

N = Neighborhood parameter,
| 7w = 70, ; | = Distance from cell located at (m,n) to cell (i, j)
o’ = Variance of Gaussian distribution,
w,("k)f, = Contents of MCMAC cell located at m, n at step k, and
Q(0) = Quantization function defined by equation (1).

It is worth noting that the original CMAC and the proposed MCMAC
configurations attempt to model the characteristics of the plant on the basis
of input indices. The difference between the two is that the former system
learns from the plant input x(k7) and the output y,(kT’), while the latter
one employs the closed loop error e, (.7} and the plant output y (kT) in
their respective learning modes. Hence, the MCMAC does not requlre an
inverse model of the plant and there is no need for the classical controller to
be operational during the learning phase. This has an added advantage in the
determination of the training trajectory through the control of the reference

input v, (kT .
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Although this modification to CMAC has removed the need for a
classical controller, the training of the modified cerebellar articulation
controller (MCMAC) still requires a careful planning such that all of the
cells in the MCMAC memory have to be visited. The contents of the
MCMAC memory represent the plant characteristics to be controlled by the
neuro-controller.

From our graph theory knowledge, the MCMAC memory can be also
visualized as a 3-D characteristic surface, or the contour surface. The axis of

M0 =s(+d() ¥

s(1) o ZY (k@) »
i : 2 §
S e |

m Wiener filter
|_' (o)
. pier| | [u-20f P

d(t) m,

Figure 8-4. Noise Canceller-based on Amplitude Spectral Estimation and Wiener Filtering.

this contour surface consists of the cell indices (m,n) representing the
locations with quantized values of the closed-loop error and the output
Q(e. (kT))and Q(y,(kT)), respectively, and the content of each cell. This
information is subsequently used in the computation of the training rate for
both the CMAC learning rule and the modified learning rule MCMAC.

In the framework of speech enhancement using the ubiquitous amplitude
spectral estimation (ASE) techniques, we have employed the usual short-
time Fourier transform method (STFT) to estimate the power spectral density
for both the reference noise and the noisy speech [4, 5, 6]. To achieve that
we have utilized a back-to-back configuration of a stereo microphone pair, as
shown in Figure 8-4.

This block diagram and its numerous variations and extensions are very
well-known in the speech processing community and we wanted to test our
ideas in this framework. To retrofit the stereo microphone pair suitable to the
vehicular systems we have placed them back-to-back as it has been regularly
done in recording studios.
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It is not difficult to see that the channel facing the speaker (m,) is
expected to contain mainly the speech from a speaker, whereas the opposite
channel (m,) will be primarily the reference signal (noise) and the
secondary and ternary echoes reflected from the windshield and the back of
the car, respectively. Understandably, there will be some portion of the
reference signal in the front channel as well due to reflection from the
chamber walls, the primary acoustic echo and the speech in the other one.

It was reported in a number of works in the automotive science that the
corruption of speech in a vehicular environment is not purely additive in
nature. In most cases, the relationship between the original speech and the
noise involves a convolution process instead of a simple addition, which has
been the norm in the Shannon-based information processing and
communication systems community. In other words, the noisy speech can be
better expressed by:

y(1)=s(t)*d(t) (7

Here s(t) represents the speech input whereas, d(f) is the overall
degradation, which may include the impulse response of the vehicular
chamber. Since the model is not additive, Fourier analysis and the
subsequent filtering cannot be applied directly. This, in turn eliminates the
usage of the ubiquitous LMS-based ASE algorithm as it has been the case in
the majority of earlier speech enhancement techniques including our earlier
studies [4,6].

To overcome this, we have opted to resort to a high-order CMAC with a
non-linear basis function. This has allowed us to tackle both the ambient
convolutive noise term associated with the chamber and the traditional
additive noise term a-la-communication systems.

Experimental results reported later in this chapter demonstrate not only
the effectiveness of the proposed MCMAC system when coupled with an
ASE in the enhancement of the convolutive nature of noise but also the
robustness of the technique promises as a viable candidate for deployment in
the next generation vehicular communication systems.

The Signal plus Noise to Noise Ratio (SNNR) has been used as the
quantitative measure of performance in this work and it can be defined as the
sum of the a priori SNR and the a posteriori SNR values:

SNR;,,, = (1- B)SNR + BSNR o (8)

posteriori
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where § € (0,1). It is not difficult to conclude from Figure 8-4 that the

SNR priori and the SNR posterioi T€ given by:
2
posteriori — M -1 (93)
E{D(w))
2 A 2
SNR . = IH k-4 (a))Yk—ﬂ.(w)l _ ‘Sk—l(w)~ (9b)

priori —

E{D@|}  E{D@)}

In the training mode, Equations (9a2,9b) and their simplified
approximations have been used to obtain the weights for the Weiner filter.
These weights were then stored into the MCMAC memory.

In the recall mode, however, all the memory elements, pointed by the
SNR,,.,,; and the SNR ;.0 as address indices, are added together with
respect to a neighborhood basis function. A neighborhood basis function is
needed to restrict the impact of various memory locations in the computation
of the final winning neuron.

The neighborhood function f(x) can be a simple average or an
algorithm based on a uniform distribution of errors in a specific region of
memory weights. In practice, spline functions have been the most popular
basis functions for higher-order CMAC systems.

In our experiments, we have chosen a Gaussian neighborhood function as
the basis function:

VY ENE.
f=e 2 © (10)
where o is the variance of a Gaussian distribution and a,, -x, 18 the
distance between a cell with coordinates (7,j) and the input with the same

coordinates. The details of the learning rule and the associated neighborhood
function and their implementations can be found in [7].

3. ASE-MCMAC ALGORITHM

In Figure 8-5, we propose a speech enhancement system including an
MCMAC where the Weiner filter coefficients are constantly updated. The
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variance of the signal to noise ratio is used as the address index to a specific
MCMAC memory location and the third dimension of the MCMAC memory
is the frequency.

The ASE algorithm as configured in Figure 8-5 operates in the frequency-
domain since we need to compute the spectral value used in SNR
computation (8-9a, 9b). Using the learning rule as expressed in (3-6), we
compute the profile of the Weiner filter weights and store them in the
MCMAC memory. These new or updated values from the MCMAC memory
are read and used as the Weiner filter weights in estimating the enhanced
speech without any musical noise artefacts. Subsequently, we use the
enhanced speech to calculate the SNR values needed in the ASE module and

w=H, x(H+H,d1) FFT Amplitude Spectral |
| Estimator (ASE)
@ ----- - [ FFT P
: :‘ ()
speal:er S m, ]
o SNRyon & |l heMaC
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Nl aseonsignall | ywainer Filt
:“: > oriances (Wemer Filter)
3” “‘ *
Delay o =
/ PR LT e IFFT = &
Naojse ! 1) —
------- + {-—
Y Y
vo()=H,x(t)+H,.d(t) Speplis

_>C To far end speaker . -
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Figure 8-5. Block Diagram of the Proposed ASE-MCMAC Using a Microphone Pair.

the SNR variance module. Therefore, this closed-loop nature of the ASE-
MCMAC allows the system to employ an unsupervised learning.

In the recall mode, however, the information needed for the computation
of address indices are all in the time-domain, except for the processing of the
noisy signal by the Wiener filter. We could have carried out this step in the
frequency-domain as well, but that would have required a number of FFT
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modules. As expected, working partly in the frequency-domain and partly in
the time-domain the overall processing time has been shortened
considerably.

Along the lines of many practical echo canceller systems reported in
literature, we have performed a frame-based updating strategy for our
Wiener filter coefficients as opposed to the sample-by-sample computations.
In addition to yielding considerable computational savings, this frame-by-
frame approach turns out to be consistent with the subsequent speech
compression stage, where one of the existing standards is normally employed
including LPC-10, RTP, CELP, MELP, and their derivatives.

4. EXPERIMENTS AND DISCUSSION OF RESULTS

To evaluate the performance of the proposed technique the ASE-
MCMAC noise cancellation system of Figure 8-5, has been built as well as
the benchmark LMS-ASE system. The microphones m; and m; were
presented with a pre-recorded speech and noise data collected in a moving
vehicle subject to varying environmental conditions. We will refer these
microphones as the primary channel microphone m;, which has been placed
towards the speaker and the noise reference microphone mj, which was faced
away from the speaker, respectively. It is worth noting that this back-to-back
placement of microphones is the standard procedure in recoding studios.
Using several combinations of SNR values for m; and m; we have created
noisy speech, i.e., low-noise, medium-noise, and high-noise regimes.

In Figure 8-6, we illustrate the performance of our speech denoising
experiments based on the proposed MCMAC-ASE algorithm against the
benchmark LMS-ASE algorithm under various noise conditions.
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Figure 8-6. Performance of ASE-MCMAC and LMS under Different Noise Regimes.

At low noise (high SNR) cases, the improvement over the benchmark is
insignificant, i.e., any technique would work as expected.

However, at high noise (low SNR) regimes, the case for a vehicle moving
in heavy traffic, the LMS algorithm clearly fails. On the other hand, the
ASE-MCMAC algorithm has performed remarkably well. We would like to
note that this conclusion is valid as long as the SNR of the noise reference
input into the microphone m; is less than that of the primary channel
microphone m;.

The advantage of the ASE-MCMAC over the classical ASE approach is
that once the noise spectrum has been trained only a recall process is needed
for processing incoming speech. Even though fairly encouraging results were
obtained in our earlier work based on a CMAC, the performance of the ASE
based on this modified version (MCMAC-ASE) is remarkably superior to its
predecessor. Response from quite a number of experienced listeners has been
uniformly the same.

In addition during training, the corrupt speech is also processed as well.
Recalling the fact that only a subset of the overall memory of the CMAC
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were trained while for the MCMAC case, almost all of the memory locations
in a fairly large neighborhood were trained during the learning cycle.

To gain more inside about the implications of the remarkable results from
MCMAC experiments, we plot the Wiener filter profiles for both the
classical CMAC and the current MCMAC algorithms in Figures 8-7.a and
8-7.b, respectively. Thus, no further training is required for a fully trained
MCMAC memory unless the profile of the Weiner filters changes drastically.
The MCMAC memory once fully trained can be used without any further
training. Multiple of this MCMAC memory may be required from different
training noise environment to form a complete system.

Nevertheless we would like to caution the reader that the ultimate
judgment would come from the formal MOS -based evaluations performed
under controlled stimuli. We believe the success of the proposed method
could be attributed to the fact that only a subset of the CMAC memory was
trained. For the case of MCMAC, however, almost all of the memory
locations in a fairly large neighborhood have been trained during the learning
cycle.

S. CONCLUSIONS

In this work we have presented a modified cerebellar model articulation
controller (MCMAC) and its deployment in the vehicular environment as an
integral part of the speech enhancement system. Even though, the
performance of the ASE-MCMAC algorithm is comparable to that of a
traditional LMS-based noise cancellation algorithm high SNR values greater
than -2dB, but for low SNR (high noise) regimes the proposed ASE-
MCMAC performs remarkably well and it has been shown to be very robust
in different type of noise in vehicles including the engine noise, road noise,
tire tractions, the wind and rain.

Provided sufficient computing power is available multiple MCMAC
memories can be employed to get additional gains as it is recently done in
microphone array-based implementations. In a recent report, this idea has
been explored with encouraging results within the framework of
environmental sniffing [8].
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Figure 8-7.a. CMAC Profile for the ASE Wiener Filter.

Figure 8-7.b. MCMAC Profile for the ASE Wiener Filter.



8. MCMAC-ASE for Speech Enhancment 137

REFERENCES

[1] Kraft, L.G., and Campagna, D. P., A Comparison of CMAC Neural Network Control and
Two Traditional Adaptive Control Systems, IEEE Control Systems Magazine, 36, 1990.
[2] Zurada J. M., Introduction to Artificial Neural Systems, Info Access Distribution Pte. Ltd.,

Singapore, 1992.

[3] C.Quek and P.W.Ng., Realisation of Neural Network Controllers in Integrated Process
Supervision, Inter. Journal of Artificial Intelligence in Engineering, 10(2), 135, 1996

[4] Ephraim, Y., and Malah, D., Speech enhancement using minimum mean square error
short-time spectral amplitude estimator. IEEE Transaction on Acoustics, Speech, and
Signal Processing, ASSP-32, 6, 1109, 1984.

[5] Jeannes, R. Le B., Faucon, G. and Ayad, B., How to Improve Acoustic Echo and Noise
Cancelling using a Single Talk Detector. Speech Communication, 20, 191, 1996.

[6] Abdul, W., Tan, E. C, and Abut, H., Robust Speech Enhancement Using Amplitude
Spectral Estimator, Proceedings of the IEEE ICASSP2000 Silver Anniversary, Vol. VI,
3558, 2000.

[7] Abdul W, “Speech Enhancement in Vehicular Environment.” Unpublished Ph.D. Thesis,
Nanyang Technological University, Singapore, 2003.

[8] M. Akbacak, and J. H. L. Hansen, “Environmental Sniffing: Noise Knowledge Estimation

for Robust Speech Systems,” Proceedings IEEE ICASSP2003, Vol. 2, pp. 113-116, Hong
Kong, April 2003.



This page intentionally left blank



Chapter 9

NOISE ROBUST SPEECH RECOGNITION USING
PROSODIC INFORMATION

Koji Iwano, Takahiro Seki, Sadaoki Furui

Department of Computer Science, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku,
Tokyo, 152-8552 Japan Email: iwano@furui.cs.titech.ac.jp

Abstract

Keywords:

This paper proposes a noise robust speech recognition method for Japanese utter-
ances using prosodic information. In Japanese, the fundamental frequency (Fp)
contour conveys phrase intonation and word accent information. Consequently, it
also conveys information about prosodic phrase and word boundaries. This paper
first proposes a noise robust Fp extraction method using the Hough transform,
which achieves high extraction accuracy under various noise environments. Then
it proposes a robust speech recognition method using syllable HMMs which model
both segmental spectral features and Fo contours. We use two prosodic features
combined with ordinary cepstral parameters: a derivative of the time function of
log Fo (Alog Fp) and a maximum accumulated voting value of the Hough trans-
form representing a measure of Fp continuity. Speaker-independent experiments
were conducted using connected digits uttered by 11 male speakers in various
kinds of noise and SNR conditions. It was confirmed that both prosodic features
improve the recognition accuracy in all noise conditions, and the effects are addi-
tive. When using both prosodic features, the best absolute improvement of digit
accuracy is about 4.5%. This improvement was achieved by improving the digit
boundary detection by using the robust prosodic information.

noise robust speech recognition, prosody, fundamental frequency (Fp), Hough
transform
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1. INTRODUCTION

How to increase robustness is one of the most important issues in building
speech recognition systems in mobile and vehicular environments.

It has been found that human beings use prosodic information to increase
the robustness in recognizing speech when acoustic information is unreliable
[1]. Since the fundamental frequency (Fp) contour is one of the most important
features for conveying Japanese prosody, it is expected to be useful for increas-
ing the robustness of automatic speech recognition. ¥y contour information has
already been used for improving the preformance of Japanese phoneme recog-
nition in clean condition[2]. However, with the present technology, it is not easy
to automatically extract correct Fy values, especially in noisy environments.
Various techniques have been proposed to smooth out incorrect values from a
time series of extracted Fy values, but these methods are not always successful.
This paper proposes a novel robust method, in which the Hough transform is
applied to a windowed time series of cepstral vectors extracted from speech, in-
stead of directly extracting ¥} independently for each frame of speech. Due to
its capability of extracting straight-line components from an image, the Hough
transform can extract a reliable ¥y value for each window. By shifting the win-
dow at every frame, a smooth time function of Fy can be obtained.

We also propose a speech recognition method using prosodic features ex-
tracted by the Hough transform, consisting of a derivative of the time function
of log Fy (Alog Fy) or/and a measure of periodicity. These features are com-
bined with ordinary cepstral parameters and modeled by multi-stream HMMs,
which are trained using clean speech. Since Fy contours represent phrase into-
nation and word accent in Japanese utterances, prosodic features are useful to
detect prosodic phrases and word boundaries. Therefore, the proposed method
using robust prosodic information is able to precisely detect word boundaries
and improve recognition performance under noisy environments.

The paper is organized as follows. In Section 2, a robust F' ¢ extraction
method using the Hough transform is proposed. Section 3 describes our mod-
eling scheme for noise robust speech recognition using syllable HMMs combin-
ing segmental and prosodic information. Experimental results are reported in
Section 4, and Section 5 concludes this paper.
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2. Fy EXTRACTION USING THE HOUGH
TRASNFORM

21 Hough Transform

The Hough transform is a technique to robustly extract parametric patterns,
such as lines, circles, and ellipses, from a noisy image[3].

The Hough transform method to extract a significant line from an image on
the z—y plane can be formulated as follows. Suppose the image consists of n
pixels at (z,%;) (¢ = 1,---,n). Every pixel on the z—y plane is transformed to
a line on the m—c plane as

c=—-zm+y (i=1,---,n) 9.1)

A brightness value of the pixel on the z—y plane is accumulated at every
point on the line. This process is called “voting” to the m—c plane. After voting
for all the pixels, the maximum accumulated voting value on the m—c plane is
detected, and the peak point (m, ¢) is transformed to a line on the z—y plane by
the following equation:

y=mz+c (9.2)

2.2 Fy Extraction Using the Hough Transform

Cepstral peaks extracted independently for each short period of speech have
been widely used to extract Fyy values. This method often causes errors, includ-
ing half pitch, double pitch and drop outs, for noisy speech. Since Fy contours
have temporal continuity in voiced periods, the Hough transform, taking ad-
vantage of its continuity, applied to time-cepstrum images is expected to have
robustness in extracting pitch in the noisy environment.

Speech waveforms are sampled at 16kHz and transformed to 256 dimensional
cepstra. A 32ms-long Hamming window is used to extract frames every 10ms.
For reducing noise effects of a high frequency domain, we extract and use time-
cepstrum images which are limited to 60~256 dimensions and liftered accord-
ing to the following formula:

cy= {0.6 + 0.4sin (%_6—20 X g) } - Cq (9.3)
where cq is the original dth cepstrum and ¢ is the liftered cepstrum.

To the liftered time-cepstrum image, a nine-frame moving window is applied
at every frame interval to extract an image for line information detection. The
time-cepstrum image is used as the pixel brightness image for the Hough trans-
form. An Ky value is obtained from a cepstrum index of the center point for the
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detected line. Since the moving window has nine frames, the time continuity for
90ms is taken into account in this method.

In conventional Fy extraction methods, Fy values are extracted independently
at every frame and various smoothing techniques are applied afterwards. The
problem of these methods is that they are sensitive to a decrease in correctness
of the raw Fy values. Since our method uses the continuity of cepstral images,
it is expected to be more robust than conventional methods.

2.3 Evaluation of Fy Extraction

Utterances from two speakers, one male and one female, were selected from
the ATR continuous speech corpus to evaluate the proposed method. Each
speaker uttered 50 sentences. This corpus has correct Fy labels given manually.
White noise, in-car noise, exhibition-hall noise, and elevator-hall noise were
added to these utterances at three SNR levels: 5, 10, and 20dB. Accordingly,
1,200 utterances were made for evaluation.

The correct Fy extraction rate was defined as the ratio of the number of frames
in which extracted values were within +5% from the correct Fy values to the
total number of labeled voice frames.

Evaluation results showed that the extraction rate averaged over all noise con-
ditions was improved by 11.2% in absolute value from 63.6% to 74.8%, com-
pared to the conventional method without smoothing.

3. INTEGRATION OF SEGMENTAL AND PROSODIC
INFORMATION FOR NOISE ROBUST SPEECH
RECOGNITION

3.1 Japanese Connected Digit Speech

The effectiveness of the #p information extracted by the proposed method on
speech recognition was evaluated in a Japanese connected digit speech recog-
nition task. In Japanese connected digit speech, two or three digits often make
one prosodic phrase. Figure 9-1 shows an example of the Fj contour of con-
nected digit speech. The first two digits make the first prosodic phrase, and
the latter three digits make the second prosodic phrase. The transition of Fj
is represented by CV syllabic units, and each CV syllable can be prosodically
labeled as a “rising”, “falling”, or “flat” Fp part. Since this Fy feature changes
at digit boundaries, the accuracy of digit alignment in the recognition process is
expected to be improved by using this information.
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Figure 9-1.  An example of Fp contour of Japanese connected digit speech.

3.2 Integration of Segmental and Prosodic Features

Each segmental feature vector has 25 elements consisting of 12 MFCC, their
deltas, and the delta log energy. The window length is 25ms and the frame
interval is 10ms. Cepstral mean subtraction (CMS) is applied to each utterance.

Two prosodic features are computed: one is the A log Fy value which repre-
sents the Fp transition, and the other is the maximum accumulated voting value
obtained in the Hough transform which indicates the degree of temporal conti-
nuity in the £j.

Alog Fy value is calculated as follows:

log F{
AlogFy = d(;gt 0
_ dlogFo Eiﬁq
N dFy dt
1
= AR (9.4)

AFy is directly computed from the line extracted by the Hough transform.

An example of the time function of the A log Fy and maximum accumulated
voting values is shown in Figure 9-2. A male speaker’s utterance, “9053308”
“3797298”, with white noise added at 20dB SNR is shown. In unvoiced and
pause periods, the A log Fy fluctuates more than in voiced periods. The maxi-
mum accumulated voting values in unvoiced and pause periods are much smaller
than that in voiced periods. These features are expected to be effective for de-
tecting boundaries between voiced and unvoiced/pause periods.
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Figure 9-2.  An example of the prosodic features in Japanese connected digit speech for a male
speaker’s utterance, “9053308” “3797298”, with 20dB SNR white noise.

In this paper, two kinds of prosodic features and their combination, P-D, P-V,
and P-DV, are investigated:

P-D: Alog Fy
P-V: maximum accumulated voting value

P-DV: Alog Fy+ maximum accumulated voting value

These three kinds of prosodic features are combined with segmental features for
each frame. Therefore, three kinds of segmental-prosodic feature vectors are
built and evaluated.
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33 Multi-stream Syllable HMMs
331 Basic Structure of Syllable HMMs. Since CV syllable transition

and the change of Fjy characteristics such as “rising”, “falling” and “flat” are
highly related, the segmental and prosodic features are integrated using syllabic
unit HMMs. Our preliminarily experiments showed that the syllable unit HMMs
have approximately the same digit recognition accuracy for a connected digit
task as tied-state triphone HMMs.

The integrated syllable HMM denoted by “SP-HMM (Segmental-Prosodic
HMM)” models both phonetic context and Fj transition. Table 9.1 is the list of
SP-HMMs used in our experiments. Each Japanese digit uttered continuously
with other digits can be modeled by a concatenation of two context-dependent
syllables. Even “2” (/ni/) and “5” (/go/) can be modeled by two syllables since
their final vowel is often lengthened as /ni:/ and /go:/. The context of each
syllable is considered only within each digit in our experiment. Therefore, each
SP-HMM is denoted by either a left-context dependent syllable “LC-SYL, PM”
or a right-context dependent syllable “SYL+RC, PM”’, where “PM” indicates a
Fy transition pattern which is either rising (“U”), falling(“D”) or flat(“F”). For
example, “the first syllable /i/ of “1” (/ichi/) which has rising Fy transition”
is denoted as “i+chi,U”. Each SP-HMM has a standard left-to-right topology
with n x 3 states, where n is the number of phonemes in the syllable. “sil”
and “sp” models are used for representing a silence between digit strings and a
short pause between digits, respectively.

332 Multi-stream Modeling. SP-HMMs are modeled as multi-stream
HMMs. In the recognition stage, the probability b;(O sp) of generating segmental-
prosodic observation Ogp at state j is calculated by:

b;(Osp) = b;(0s)’ - b;(0Op)** 9.5)

where b;(Os) is the probability of generating segmental features O and b;(Op)
is the probability of generating prosodic features Op. As and Ap are weight-
ing factors for the segmental and prosodic streams, respectively. They are con-
strained by As + Ap = 1.

333 Building SP-HMM:s. Syllable HMMs for segmental and prosodic
features are separately made and combined to build SP-HMMs using a tied-
mixture technique as follows:

1 “S-HMMs (Segmental HMMs)” are trained by using only segmental fea-
tures. They are denoted by either “LC-SYL, *” or “SYL+RC, *”. Here, “*”
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digit model digit model
0 ze+ro,U =ze+ro,D ze+ro,F 6 ro+ku,U ro+ku,D rotku,F
/zero/ | ze-ro,U ze-ro,D =ze-ro,F /roku/ ro-ku,U ro-ku,D ro-ku,F
1 i+chi,U i+chi,D i+chi,F 7 na+na,U na+na,D na+na,F
fichi/ | i-¢hi,U i-chi,D i-chi,F /mana/ na-na,U na-na,D na-na,F
2 ni+i,U ni+i,D ni+i,F 8 ha+chi,U ha+chi,D ha+chi,F
i/ ni-i,U ni-i,D ni-i,F /hachi/ | ha-chi,U ha-chi,D ha-chi,F
3 satN,U sa+N,D sa+N,F 9 kyu+u,U kyu+u,D kyutu,F
/saN/ | sa-N,U sa-N,D sa-N,F Tkyu:/ kyu-u,U kyu-u,D kyu-u,F
4 o+l ,U o+N,D yo+N,F .
IyoN/ io-N,U io-N,D yo-N,F a1l SP
5 go+o,U go+o,D goto,F
/go:/ go-o,U go-o,D go-o,F

Table 9-1. List of SP-HMMs (Segmental-Prosodic HMMs). SP-HMM is denoted by either
“LC-SYL,PM” or “SYL+RC,PM”. “LC-SYL” indicates the left-context dependent syllable and
“SYL+RC” indicates the right-context dependent syllable. “PM” indicates Fp pattern which is
either rising(“‘U”), falling(“D”"), or flat(“F”).

(wild card) means that HMMs are built without considering the Fp transi-
tions, “U”, “D” or “F”. The total number of S-HMM states is the same as
the number of SP-HMM states. Twenty S-HMM s including “sil”, “sp”
are trained.

2 Training utterances are segmented into syllables by the forced-alignment
technique using the S-HMMs; and then, one of the Fy transition labels,
“U”, “D” or “F”, is manually given to each segment according to its actual
Fy pattern.

3 “P-HMMs (Prosodic HMMs)”, having a single state, are trained by prosodic
features within these segments, according to the Fy transition label. Eight
separate models, “*~% ,U”, “k+% U, “k—% D7 “k+x D7, “k=% ,F’ “d+x F”,
“sil” and “sp”, are made. Each P-HMM has a single state, since it has
been found that syllabic Fp contours in Japanese can be approximated by
a line function[4] and that the A log Fyy value can be expected to be almost
constant in each CV syllable.

4 The S-HMMs and P-HMMs are combined to make SP-HMMs. Gaus-
sian mixtures for the segmental feature stream of SP-HMMs are tied with
corresponding S-HMM mixtures, while the mixtures for the prosodic fea-
ture stream are tied with corresponding P-HMM mixtures. Figure 9-3
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Figure 9-3. Building SP-HMMs using a tied-mixture technique. S-HMMs and P-HMMs are
trained using segmental and prosodic features, respectively.

shows the integration process. In this example, mixtures of SP-HMM
“i+chi,U” are tied with those of S-HMM “i+chi, *” and P-HMM “*+* , U,
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4. EXPERIMENTS
4.1 Database

A speech database was collected from 11 male speakers in a clean/ quiet
condition. The database comprised utterances of 2-8 connected digits with an
average of 5 digits. Each speaker uttered the digit strings, separating each string
with a silence period. 210 connected digits and approximately 229 silence peri-
ods were collected per speaker.

Experiments were conducted using the leave-one-out method; data from one
speaker were used for testing while data from all other speakers were used
for training, and this process was rotated for each speaker. Accordingly, 11
speaker-independent experiments were conducted, and a mean word accuracy
was calculated as the measure of recognition performance. All the HMMs were
trained using only clean utterances, and testing data were contaminated with ei-
ther white, in-car, exhibition-hall, or elevator-hall noise at three SNR levels: 5,
10 and 20dB.

4.2 Dictionary and Grammar

In the recognition dictionary, each digit had three variations considering the
Fy transitions. For instance, variations of “1” comprised “i+chi,U i-chi,U
sp”’, “i+chi,D i-chi,D sp”, and “i+chi,F i-chi,F sp”. This means
that the Fp transition pattern was not allowed to change within each digit. The
recognition grammar was created so that all digits could be connected without

any restrictions.

4.3 Experimental Results

Training and testing were performed using the HTK[5]. In our preliminary
experiments, the best S-HMM recognition performance (“baseline”) was ob-
tained when the number of mixtures in each S-HMM was four. Experiments for
selecting the optimum number of mixtures for the prosodic stream (P-HMMs)
in SP-HMMs tied with four mixture S-HMMs were conducted, and the best
performance using SP-HMMs was obtained when four mixture P-HMMs were
used. Therefore, in the experiments hereafter, SP-HMMs were tied with four
mixture S-HMMs and four mixture P-HMMs.

Table 9-2 shows the digit accuracy using SP-HMMs in various SNR condi-
tions. “SP-HMM-X" indicates the SP-HMMs using the prosodic feature “P-X".
Accuracies for four kinds of noises are averaged at 20, 10, and 5dB SNR, re-
spectively. The segmental and prosodic stream weights and insertion penalties
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S-HMM
SNR (baseline) SP-HMM-D SP-HMM-V SP-HMM-DV
clean 99.3 99.6 99.4 99.4
20dB 849 86.0 85.7 86.1
10dB 531 54.6 55.1 55.7
5dB 40.1 41.4 42.2 42.7

Table 9-2. Digit recognition accuracies by SP-HMMs and S-HMMs in various SNR conditions.

(o]
o

[] S-HMM (baseline)
B SP-HMM-DV

W 2 00
o O O o o

Digit accuracy (%)

= N
o o

o

1 2 3 4 5 6 7 8 9 10 M
Speaker ID

Figure 9-4.  Comparison of the digit error rates by SP-HMM and S-HMM-DV for each speaker.
In this experiment, 10dB exhibition-hall noise was added to the test set.

were optimized for each noise condition. Digit accuracies were improved in all
kinds of noise and prosodic feature conditions. It can be seen that SP-HMM-
DV showed the best performance, which means that the effects of the A log Fy
and the maximum accumulated voting value are additive. The bestimprovement
0f 4.5% from 45.3% t0 49.8% is observed in the condition when exhibition-hall
noise was added at 10dB SNR and the prosodic feature P-DV was used.

In Figure 9-4, the digit recognition accuracies by S-HMM and SP-HMM-DV
are shown for each speaker. In this experiment, 10dB exhibition-hall noise was
added to the test set. The improvement was observed for every speaker, which
means that the proposed method is useful for speaker-independent recognition.

Figure 9-5 shows the improvement of digit recognition accuracy as a function
of the prosodic stream weight Ap at each SNR. Results for four kinds of noises
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Figure 9-5. Improvement of digit accuracy as a function of prosodic stream weight (Ap) in each
SNR condition.

are averaged at 20, 10, and 5dB SNR, respectively. In this experiment, the
prosodic feature P-DV was used, and insertion penalties were optimized. The
improvement using the SP-HMMs was observed over a wide range: 0.0 < Ap <
0.7 in all the noise conditions. Best results were obtained when Ap was set
aroung 0.6, irrespective of the SNR level.

Figure 9-6 shows the optimum insertion penalty as a function of the prosodic
stream weight Ap in the white noise condition, when the prosodic feature P-DV
was used. In noisy conditions, if the prosodic stream weight is low, we need to
set the insertion penalty high to compensate for the low reliability of segmen-
tal features. Since prosodic features are effective for digit boundary detection,
the higher the prosodic stream weight becomes, the lower the optimum inser-
tion penalty becomes. Similar results were obtained for other noise conditions.
The control range of the optimum insertion penalties in the best prosodic stream
weight condition (Ap = 0.6) is approximately a half of the range for the con-
dition without using the prosodic information. This means that the prosodic
features are effective for robust adjustment of the insertion penalty.

As a supplementary experiment, we compared the boundary detection ca-
pability of SP-HMMs and S-HMMs for digit recognition under noisy environ-
ments. Noise-added utterances and clean utterances were segmented by both
of these models using the forced-alignment technique. The boundary detection
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Figure 9-6. Optimized insertion penalty as a function of prosodic stream weight (Ap) in white
noise condition.

errors (ms) were measured by comparing the detected boundary locations in
noise-added utterances with that in clean utterances. The mean digit boundary
detection error rate was reduced by 23.2% for 10dB SNR utterances and 52.2%
for 5dB SNR utterances using the SP-HMM-DYV. These results indicate the ef-
fectiveness of prosodic information in digit boundary detection.

S. CONCLUSIONS

This paper has proposed an Fj extraction method using the Hough transform
and a new speech recognition method using syllable HMMs utilizing both seg-
mental and prosodic information. Both methods were confirmed to be robust in
various noise conditions. The prosodic information is effective in digit boundary
detection and consequently improves connected digit recognition performance
under noise. Future works include combination of our method with model adap-
tation or feature normalization techniques for noise effects and evaluation using
more general recognition tasks.
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Abstract:
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In this chapter, we describe a hybrid subband adaptive speech enhancement
system, implemented on an efficient ultra-low resource hardware platform
utilizing oversampled generalized DFT filterbanks. Two analysis filterbanks
decompose the two inputs (reference noise and noisy speech) into two sets of
subband signals. In each subband, a subband adaptive filtering noise reduction
block processes the two subband signals to reduce the noise producing a single
signal which is followed by further noise reduction through Wiener filtering.
Next, a synthesis filterbank converts the processed subband signals back into
the time-domain. We have evaluated the performance of the hybrid noise
reduction system in various real-life noise fields occurring in mobile and
vehicular applications. Two closely spaced microphones make recordings in
these noise fields. Signals from one microphone are used directly and represent
the reference noise signal while signals from the other microphone are added
to speech materials chosen from the TIMIT database before being used as the
contaminated primary signal. It is demonstrated that all the noise recordings
closely obey a diffuse noise field model. As the hybrid enhancement system is
specifically designed to handle diffuse noise fields, it outperforms both the
SAF and standard Wiener filtering in all sets of recordings. The superiority of
the hybrid system is especially noted in the case of lowpass noise and intense
noise conditions.

LMS, Wiener filter, subband adaptive filter (SAF), oversampled filterbank,
speech enhancement, diffuse noise, car noise, DFT filterbank, low-resource
system.
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1. INTRODUCTION

Adaptive noise cancellation through Subband Adaptive Filtering (SAF)
has shown good performance when the two input noises are correlated [1].
However, many real-life noise fields in mobile and vehicular applications are
correlated only at lower frequencies because they are approximately diffuse
[2].

Diffuse noise fields are mathematically characterized through the spatial
coherence function commonly used to specify the correlation of two noise
signals x and y recorded at two input microphones in a noise field. The
spatial coherence function is defined based on the cross- and auto-spectral
densities as [3]:

2 _ | Py ()12

== 1
P Polf)- Py (f) M

For 3-dimensional diffuse noise fields, the spatial coherence, obtained by
averaging Eq. (1) over spherical coordinates, drops with frequency,
following a sinc? () of the form [2,3]:

_sin?(2nfd/c) _

1_‘2
nfd /c)?

2 sinc2(2fd/¢), )

where c is the sound velocity (¢=340 m/s in air) and d is the distance
between the two input microphones. Considering Eq. (2), it is obvious that
SAF (and any adaptive noise cancellation method based on correlation
cancellation) can only eliminate the noise in the lower frequency regions
where there is a high correlation (coherence) between the two microphone
signals.

To compensate for the inability of SAF to eliminate noise in diffuse noise
fields, we have proposed a hybrid system integrating the SAF system and
Wiener filtering (called SAFWF here), and have examined its performance in
an isolated non-reverberant sound room [4]. Based on the promising results
obtained, we further evaluate the performance of the SAFWF system in real-
life mobile and vehicular noisy environments.

This chapter is organized as follows. The employed speech enhancement
system is described in the next section. Section 3 describes the noise and
speech materials used. System evaluations are reported in Section 4, and
finally conclusions of this work are presented in Section 5.
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2. EMPLOYED SPEECH ENHANCEMENT
SYSTEM

The employed speech enhancement system is an oversampled
Generalized DFT (GDFT) filterbank using a subband processing block
consisting of a Subband Adaptive Filter (SAF) and a Wiener filtering sub-
block to reduce noise in each subband. A Voice Activity Detector (VAD) is
used to control both the adaptation in the SAF, and the noise spectrum
estimation in the Wiener filter. The complete speech enhancement system
(the SAFs, the Wiener filter, and the VAD) is efficiently implemented on an
ultra-low resource oversampled WOLA filterbank detailed in [S5]. We now
describe various components of the enhancement system.

21 Subband Adaptive Filters for Noise Cancellation

Subband Adaptive Filters have become a viable choice for adaptive noise
and echo cancellation. The SAF approach employs filterbanks to split time-
domain inputs into a number of frequency bands, each serving as input to an
adaptive filter. Subband signals possess reduced spectral dynamics and, due
to their narrower bandwidth, may be decimated. Subband decomposition and
decimation thus result in much “whiter” signals as input to a parallel bank of
much shorter adaptive filters with better convergence behavior [6]. If critical
sampling is used, aliasing distortion occurs that may be eliminated by
employing either adaptive cross-filters between adjacent subbands or gap
filters [6,7]. Systems with cross-filters generally converge slower and have
higher computational cost, while systems employing gap filters produce
significant signal distortion. OverSampled SAF (OS-SAF) systems, on the
other hand, offer a simplified structure that, without employing cross-filters
or gap filters, significantly reduce the aliasing level in subbands. In an
attempt to minimize additional computational cost, a non-integer
oversampling factor close to one (1{0S{2) is sometimes used. For many low-
delay real-time applications including adaptive noise and echo cancellation,
however, higher oversampling factors permit wide-range subband gain
adjustments and the use of shorter windows with less stringent requirements
[5]. Consequently, to avoid aliasing and other distortions, the solution of
choice is to use an oversampling factor of two or more. However,
oversampling degrades the convergence behavior of SAF systems (due to
coloration of the subband signal) when the Normalized Least Mean Square
(NLMS) algorithm is employed.

To improve the convergence rate and computation complexity of OS-
SAF systems, we have proposed convergence improvement techniques [8]
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and have analyzed their effects on the system performance [9]. To further
decrease the computation cost for low-resource implementations, partial
update NLMS algorithms have been employed in combination with the
convergence improvement techniques [10].

To improve the performance of SAF systems in diffuse noise fields, a
hybrid system was proposed that takes advantage of the complementary
characteristics of subband adaptive and Wiener filtering, resulting in a much
higher noise reduction performance for diffuse noise fields [4]. Here we
briefly introduce the employed OS-SAF system.

Shown in Figure 10-1 is the block diagram of the employed enhancement
system. Two identical analysis filterbanks split the two inputs: the reference
(noise) signal x(n) and the primary (noisy) signal y(n) into subband signals.
After decimation by a factor of R , two subband signal sets
{ xp(m), xl(m),---,xK_l(m)} and { yo(m), y1(m),---, yK_l(m)} are obtained. Next,
a subband processing block (denoted by SPB in Figure 10-1, described
below) reduces the noise in each frequency subband. Finally, the synthesis
filterbank combines the subband enhanced signals {zq(m), z(m), -, zg -1 (m)}
to obtain a time-domain output z(n) .

2.2 The DSP System

We employ highly oversampled GDFT uniform analysis/synthesis
filterbanks based on Weighted OverLap-Add (WOLA). The WOLA
filterbanks are optimally implemented on an ultra-low power hardware
platform depicted in Figure 10-2.

The DSP portion consists of three major components: a WOLA filterbank
coprocessor, a 16-bit DSP core, and an input-output processor (IOP). The
DSP core, WOLA coprocessor, and IOP run in parallel and communicate
through shared memory. The parallel operation of the system enables the
implementation of complex signal processing algorithms in low-resource
environments with low system clock rates. The system is especially efficient
for stereo subband processing.

The core has access to two 4-kword data memory spaces, and another 12-
kword memory space used for both program and data. The core provides 1
MIPS/MHz operation and has a maximum clock rate of 4 MHz at 1 volt. At
1.8 volts, 33 MHz operation is also possible. The system operates on 1 volt
(i.e., from a single battery). The input-output processor is responsible for
management of incoming and outgoing samples. It takes as input the speech
signal sampled by the 16-bit A/D converter on the analog portion of the chip
at a frequency of 8 kHz. The analog portion of the chip also applies a DC-
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cancellation filter to the speech signal. Through the DFT, the WOLA
filterbank modulates a single prototype filter into K complex filters (K / 2
unique bands due to Hermitian symmetry). Referring to Figure 10-1, each
subband processing block is generally an adaptive filter working on a
specific frequency band thus modeling a narrow frequency band of the
combined acoustical and electrical transfer functions between the two
microphones.

Analysis Filtetbank Synthesis Filterbank
ane xém) zo(m) :.illttII..t. IIIIIIII t.4I=

Reference
Noise
x(n)

Diffyse Noise Fiekd

Analysis Filterbank
; Ygm

Figure 10-1. Block diagram of the SAF system with a Subband Processing Block (SPB) per
subband.

23 Hybrid Adaptive-Wiener Filtering Enhancement
Method

In the original SAF system, an adaptive filter is used as the subband
processing block. In the SAFWEF, this block is replaced with an adaptive
filter cascaded with a Wiener filter as depicted in Figure 10-3. After
elimination of the correlated noise components by the adaptive filter, the
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Wiener filter further processes the error signal reducing the remaining
uncorrelated noise. Since the quality of the error signal is already improved
through adaptive filtering prior to Wiener filtering, it is expected that any
introduced artifacts will be greatly reduced compared to Wiener filtering
alone [4]. Objective evaluations reported in Section 4 confirm this

expectation.

Sampled
Speech
Signal
Window
Microcode Data Program
WOLA Memory | | Memory
InputOutputle ot Finerbank nr 8K x 16| |12K x 16
Procassor Co-processor
In/Qut Data 1! A I
FIFO Memory
r
Ft .....
Address
o Whsiai Timers Generation
‘ Y \
General Proaram
Purpose g Data ALU
170 Control Unit 16 x 16 -> 40 MAC
‘ i DSP Core
Microcontroller or

External Devices

Figure 10-2. Block diagram of the DSP system.

Wiener filtering is implemented using a frequency-domain generalized
Wiener filter [11]. As shown in Figure 10-3, the (subband) adaptive filter
outputs are multiplied by a time-varying real gain Gy(m) ; ie,
Zy(m) =Gy (m)- E,(m), where
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and oo=1, B=1.5 are Wiener filter parameters that have been optimized for
this application [4]. Also, Ni(m) is the uncorrelated noise spectrum
estimated from Ej (m) during speech pauses.
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Figure 10-3. Block diagram of the subband processing block.

24 Voice Activity Detector

A Voice Activity Detector (VAD) has been employed to detect the noise-
only portions of the primary (noisy) input. It is a modified version of the
ETSI AMR-2 VAD [12] that has been implemented on the oversampled
WOLA filterbank [13]. As depicted in Figure 104, the WOLA filterbank
analysis results for the primary input are first grouped as a number (N, ) of
channels and the energies of the channels ( Ej(m), i=12,...,N,, m is the
frame index) are estimated. Given an estimate of the background noise
(Eny(m), i=1.2,...,N.), channel SNR (o;(m),i=12...,N,) is estimated. A
non-linear function maps the channel SNR to a voice metric V(m). Channel
SNR is also used to calculate a frame SNR and a long-term SNR. The voice
metric and the long-term SNR provide primary parameters for the VAD
decision. There is also a hangover mechanism in the VAD. A spectral
deviation estimator measures the deviation between the frame subband
energies and the long-term subband energies. When the deviation (averaged
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over subbands, AE(m)), becomes very small, it may trigger a noise update
under certain circumstances. An estimate of frame total energy ( E;,,(m) ) is
also provided by the spectral deviation estimator. The noise energies are
updated if the voice metric is less than a threshold. Otherwise, the spectral
deviation is used to decide on a “forced noise update”.

When a speech pause is detected, the subband adaptive filters are
adapted, and the noise spectrum estimate of the Wiener filter (ﬁk (m) in Eq.
(3) is updated.

Subband v?(m) =
Signals :(mQGr nin Ng
YK_1 ouping 1\
Channel
Energy
Estimator
Spectral JN, E(m i=1.2,...,Ng
| Deviation v }t
Estimator A
CI;aNn;el En(m)| N|Background
ol <l Noise
Estimator Estimator
b ;(m)
Voice Metric| |Full-band SNR VA[? Xf_D’_ﬂag
Calculation| | Calculation Logic
] V(m) T
El im). aE(m) Noise
= » Update [Update flags
Logic

Figure 10-4. Block diagram of the employed VAD on the hardware platform.

3. NOISE & SPEECH FOR SYSTEM EVALUATION

The performance of the hybrid SAFWF system was evaluated employing
several noises recorded by two input microphones in real-life situations. The
sampling frequency was 16 kHz and the microphone spacing was set to
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d =38 mm (a typical value for boomless headsets). Recordings were done in
the following situations:

e Sitting in a shopping mall (Sit-Malll)

* Inside a working car parked next to a highway (HWY)

¢ Inside a moving car with open windows (CarWOpen)

¢ Inside a moving car with closed windows (CarWClose)

In each recording set, the first and second microphone inputs are
considered as primary and reference noises, respectively. Figures 10-5(a)-(d)
display the average Power Spectral Density (PSD) of the primary noise in
each case. While all recorded noise source spectra are lowpass, the PSDs of
the two Car noises (CarWOpen and CarWClose) fall much faster with
frequency than the others. The effect of engine noise mostly appears as two
local peaks at about 2.7 kHz and 5.4 kHz in Figures 10-5(b)-(d).

The spatial coherence curves of the first and second microphone signals
(representing signals x and y in Eq. (1)) in the above recording situations
are plotted in Figures 10-6(a)-(d), respectively. As depicted, the curves
closely match the theoretical spatial coherence computed for diffuse noise by
Eq. (2) with d =38 mm. This observation is consistent with the diffuse noise
assumption usually considered for most environmental noise fields in
vehicular applications [2]. Also, due to its directivity, the engine noise acts
more as a coherent source evident from the peaks in the coherence function
at 2.7 kHz and 5.4 kHz (Figures 10-6(b)-(d)). This is especially evident for
noises in a moving car with closed windows (Figure 10-6(d)).

Several sentences from the TIMIT [14] database were used as the speech
material. For each set of the noise recordings, the primary noise was added to
speech signal at 0 dB SNR and utilized as the noisy input.

4. HYBRID SPEECH ENHANCEMENT
EVALUATION

Through subjective and objective evaluations, the performance of the
SAFWF system is compared to that of the SAF approach. Also, we have
examined the performance of single-microphone standard Wiener filtering
(STDWF) method where the filter is directly applied to the primary noisy
input.
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Figure 10-5. PSD of the noises recorded by the primary microphone in various situations: (a)
Sit-Malll, (b) HWY, (c) CarWOpen, (d) CarWClose.

To objectively measure the system performance, we use the Log Area
Ratio (LAR) metric that has been shown to have the highest correlation with
subjective assessments among all frequency-invariant distance measures
[15]. Given the reflection (Partial Correlation, PARCOR) coefficients of
order L, p(m,),l=1..,L of the m™ frame, the corresponding Area Ratio
(AR) is defined as [15]:

1+p(m, D)
AR(m, ) = ———2=, 4
ey @
Here, we have set the order of the reflection coefficients to L = 16 . Given
ARg(m,l) and AR,(m,l) for the m? frame of signals s(n) (clean speech) and

z(n) (enhanced output) in Figure 10-1, the LAR distance between the m?
frames of two signals is calculated as [15]:
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Figure 10-6. Spatial coherence of the noises recorded by two microphones in various
situations: (a) Sit-Malll, (b) HWY, (c) CarWOpen, (d) CarWClose.

1
1 AR (m | |2
LARg, (m) = IZ 2010810[m'J (5)
I=1 e

In order to remove frames with unrealistically high LAR distances, we
compute the overall LAR distance by first discarding frames with the top
5% LLAR values, and then averaging Eq. (5) over the remaining frames (as
suggested in [16]).
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Figure 10-7. LAR-distances between the clean input and various output signals: unprocessed
output (Noisy), outputs of the SAF, STDWF and SAFWF techniques in four different noisy
environments.

The results of objective evaluations are shown in Figure 10-7. For
reference, the LAR distance between the clean input (signal s(n) in Figure
10-1) and the unprocessed noisy output (signal z(n) in Figure 10-1 with all
SPBs inhibited) is also presented. The low LAR-distance improvement
obtained by the SAF indicates that this method has difficulty rejecting noise
in diffuse noise environments. Evidently, SAF has better performance in the
third and forth environmental conditions (CarWOpen and CarWClose). This
can be justified by considering Figures 10-5 and 10-6 as follows: 1) In the
CarWOpen and CarWClose cases, the noise spectrum is dominated by
lowpass and coherent components. This results in improved noise reduction
of the important lowpass components by adaptive filtering. 2) In particular,
there are highly coherent engine-related noises in these two cases that are
efficiently cancelled by the subband adaptive filters.

As is evident from Figure 10-7, the hybrid system (SAFWF) outperforms
both the SAF and the STDWF systems for all four test sets. Especially in
CarWOpen and CarWClose cases, the SAFWF method produces better LAR
distance improvements. This demonstrates that an improvement in the
adaptive filter performance leads to better performance of the Wiener filter
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Figure 10-8. LAR-distances distances between the clean input and various output signals:
unprocessed output (Noisy), outputs of the SAF, STDWF and SAFWF techniques for
CarWClose case and different input SNRs.

since Wiener filters typically generate less speech distortion at high input
SNRs.

In order to examine the effect of input SNR, we have repeated the
objective assessments for the fourth set of noise recordings (CarWClose) at
input SNRs of 0, 5, and 10 dB. As depicted in Figure 10-8, the SAFWF
offers better performance in all cases. Considering LAR improvements of the
SAFWEF (relative to the LARs for the unprocessed output) at various SNRs
(3, 2.5 and 2 for SNRs of 0, 5, and 10 dB, respectively) the superiority of the
SAFWF is more evident at low input SNRs. Also, notice that the SAF
performance improvement is almost the same for different SNRs. This is
expected as the adaptive noise canceller by design, removes the correlated
noise components.
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Figure 10-9. LAR-distances distances between the clean input and various output signals:
unprocessed output (Noisy), outputs of the SAF, STDWF and SAFWF techniques in four new
recording environments.

To further verify the system performance, we repeated the objective LAR
tests using four other noise sets at 0 dB SNR. Two were recorded while
walking (Walk-Mall), and sitting (Sit-Mall2) in a shopping mall. Two
different office noise sets (Officel and Office2) were also recorded. The
recording methods were exactly the same as those used in Section 3. The
objective evaluation results (keeping the same system parameters as in
previous evaluations of Figure 10-7) are depicted in Figure 109 where the
noises (from left to right) are sorted according to the increasing severity of
the lowpass nature. As evident from Figure 109, the results are consistent
with those presented in Figure 10-7.

Also, we have done some informal listening tests confirming the
objective assessments. The artifacts produced by the STDWF technique are
considerably reduced by applying the Wiener filter after the adaptive
filtering.
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S. CONCLUSION

Experimental results confirm the diffuse model for most noise fields in
vehicular and mobile applications. In this research, we evaluated the
performance of a hybrid subband adaptive and Wiener filtering structure for
noise reduction in diffuse fields.

The hybrid system benefits from the advantages of adaptive filters in
coherent bands and also utilizes the Wiener filter to remove uncorrelated
components. By first improving the SNR as best as possible through
correlated noise reduction using subband adaptive filtering, the inherent
artifacts of standard Wiener filtering are considerably reduced.

Objective and subjective assessments confirm the superiority of the
hybrid system for noise reduction in different real-life vehicular and mobile
fields. Considering the spectral characteristics of the employed noises, it is
clear that there are larger improvements for lowpass noise sources
particularly at low SNRs.
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SPEECH ENHANCEMENT BASED ON F-NORM
CONSTRAINED TRUNCATED SVD
ALGORITHM
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Abstract:  Traditional singular value decomposition (SVD) based speech enhancement
algorithms are usually limited by the use of a fixed order of retained singular
values which may not be optimal for time-varying noise corrupted speech
signals. In this chapter, we propose the use of a Frobenius-norm (F-norm)
constrained truncated (FCTSVD) algorithm in an analysis-by-synthesis
procedure for choosing the appropriate order of retained singular values for
speech enhancement. It allows for self-adaptation in time and for different
noise and noisy speech characteristics. Also, it leads to the best approximation
of original speech in terms of SNR. The proposed algorithm has been tested
and compared with a traditional SVD algorithm for different noise types and
levels. Simulation results show that it achieves higher SNR improvements for
both additive white noise and colored noise as compared to a traditional SVD
algorithm.

Keywords: Speech enhancement, singular value decomposition (SVD), Frobenius-norm.

1. INTRODUCTION

The use of speech processing systems for voice communication and
speech recognition is becoming more and more common. This is largely due
to the availability of low cost digital signal processors and memory chips.
Among all the speech processing research efforts, the problem of enhancing
speech degraded by additive broad-band noise is still an active research
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topic. During the past three decades, many single channel speech
enhancement algorithms have been proposed. More recent published
algorithms include variants of spectral subtraction [1] and amplitude
estimation methods [2], methods based on all-pole modeling [3],
enhancement using discrete cosine transformation (DCT)[4] or two-
dimensional Fourier transform [5], schemes based on constructive-
destructive additive noise[6], and signal subspace methods [7]. In this paper,
we propose a new algorithm, called F-norm constrained truncated SVD
(FCTSVD) algorithm, to solve the problem of how to automatically choose
the appropriate order of retained singular values in an SVD scheme.

2. THE SVD AND SIGNAL SUBSPACE
ESTIMATION

Let Y=[y(0),y(1),~-y(L—1)]Tbe an observed noisy signal vector with

L samples and we assume that the noise is additive and uncorrelated with
the signal, ie. Y=X+W , where X = [x(0),x(1), -~ x(L-1)] and

W represent the original and noise signal, respectively. We can construct the
following MxN M Hankel matrix Hy from Y as done in [7], where

L=M + N-1 and M > N. Correspondingly, //y can also be written as
Hy = HX +HW (1)

where H y and Hy, represent the Hankel matrices derived from X and W,
respectively.
According to the SVD theory, there exist orthogonal matrices

N

Uy e R™V and ¥, e R™N such that Hy, =UyS, V) — Su;00v;", where
i=l

Zy=dfag(0'],0-2,"',O'N)EWNXN, with 0'120'2 ZZO'N =0. The

nonnegative diagonal elements of Xy are called singular values of Hy .

Usually, it is convenient to partition the SVD of Hy using the first P

singular values of Hy as follows:
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Hy:[Un Uyz{zgl 0}[1/;]} (2)

Zyy sz

where Uy, e RMF, 2, e RM™P| and ¥y eR™. We make three
assumptions here: (1) The signal is orthogonal to the noise in the sense that
H/{,HW =0, (2) The noise is white: H/{zHW =nyl; (3) The smallest
singular value of Zy, is larger than the largest singular value of Zy,, i.e.,
op > 0p,,. Generally, the minimum variance (MV) estimate is used in noise
reduction [7].

Given the matrices Hy, Hy and Hy as in (1), There exists a matrix

Ge®™Y  which  minimizes min |H,G-H 4|
GemMN

2
£ where

G=(H 5 Hy Y'H ; H y. Under these three assumptions, the MV estimated of
H y can be derived as,

Hy =UnZnEh - oV 3)
The last expression can also be denoted as
Hy =Uy(FyyZn Wiy (4)

using the following PxP matrix filter,

2 2 2
Fyay = Diag| (1--Z8), (1= 2, ... (1= |. (3)
Oy, Oy,2 Oy.p

Since Hy of Hy does not have the Hankel structure, it is necessary to

make a Hankel matrix approximation to q x- A simple procedure, as
described in [7], for restoring the Hankel structure is to average along the
anti-diagonals of H, and put each average value as a common element in

the corresponding diagonal of a new Hankel structured matrix with the same
dimension. In the meantime, it is noted that the choice of P takes an
important role in the whole speech enhancement scheme in that a small value
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of P results in information loss, while a big value leads to a matrix not
absolutely noise free.

3. F-NORM CONSTRAINED CRITERION

In order to obtain the appropriate order for the best reconstruction, an F-
norm constralned functlon used in an analysis-by-synthesis procedure is
proposed. Let HY y represent the estimated matrix of Ay from the first s
singular values of Hy, i.e.

HY =UR Frp i) (6)

where Fyy, is the sxs matrix filter as described in (5). We define an F-
norm constrained function (FCF), denoted by @, as follows:

- 2
o =yl -5,

“|Ewfzs  for s=12,..,N. @

It can be proved that the FCF is a monotonically decreasing function with
increasing value of the variable s. According to the F-norm definition and
the assumptions, we have

o =y - [, ®
Obviously, we also have,
L ©)

due to the use of a new singular value in the reconstruction process of the
estimated Hankel matrix with additional power. From (8) and (9), it is clear
that the FCF is a monotonically decreasing function.

Equation (8) states that the F-norm of the reconstructed H v, Wwith
s <P, is less than that of Hy coming from the clean signal. This is because
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H x> does not contain all the harmonic information of the clean signal x.

On the other hand, when s > P, the F-norm of the reconstructed Hy is
larger than that of Hy due to noise. This implies that ®' crosses zero at

s = P. However, the non-correlation assumption is not a true condition in
practice, especially in the case of short data records. Thus a small bias may
exist in the values of @) . This slight deviation can be solved by
investigating the change of the difference values of the FCF as follows.
Based on the definition of &', we have

2 2
2 2 2 2
(D(S+|)_¢(5)=(GY.S—U’V] _[UY,“]“UW] (10)

Oys Oy s+l

Note that a,z,’s consists of only the noise component when s= P+1.
This implies that the difference value of the FCF converges to 0, i.e.
AD®) = @Y @ |5 0. In true condition, the value of |®U*D — @)
converges to a small value. Thus, we can use a threshold value &,. If the
value of | @Y )| is initially less than &, with the increase of s, we
can then obtain the wanted order of retained singular values as follows:

P=arg ﬁrszﬁcb‘“” oW < 50}-1 (1)

1€s<N

Note that the selected P by F-norm constrained criterion leads to the
best approximation of original speech in terms of signal-to-noise ratio

(SNR). Let X be a frame of the reconstructed signal and it consists of the
original signal X and error signal &, i.e. X =X +&. Assuming the means
of X, X and & are zero, and that the error signal & is statistically

independent of the clean signal X, the SNR of the reconstructed signal is
then given as follows:

2
SNR =10l0g;g| — XD (12)
|E(X2)~E(X2)|

where E is the statistical expectation operator. Next, we will prove that the
SNR becomes maximum when the FCF reaches the point s = P. Let
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My =/ NxM ))"H X"i" according to the F-norm definition, we have
1.1 M1, 1 M1, T M, .
My=—[— 2% x"(g)+— X x°(D++— 2 x“(iy_)) As X is a
ip=0 i=0 in_1=0
wide-sense stationary stochastic process in the short-time period [0, L —1],
the autocorrelation of X, Ry, does not depend on the placement of the time
origin, i.e., Ry(t,t—7)=E[x(¢)x(t+7)]=Ry(r). Hence, it is clear that

Ry (0) = E[x(ig)x(ig)] = ELx(i)x(i)] =+ = E[ x(iy_)x(iy_) ], and that
iy =0—-M -1 ii=1->M iNo =N-IM+N=2

My =Ry(0)=E(X?). Similarlly, we also have M =E(X?).

Correspondingly, it can be shown that

| - (13)

SNR =10log,,
R
|71 -[A¢

2
F

Meanwhile, we also know from the above discussion that

2 1 a5W|P o
IHHX "F —“Hﬁf) - | attains its minimum at s = P, and consequently the SNR

of the reconstructed signal X attains its maximum.

4. THE FCTSVD ALGORITHM

Based on the above discussion, we can formulate the FCTSVD algorithm
for the case of white noise in the following steps.
(I). Estimate noise vectors W from silence periods in the observed
speech signal.
(2). Form the Hankel matrix Hy from the observed signal.

(3). Compute the SVD of Hy.
(4). Initialize the order of retained singular values of H x, 1.e, s=0.
(5). Let s =s+1 and reconstruct the estimated matrix of H X,I:I )

using the first s singular values of Hy.
(6). Compute the FCF. If s = 1 then return to Step 5.
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(7). Compute the difference values of the FCF, ie. &) = @) —bh,

(8). Decide the appropriate order. If | £ |< &y, then P= s—1 else return
to Step 5. Based on our experiments, we have used the threshold
value of &, =0.0098.

(9). Compute the enhanced speech signal X from X P,

If the additive noise W is colored, a pre-whitening transformation is applied
to the data matrix. Assuming the sample Hankel matrix Hy of the noise
signal is known, then the correspondmg Cholesky factorization or QR
decomposition is given by HWHW =R"R or Hy =0R, where R e RMV is
the upper trlangular Cholesky factor and QEERNX has orthonormal
columns Q7 Q=1Iy. The implementation algorithm is exactly the same as
that described in the above procedure except for two extra steps at the
beginning and the end of the procedure. They are described below:

(3). Compute the QR decomposition of Hy and perform a pre-

whitening of Hy, (i.e. Hy =QR, and H; = HyR™ n)

The following Steps 4-9 are exactly the same as the above described Steps 3-
8 except that Hy, is replaced by H. ~ .
(10). Perform a de-whitening of H(P), (i.e. HS(‘D) = HE\,P)R.)

Finally, the reconstructed speech signal, X , is computed from ﬁf\f ) by
arithmetic averaging along its anti-diagonals.

S. SIMULATION RESULTS

5.1 Order Determination

The performance of the proposed F-norm constrained algorithm is
initially examined using the reconstruction of several voiced and unvoiced
speech signals. The consecutive reconstructions of the signals have been
produced with increasing value of s while the corresponding values of the
FCF, as well as the SNRs of the reconstructed signals, are calculated. The
frame length and analysis order of SVD are chosen, based on our
simulations, to be 200 and 21, respectively, i.e., M = 180, N = 21.

The results of reconstructing a frame of voiced and unvoiced speech
signals embedded in white noise with SNR=0dB are given in Fig. 11-1 and
Fig. 11-2, respectively. As shown in Figs. 11-1 and 11-2, the dots of the FCF
form the convergent curves and the value of A| FCF| converges to a very
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small value (approximate zero). In our simulation study, the convergent
threshold &; is set to be 0.0098. Correspondingly, the order in the
reconstruction of voiced speech signal is chosen to be 9 with around 7.25dB
maximum SNR, while the order of unvoiced speech signal is chosen to be 13
with around 5.01dB which is close to the maximum SNR. It is clear that the
maximum of the SNR curve occurs at the selected order determined by the
FCF although there is a slight bias against unvoiced speech signal due to its
noise like characteristics.
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Figure 11-1. Reconstruction of the Voiced Speech Signal.
5.2 Evaluation of Enhancement Performance

The performance evaluation of the proposed algorithm has been tested
and compared with the truncated SVD (TSVD) algorithm for MV estimation
reported in [7]. The fixed order of the TSVD algorithm is selected to be 14
by which the best enhanced performance is attained as described in [7]. Four
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speech utterances of two male and two female speakers from the TIMIT
database are used in our study. Four different background noises are taken
from the Noise-92 database. Segmental SNR (SegSNR) improvement is used
for assessing the enhancement performance. The results are shown in Table
11-1. It can be seen that the proposed algorithm leads to higher SegSNR
improvements than TSVD for all noise types and levels.
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Figure 11-2. Reconstruction of Unvoiced Speech Signal.
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Algorithms T Pink scknit Babble
TSVD 6.59 6.23 6.14 4.86
FCTSVD 8.09 8.00 7279 6.99

Table 11-1. The average SegSNR Improvements for different noise types (dB)
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CONCLUSIONS

In this chapter, the use of a Frobenius-norm (F-norm) constrained
truncated (FCTSVD) algorithm in an analysis-by-synthesis procedure has
been investigated for choosing the appropriate order of retained singular
values for speech enhancement. It allows for self-adaptation in time and for
different noise and noisy speech characteristics. Also, it leads to the best
approximation of original speech in terms of SNR. The proposed algorithm
has been tested and compared with a traditional SVD algorithm for different
noise types and levels. Simulation results show that it achieves higher SNR
improvements for both additive white noise and colored noise as compared
to a traditional SVD algorithm.
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Abstract:

The article deals with a novel speech recognizer technology which has the
potential to overcome some problems of in-car speech control. The verbKEY
recognizer bases on the Associative-Dynamic (ASD) algorithm which differs
from established techniques as HMM or DTW. The speech recognition
technology is designed to run on a 16 bit, fixed point DSP platform. It enables
high recognition performance and robustness. At the same time, it is highly
cost efficient due to its low memory consumption and its less calculation
complexity. Typical applications such as dialling, word spotting or menu
structures for the device control are processed by the continuous, real-time
recognition engine with an accuracy higher 98% for a 20 words vocabulary.
The article describes a hardware prototype for command & control
applications and the measures taken to improve the robustness against
environmental noises. Finally, the authors discuss some ergonomic aspects to
obtain a higher level of traffic safety.

Keywords: Automatic speech recognition, Associative-Dynamic classifier (ASD),

1.

robustness, telephone application, discriminative optimization

IN-CAR SPEECH CONTROL - REQUIREMENTS
AND ISSUES

Controlling in-car devices and hands-free communication by speech
commands is a major safety issue in modern cars. Speech control definitely
decreases the information load of the driver so that he can dedicate his
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attention to the traffic and the driving instead of searching knobs and looking
around in the cockpit at high speed.

The state of the art, however, looks somewhat different. There are very
few speech control solutions that can meet the high requirements of an
acoustically difficult car environment.

Unsatisfactory functionality is still the major reason for the comparably
poor customer’s acceptance of speech control. One could improve the
acceptance with high level speech recognizers and sophisticated user
interfaces. On the other hand, speech control in cars is expected to provide a
high accuracy, to be robust against noise and environmental variations, but
also to be very cost efficient. Typical requirements for speech control
systems in particular apply to cars:

High recognition accuracy,

Use of command words or command phrases,
Fixed set of speaker-independent commands, and
Programmable set of speaker-dependent commands.

Furthermore, some special requirements for in-car applications can be
defined:

Speed-independent background noise characteristics,
Low-cost embedded solution,

‘Push to talk’ to prevent false alarms,

Known (mostly stationary) speaker-microphone distance.

In the following section, a novel approach to command word recognition
is presented and set into relation to established techniques such as HMM or
DTW. The following section shows, how a hands-free solution is
implemented based on this core algorithm. Finally, measures are presented to
improve the module’s robustness against typical background noises. The
chapter is finished with a discussion on future developments.

2. RECOGNIZER TECHNIQUES

2.1 Basic approaches for speech recognition

Hidden Markov Models (HMM) are the state of the art technology and
widely used in practical applications. In isolated word recognition, a HMM
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recognizer offers a recognition rate near to the human performance. It is
suitable for difficult recognition scenarios (e.g. fluent speech with a large
vocabulary or spontaneous speech). Usually, HMMs demand a high
modeling effort and a floating-point arithmetic for the necessary
computational precision. The component costs to perform HMMs are high
and often oversized for simple control applications with a small number of
commands.

A further speech recognition technique is based on artificial neural
networks (ANN). An ANN is suitable to handle static patterns and self-
adapting processes. Low-cost solutions sometimes employ ANN techniques.
Except using the more complex TDNN approach (Time Delay Neural
Network), these solutions usually do not achieve satisfactory recognition
accuracy.

Recognizers using the principle of Dynamic Time Warping (DTW)
require less computational precision and modeling effort than HMM. A
major drawback is the increasing memory demand, if DTW recognizers are
speaker-independently trained. Generally, DTW recognizers can achieve a
similar recognition accuracy than HMM recognizers.

2.2 ASD algorithm

The patented Associative-Dynamic (ASD) recognizer was developed at
the Dresden University of Technology to provide a very cost-efficient and
simple recognizer alternative [1]. It requires ultra-low resources and it is
suitable to most command and control tasks in mobile applications. It can be
implemented at low-cost processor platforms. Several measures support the
memory reduction and the low processing load:

e Reduced feature dimensions by a discriminative network without loss in
classification accuracy. An associative network at the front-end of the
classifier transforms the primary feature vectors x (describing the object
to classify and coming from the analyzer in equidistant time intervals),
into secondary feature vectors y with reduced dimension and improved
discrimination properties. By this transformation, the input pattern is
adapted to the statistical characteristics of the reference knowledge of the
classifier. The transformation weights are optimized for a given
recognition task in a training step by an evolutionary procedure [1].

o Task-dependent distance operators. There is a choice of distance
operators by which optimal performance of the classifier for a given
recognition task and under varying accuracy conditions (fixed- vs.
floating point) can be achieved. Local distances are calculated by
applying the distance operator on each input- and reference vector pair.
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The following, dynamic network aggregates the time-varying local
distances d to a temporally varying distance-vector g. In case of
continuous recognition, hypotheses are selected from the search space
according to their scores and stored to a time-varying n-best list.

Efficient pruning on commands, words and on the acoustic level. For
continuous word recognition, intermediate hypotheses are stored in n-best
lists ordered by their scores. If the command syntax allows it, hypothesis-
trees are grown during the recognition process, and new hypotheses are
only started if a possible word end is found. So the search space of word
and subword units can be reduced substantially and the search is only
conducted through a subset of reference models. On the acoustic level,
score based pruning reduces the number of active grid points in the
matching process [2]. All these measures reduce processing load and
allow the implementation of the recognition engine even on simple, low
performant processor platforms.
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Figure 12-1. Associative Dynamic (ASD) classifier in network representation, X primary
feature vector, y secondary feature vector, d local distance, g aggregated, optimal distance
during matching process.

Temporal compression of reference patterns. Temporal redundancy is
avoided by compressing the reference patterns for the basic acoustic units
in a way, that the remaining reference states represent only stable and - in
terms of classification - relevant parts of the original pattern. For reasons
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of discriminative power, the temporal structure of the original pattern is
preserved, too.

e Discriminative training and lexicon optimization. The simplicity of the
recognizer structure allows fast retraining of the recognition engine for a
different classification task. A set of efficient, automatic tools supports
the design of the reference knowledge under the focus of high recognition
accuracy and robustness against environmental noise.

For isolated word or command phrase recognition, an evolutionary tool is
optimizing the associative feature extraction part of the ASD classifier. The
fitness criteria, expressing the quality of a recognizer individually, are high
recognition accuracy as well as high discriminative ability between different
classes. Evolutionary algorithms outperform conventional mathematical
feature extraction methods [5,6] in that they are able to overcome local
optima and find the global optimum.

Figure 12-2. Hands-free demonstrator on the base of verbKEYv1.6

A drawback of this method is its high resource consumption, because the
optimum often is found in several optimization attempts (5-10) after some
100 generations of 50 recognizer individuals each were evaluated. At the
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moment, this costly process is implemented in a distributed evaluation
network, where one computer runs the evolutional engine, which sends the
parameters to optimize over the LAN. All other computers connected to the
network run 1 to 3 recognizer individuals (clients), and send the results of the
evaluation back to the evolution. The training and test data is accessed by
each client over the network. In this way, a speaker independent word
recognition rate of 98.6 % can be reached in the absence of noise (see
Section 4.3).

3. TARGET APPLICATION AND DIALOGUE

The target application is a telephone control with combined speaker
independent commands for hands-free telephone operation, and speaker
dependent commands for name dialling. The application is fully operable by
voice, because the user is guided through all menus by high quality voice
prompts.

To increase the robustness of the application the recognizer is embedded
in an ergonomic dialog including voice prompts and ‘push to talk’. There are
30 speaker independent commands and 30 speaker dependent commands
(plus corresponding actions like a telephone number for each command)
available in the lexicon. Commands are ordered in submenus to enable
functions like user dependent training (storage of new names into the
lexicon), dictation of phone numbers (collection of number chains, repetition
and navigation in the number chain).

The high sound quality of the voice prompts ensure a high acceptance of
the speech control by the user. Prompts are stored in a scalable memory and
are generated by an application-specific word-unit synthesizer. So even large
and well tuned dialogs can be stored with minimum memory requirements.
The dialogue is designed very flat to minimize the distraction of the driver
from traffic.

4. ROBUSTNESS

Recognition accuracy loss mainly occurs at the speaker microphone path.
Some important influences on the quality of the received speech signal and
methods to overcome them are listed below:

o Microphone type. Electret capacitor microphones with directional
characteristics should be used in cars to attenuate side noises and keep the
system costs low. Microphone arrays can be used for beam forming. At
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present, the higher costs caused by hardware and processing power are
generally accepted because of the benefits to noise robustness. In this
chapter, only a single channel approach was used.

e Speaker-microphone distance. The microphone is mounted at the A-Pillar
or at the interior mirror. There the Speaker-microphone distance can be
supposed in a range of 20 to 50 cm for the driver. In those distances the
level of the speech signal should be sufficient if the user speaks loud
enough to obtain at least a Signal to Noise Ratio (SNR) of 5, better 10
dB.

®  Surrounding noise. Surrounding noises can be eliminated by the built in
automatic noise reduction of the speech recognizer. The noise reduction
adapts automatically to the present background noise. Stationary or
slowly varying noises such as fan, engine or road noises can be handled.
No adaptation is possible for sudden or strong transient noises such as
screen wiper, radio sound or conversational noise.

e Conversational noise (babel speech). Background conversational noise is
difficult to separate from the commands of the driver, because the
conversation has the same characteristics as the commands. Microphones
with directional characteristics or beam forming microphone arrays
possibly attenuate the disturbing speech signal.

4.1 Automatic noise reduction

The Automatic Noise Reduction (ANR) employs the principle of spectral
subtraction and is included in the signal chain of the analyzer after the
Fourier transform (FFT) of the input signal.

Adaptation of the ANR. For spectral subtraction it is necessary to know
the spectral noise characteristics. Therefore a voice activation detector in the
time domain (TVAD) marks the pause intervals where no speech is present.
The pause decision in the TVAD is based on evaluation of the signal energy
in relation to two adaptive decision thresholds for speech and silence [3].
Spectra in pauses are averaged to estimate the noise spectrum (Figure 12-3).
This is done using a low pass filter [4].

INL(f)=p N (f 1 -1)+ - p)- | X, () (1)

where IN ost ( f 1 is the estimated noise spectrum, |X in ( f j is the short time
microphone spectrum in pauses, © is the adaptation factor, and / the spectra
index. Fast, transient changes such as a door clap do not affect the estimation
but slow changes such as the motor sound during car acceleration do.
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Figure 12-3. Parts of the preprocessing with noise reduction.
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Figure 12-4. Pause spectrum, estimated noise spectrum and flooring level.

Spectral subtraction: The estimated noise spectrum is subtracted from the
incoming (disturbed) signal corresponding to the following two equations:

X, () =%, () - a [N, (£) @)

X, ()= < X, () 1X, (N> BN, ()
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where IX s ( f ] is the mathematical result of traditional spectral subtraction,
|X0u, (f is the result after flooring, & determines the intensity of the
spectral subtraction, and / the flooring factor. Suitable values for o are 1.5
... 2.2. It is also possible to have an adaptive behavior of c(SNR) for the
entire frequency band or in subbands o (SNR, f) [4].

After subtraction, flooring is applied. Flooring is needed to avoid musical
tones but also to have a sensible level of comfort noise. Experiments to find
the optimal value for the flooring factor resulted in B =0.1. B can also be
determined in an adaptive way as a function of SNR or by a different setting
for subbands.
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Figure 12-5. . Combination of VAD approaches in the time and frequency domain lead to
improved word detection accuracy
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4.2 VAD under different noise conditions

A prerequisite for a good noise suppression is a robust voice activity
detection (VAD), that adapts to varying background noise conditions. The
energy threshold based VAD approach in the time domain (TVAD), as
shown in Fig. 12-3. has very robust adaptation characteristics. On the other
hand, the approach has shown limited performance on weak, fricative sounds
at word beginnings in the presence of stationary, loud background noise, that
is very similar to the energy distribution of the fricatives.

Therefore, a VAD was implemented in the frequency domain (FVAD),
that combined several features (delta energy, smoothed sum of energy and
peak to average ratio) from the ETSI-approach [7] to a voice activity
decision. This frequency domain approach performed very well under clean
conditions, but it showed to be sensitive against background noise.

In order to gain from the advantages, a combined approach of a time-
domain and a frequency-domain VAD was tested as shown in Fig. 12-5. The
TVAD was used to provide pause boundaries for a robust noise adaptation.
After the noise reduction, the SNR was increased, and the cleaned speech
signal provided stable input conditions for the FVAD. The FVAD is then
used to refine and confirm the pause decisions of the TVAD.

The performance of the VAD approaches was evaluated on a database of
20 command phrases of 13 subjects with varying background noise. There
were three noise conditions: silence, medium and high level fan noise (27, 14
and 5 dB SNR). The performance of the VADs was measured as difference
between manually and automatically determined word boundaries. The
results for the noise conditions for TVAD only, FVAD only and combined
approach are given in Figure 12-6.

As Fig. 12-6 shows, the absolute deviation between the automatically and
manually derived word boundaries (in ms) are divided in the categories that
are given below the figures. Also in Fig. 12-6, the category “No Labs” means
that no boundary was found automatically. The first 3 categories display an
acceptable performance of the VAD.

4.3 Recognition accuracy in the presence of noise

A total of 12 experiments with 37 different speakers and a test vocabulary
of 17 command phrases have been accomplished. Tables 12-1, 12-2, and 12-
3 show the word recognition rates (WRR) for 3 different environmental
conditions and 4 speaker microphone distances (SMD). For each experiment
111 realizations per command phrase have been tested (17%111=1887
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commands per experiment). The SNR dependency of the recognition

accuracy can be well studied.
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| s0% 2% = || so% =
60% . : . 60%
40% [ : 40% £
20% 20%
0% S R b ik 0% BRIt )i A s Ill
TVAD FVAD Combined TVAD FVAD Combined J
E<=50ms W<=100ms [ <=200ms [@ >200ms M No Labs

Figure 12-6. Performance of TVAD, FVAD and combined approach under different noise
conditions. Deviations from manually labeled word boundaries. Medium noise level: 14 dB
SNR, high noise level: 5 dB SNR

SMD 0.4m Il m 1.5m 5m

SNR 32dB 26 dB 24 dB 17 dB

WRR 98.6 % 97.6 % 97.2 % 94.2 %
Table 12-1. Quiet room background noise

SMD 0.4 m Im 1.5m 5m

SNR 14 dB 8.3dB 7 dB 0 dB

WRR 98.0 % 95.4 % 93.9 % 85.1 %

Table 12-2. Fan noise (level 2)

SMD 04m I m 1.5m 5m

SNR 10 dB 2.3dB 1.9dB -4 dB

WRR 96.6 % 92.7 % 91.6 % 81.5%

Table 12-3. Fan noise (maximum level)
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The SNR values are derived by the following equation:

SNR=10-log,, (& ;{N ) (4)

where X is the mean power of disturbed signal (presence of speech -
averaged over entire utterance), N is the power of the noise (no presence of
speech), and SNR is the resulting subtraction coefficient.

Experiments with speech material from a running car at different speed
conditions (50 km/h, 90 km/h, 120 km/h) for streets with a plain surface
showed similar recognition results like the fan-sound experiments.

For streets with cobbled surface, the WRR decreased by about 5 % per
condition, because the background noise was not that stationary anymore.
Therefore, the detection accuracy of voice activity boundaries was decreased,
and this led - besides a poorer noise estimation - to a worse word recognition
rate.

A second improvement was gained by using a stationarity detector in the
VAD and by switching the word detectors’ parameters corresponding to the
estimated stationarity of the background noise in order to make the detection
for voice events more or less sensitive.

S. ISSUES OF HARDWARE DEPENDENT
IMPLEMENTATION

For the porting and optimal functionality on a low cost hardware
platform, several requirements have to be met. The optimizations aim at a
reduction of memory, processing load and need for computational accuracy.
Intending to run the ASD recognizer on several platforms, it was
implemented in ANSI C, which makes the code highly portable. First it was
implemented on a 32 bit floating point DSP with 60 MHz, later 16 bit fixed
point DSP were used. Processor specific changes of the code base where
applied rarely in order to speed core routines (assembly subroutines) or to
interface hardware components such as codec, displays, UART or CAN.
Vendors of car equipment can use the speech recognizer as a single OEM-
board (see Figure 12-7) or as a sub-application on their own processor.



12. VERBKEY — A Single-Chip Speech Control for the Automobile... 191

Figure 12-7. Hardware OEM-module vicCORE2195G3

The algorithms were implemented with a strict code data separation.
Since the software reference is an experimental system and contains by far
more optional algorithms than used in a given application, a technology was
developed for the easy porting of all the control structures and knowledge
bases of the recognizer. A number of automatically generated C-headers,
which contain the whole initialized bunch of control structures and know-
ledge bases, are included automatically in the compilation of the DSP code.
In this way, a fast and efficient porting is achieved, without loss in accuracy
and without the need of type conversions from one platform to another.

6. SUMMARY

A new speech recognition technology was presented in this chapter. It
was shown, how this technology was applied in a typical car application and
which steps were taken to provide the necessary robustness under adverse
acoustic conditions.

It should be lined out, that technology is not the only key component for
the success of a product. Since modern technical products have implemented
more and more complex functions, information sometimes overload users.
Reading of extensive manuals is needed, and this often leads to the effect
that the user only knows the features that are necessary for a basic device
operation.

The design of the suitable user interface more and more decides on the
success of a product. Speech interfaces allow a much more powerful and
efficient user interface than available in conventional devices. The
replacement of buttons by speech commands is only a small part of the
possible advantages of speech interfaces.

In the future, collaboration between speech interface designers, device
vendors and customers should be much closer to explore fully the new
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ergonomic opportunities of speech driven user interfaces. Efficient dialogs
lead the operator automatically to the desired function. The goal is a self-
explaining composition of devices with a managing intelligence, which
interacts with the internal states of the devices as well as with the user via
speech and buttons. A well-designed interface in the car minimizes
distraction from traffic during device operation and makes the study of user
manuals unnecessary.
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Abstract This chapter aims at evaluating a number of Quality of Service (QoS) indices of
a real-time video transmission over an 802.11b ad hoc wireless network. Video is
coded according to the state-of-the-art ITU-T H.264 encoder and its transmission
is simulated by means of the ns-2 network simulator. Objective quality measure-
ments are presented. Moreover, the impact of different parameters — both at the
encoder and at the MAC level —, of background interfering traffic and of the
number of relay nodes, is studied, showing the various trade-offs involved.

Keywords: Real-time video, IEEE 802.11 wireless local area networks, ad hoc wireless net-
works.

1. INTRODUCTION

The great success of the IEEE 802.11b technology for wireless local area
networks (WLANGS) [1] is creating new opportunities for the deployment of ad-
vanced multimedia services. Important applications such as telephony, video-
conferencing and audiovisual streaming are on path to move to Wireless Local
Area Networks (WLANS), creating a complex, yet highly attractive scenario,
where users will be able, at least in principle, to seamlessly switch from typ-

*This work was supported in part by CERCOM, the Center for Multimedia Radio Communications, Torino,
Italy, http://www.cercom.polito.it.
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ically expensive, wide-area coverage to cheaper, higher-bandwidth local and
micro-local networks.

Two different 802.11b WLAN scenarios are possible: with infrastructure
or ad hoc. The former includes an access point, i.e., a central controller that
is typically connected to the wired network, and several wireless stations that
can communicate with the access point only. The latter consists of a peer-to-
peer network where wireless stations can directly communicate with each other,
thereby allowing a low-cost communication system that supports mobile users
and a dynamic network environment.

In this work, we focus on ad hoc networks supporting real-time multime-
dia applications. A couple of examples come to mind: users in an airport hall
equipped with laptops and forming a network, who wish to download from a
server news or entertainment programs; or a video-surveillance sensor network,
where each sensor controls a portion of the area of interest and sends the infor-
mation to a far-away node producing the output video of the whole area.

Real-time multimedia transmission over ad hoc WLANS poses several chal-
lenges. Radio bandwidth is limited, and propagation conditions over the radio
channel may significantly vary in time, often leading to quite large error rates.
In addition, ad hoc networks usually exploit multihop communications that en-
able wireless stations to reach a distant destination by a sequence of short-range
communication links. On the one hand, this allows nodes to overcome their lim-
ited radio range and avoid the large battery consumption involved in long-range
transmissions. On the other hand, multihop communications involve an addi-
tional delay in traffic delivery, which increases with the number of hops between
source and destination. Besides, in the case of 802.11b-based networks, sources
must contend for the radio channel whenever they wish to transmit. Thus, they
experience access delays that may significantly degrade perceptual quality.

Solutions to these problems have recently been the focus of several works [14,
2, 10, 4, 11, 9]. In [14], the authors study the performance of the 802.11b DCF
and PCF Medium Access Control (MAC) schemes for an integrated H.263 and
data traffic scenario, in a WLAN with infrastructure. The work in [2] describes
the design of an architecture for H.263+ multicast video on ad hoc 802.11b
WLANS and presents some experimental results. In [10] source coding is com-
bined with Forward Error Correction (FEC) coding and an automatic repeat
request (ARQ) technique to efficiently support unicast and multicast real-time
video streaming in an 802.11b WLAN with infrastructure. The studies in [4, 9,
11] specifically address error resilience of real-time multimedia streams in ad
hoc networks, although their main focus is on traffic routing. In [4] the authors
describe the design and the demonstration of a set of simple routing protocol
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mechanisms, and the performance they obtained. In [9] and [11] the mesh struc-
ture of an ad hoc network is exploited to allow multiple paths between a source
and a destination, thus improving reliability of video transmissions. To further
enhance error recovery, an ARQ technique is applied. Also, in [9] the authors
explore the possibility to employ layered coding as well as multiple description
coding. However, none of these works considers an 802.11b ad hoc scenario
supporting both real-time video and data traffic, and investigates the effects of
interfering traffic.

The objective of our work is to study the transfer of video sequences over
wireless ad hoc networks using the 802.11b technology, and globally optimize
the parameters involved in a real-time video transmission, ranging from video
encoding and packetization to the MAC interface parameters. Moreover, we
evaluate the possibility to provide good quality real-time video under multi-hop
network scenarios.

We consider the state-of-the-art ITU-T H.264 [8] video encoder and config-
ure it to optimally match the ad hoc network scenario, as well as to adapt to
varying channel conditions. Standard video test sequences are packetized ac-
cording to the H.264 Network Adaptation Layer (NAL) for transmission using
the RTP/UDP/IP protocol stack. Error resilience tools provided by the H.264
standard are also configured and adapted to the characteristics of the 802.11b
wireless medium. We consider the presence of interfering data traffic carried by
TCP connections. The quality perceived by the video user at the receiver is ob-
jectively evaluated, using the PSNR as a distortion measure. By means of the ns
[15] network simulator, we simulate several network conditions, which include
various different channel conditions and different numbers of hops in the path
between source and destination.

2. IEEE 802.11b AD HOC NETWORKS

We consider an ad hoc network composed of stationary wireless stations,
using the IEEE 802.11b technology.

The 802.11b standard operates in the 2.4 GHz frequency bands, enabling
transmission rates ranging between 1 and 11 Mbps. IEEE 802.11 cards transmit
at a constant power, achieving a transmission range of up to hundreds of meters.

Two wireless stations are said to be within range and said to be neighbors of
each other if they can receive the each other’s transmission. Every station can
employ multihop transmissions to transfer information toward its final destina-
tion; also, it always behaves in a cooperative fashion accepting to act as a router
and relay traffic destined to other stations. For instance, if station s needs to
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Figure 13-1.  The 802.11b ad hoc network scenario.

send traffic to d and d is not within the range of s, then the information is sent to
one of 8’s neighbors, say 7. Node r will forward that information to its neighbor,
and so on, until it reaches the destination, d. In this example, r acts as a router.

As a reference scenario, we consider an ad hoc network including one station
generating video traffic, and up to eight stations which generate data traffic. The
overall network scenario is shown in Figure 13-1. All sources are associated with
the same destination and use the same relay stations to deliver their traffic to the
destination. While all sources are in the radio proximity of each other, only
the first relay station can communicate with the destination node, possibly by
using other intermediate relay nodes. A routing algorithm specifically designed
for wireless ad hoc networks, such as DSR [6] or AODV [12], can be used to
establish a route for each source-destination pair.

At the MAC and physical layers, all stations employ the 802.11b functions.
In particular, we assume that all stations can transmit at 11 Mbps and access the
channel by using the basic 802.11b MAC scheme, the so-called Distributed Co-
ordination Function (DCF) [1]. According to DCF, wireless stations wishing to
transmit a MAC Protocol Data Unit (MPDU) employ a CSMA/CA mechanism,
based on the listening-before-transmitting criterion. A station’s transmission
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may fail either because of the bad propagation conditions over the channel or
because two or more stations transmit at the same time and collide. However,
an ARQ scheme is implemented: in the case of failure, a transmission is re-
peated until a maximum number of transmission attempts is reached.

3. THE H.264 VIDEO CODING STANDARD

We focus on the transmission of video data compressed according to the new
ITU-T H.264 standard. The compression scheme follows the general structure
of the ISO MPEG and ITU-T H.264 video coding standards, with some new
features to achieve a higher compression efficiency. Some of them are briefly
outlined in the following; refer to [8] and [13] for more details.

The base coding unit for transform coding is a 4x4 sample block. Mac-
roblocks are composed of 16 luminance blocks and 4 blocks for each chromi-
nance component. The transform coding is a separable integer transform with
essentially the same properties of the traditional Discrete Cosine Transform
(DCT). Regarding motion compensation, prediction using multiple reference
frames is possible.

Consecutive macroblocks are grouped into a slice. The slice is important
because it has the property to be independently decodable. This is useful to
subdivide the coded stream into independently decodable packets, so that the
loss of a packet does not affect the decoding of others (not considering the effects
of motion compensation).

One of the most interesting characteristics of the H.264 standard is the at-
tempt to decouple the coding aspects from the bitstream adaptation needed to
transmit it over a particular channel. The part of the standard that deals with the
coding aspects is called Video Coding Layer (VCL), while the other is the Net-
work Adaptation Layer (NAL) [7]. One of the developed NAL is aimed to the
problem of transporting data over an IP network using the Real-Time Transport
Protocol (RTP) [3], which is well suited for real time multimedia transmissions.

Complete separation between the VCL and the NAL is, however, difficult
to achieve. For instance, to improve error resilience, the VCL should create
slices of about the same size of the packets handled by the NAL —which, in
turn, should not split slices (a VCL entity) into different packets. Such cross-
layer approach would benefit the error resilience of the transmission because all
packets could be decoded independently.

In H.264 the subdivision of a frame into slices has not to be the same for each
frame of the sequence; thus the decoder can flexibly decide how to slice each
individual video frame. Slice should not be too short because that would cause a



198 Chapter 13

decrease of the compression ratio for two main reasons: the slice headers would
reduce the available bandwidth, and the context-based entropy coding would
become less efficient. Long slices, on the other hand, are more likely to contain
transmission errors, which leads to reduced transmission efficiency and higher
packet losses. In this chapter the performance trade-offs involved in the packet
creation process will be investigated.

4. RESULTS
4.1 The simulation scenarios

Simulations have been carried out using the ns [15] network simulator fed
with the well known Foreman video sequence. The video sequence is coded us-
ing the H.264 test model software [5], enabling most of the new characteristics
of the H.264 standard, in particular multiple reference frames and Lagrangian
optimized motion search for macroblocks down to 4x4 pixels size. The se-
quence size is CIF at 15 fps, and is encoded using a fixed quantization param-
eter, set to achieve a bit rate of about 256 kbit/s. The sequence length is 149
frames, and one B frame is introduced after each P frame. The transmitted se-
quence is obtained concatenating the base video sequence 80 times, reaching
a length of 794.6 s at 15 fps. In order to improve error resilience, an I frame
is interposed at the beginning of each repetition of the sequence (i.e., every
148 frames.) The video sequences are packetized according to the IP Network
Adaptation Layer (NAL) specification of the H.264 standard and transmitted
using the RTP/UDP/IP protocol stack. At the receiver, a playout buffer mecha-
nism has been implemented to compensate the delay jitter of the packets. If not
specified otherwise, the playout buffer size has been set to 1 s.

When present, the interfering data traffic is carried by greedy TCP connec-
tions; the NewReno version of TCP is used.

At the MAC layer, the duration of the time slot and of the DIPS time interval
has been set to 20 us and 50 ps, respectively. When not specified otherwise, the
maximum number of transmission attempts is set to 2.

The 802.11b radio channel is modeled as a Gilbert channel. Two states, good
and bad, represent the state of the channel during an 802.11b time slot: an
MPDU is received correctly if the channel is in state good for the whole dura-
tion of the MPDU transmission; it is received in error otherwise. We denote the
transition probability from state good to state bad by p and the transition proba-
bility from state bad to state good by g. The average error probability, denoted
by €, is given by p/(p + g); the average length of a burst of consecutive errors is
equal to 1/q time slots. In the simulated scenarios the value of ¢ is set to 0.9 so



13. Real-Time Transmission of Video Over Wireless Ad Hoc Networks 199

PSNR (dB)

mmmam

L T

20 :
1 2

Number of transmissions per MPDU (M,)

w
.

Figure 13-2. PSNR values as a function of the maximum number of transmission per MPDU at
the MAC level. The results are plotted for various channel conditions.

that the average length of an error burst is equal to 1.1. The value of p varies so
as to represent a range of channel conditions with different values of the average
error probability.

We present two sets of simulation scenarios in a multi-service network which
provides video transmission and data transfer. The first set of simulations ana-
lyzes the video transmission quality in a simple two-hop scenario (i.e., with one
relay node only) under different network scenarios in which the error probability
over the radio channel and the number of background data traffic sources vary.
In the second set of simulations, we fix the number of background data sources
and we investigate the impact of the number of relay nodes on the video quality.

4.2 Two-hop scenario

We first analyze the behavior of the transmission system when no background
traffic is present in the network.

Figure 13-2 shows the impact of the maximum number of transmissions per
MPDU on the perceptual video quality, measured by the peak SNR (PSNR), for
four different channels. Almost optimal video quality can be achieved by setting
the maximum number of transmission attempts per MPDU, M;, to 3. If no re-
transmissions are present (M, = 1), the quality rapidly decreases, showing that



200 Chapter 13

34 o :_":j"""“"“‘"""h---__.;'_'_'_'_' o A | —

32 e = =

30 e ]

=) : e

24 ..............
£= 3.20-10“; ——

2 |- e=172107 —— g
€=2381-107 ~=

g0 L_€=553107 —o— | , , ,

200 300 400 500 600 700 800 900

Packet size (bytes)

Figure 13-3. PSNR values as a function of mean packet size, for various channel conditions;
M., is equal to 2.

at least one retransmission at the MAC level is needed to obtain an acceptable
video quality for realistic error probabilities.

Figure 13-3 shows the effect of the mean packet size on video quality, for
various channel conditions, with M, equal to 2. When the channel error proba-
bility is low (¢ = 8.20 - 10~%), the mean packet size has a limited influence on
the video quality, thus larger video packets can be used, minimizing the MAC
header overhead without incurring in an excessive quality degradation. For high
error probabilities (¢ = 5.53 - 1073), it is better to create smaller video pack-
ets during the encoding process so that the resulting packet error probability is
minimized.

We now evaluate the impact that the following aspects of the system have on
the quality of the video service: i) the interfering TCP traffic, ii) the error prob-
ability over the radio channel, iii) the setting at the MAC layer of the maximum
number of allowed transmissions per MPDU.

Figure 13-4 shows the average delay perceived by UDP packets versus the
slot error probability over the wireless channel when various numbers of inter-
fering TCP sources are considered. The maximum number of transmissions per
MPDU, M,, is set to 2 in the MAC layer of the video traffic source. As the
error probability over the wireless channel increases, the number of transmis-
sions performed per MPDU increases so that longer times are needed to deliver
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Figure 13-4. Average delay of UDP packets as a function of the error probability over the
802.11b wireless channel. The results are plotted for a varying number of TCP traffic sources
and by setting the maximum number of transmission attempts for video traffic to be equal to 2.

the MPDUs and, thus, longer average delays are experienced at the UDP level.
A similar behavior can be observed by letting the number of interfering TCP
sources increase. The effect of a large number of interfering sources is twofold.
On the one hand, it translates into a large collision probability which delays the
access to the radio channel. On the other hand, when the channel is shared by
a large number of sources, the channel capacity perceived by individual sources
is smaller.

Let us focus on the case where no interfering TCP sources are considered.
Depending on the radio channel conditions, the service time of video MPDUs
is either equal to one or to two MPDU transmission times (remember that M, is
equal to 2). The service time results to be small enough that there is no queue at
the MAC layer and the delay perceived by UDP packets is extremely small.

These results suggest some criteria for the choice of the set of services which
can be provided by the system. Consider, for example, the case of interactive
video services, for which an important QoS constraint consists in the average
delay being kept lower than 150 ms. In this case, the number of interfering TCP
sources should be limited. Up to 3 interfering sources are acceptable, while
4 sources can be admitted only if the average error probability over the radio
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Figure 13-5. Loss probability of UDP packets as a function of the error probability over the
802.11b wireless channel, when no TCP traffic sources are considered. The results are plotted for
different values of the maximum number of transmission attempts.

channel is small, say smaller than 0.003. More than 4 sources cannot be admit-
ted even in the presence of very good channel conditions.

Figure 13-5 shows the impact of the radio channel conditions on the loss prob-
ability of UDP packets of the video stream when different values of the maxi-
mum number of transmissions per MPDU are considered. The curves show that
some retransmissions are needed in order to keep the UDP packet loss proba-
bility to reasonable values. However, values of M, as small as 3 are already
enough to guarantee UDP loss probability smaller than 1%, even under bad
channel conditions.

4.3 Impact of the number of hops

In this section, we investigate the impact of the number of hops, i.e., relay
nodes, on the quality of service provided to the video and data services. As
sketched in Figure 13-1, the video source shares with the TCP flows the path
to the destination. We let the number of relay nodes increase from 1 (which
corresponds to the previous scenario) to 4. Correspondingly, the number of
hops in the path from the sources to the destination increases from 2 to 5. We
set the number of TCP connections to 2.
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Figure 13-6. Loss probability of UDP packets as a function of the number of relay nodes, when
two TCP traffic sources are considered. The results are plotted for different values of the error
probability over the wireless channel.

In Figure 13-6, the UDP packet loss probability is plotted versus the number
of relay nodes for three different values of the average error probability over the
radio channel. As expected, the UDP loss probability increases with the number
of relay nodes. The performance deterioration is limited when the number of
relay nodes increases from 3 to 4 relay nodes, since the distance between the
first and the last relay node is in this case large enough to allow for concurrent
undisturbed transmissions.

The UDP packet average delay is shown in Figure 13-7 under the same sce-
nario. The delay increase due to the higher number of hops makes it unfeasible
to provide interactive video services (end-to-end delay smaller than 150 ms)
with 4 relay nodes, while with 3 relay nodes that objective that can be achieved
only under good channel conditions; i.e., when the error probability over the
radio channel is lower than 0.5%.

As a more accurate measure of the quality of service perceived by video users,
the PSNR is plotted in Figure 13-8 versus the number of relay nodes for different
channel conditions; the playout buffer is set to 1 s, which represents a suitable
value for typical streaming scenarios. The quality decreases with the error prob-
ability and acceptable service can be provided only under very good channel
conditions. Clearly, as the delay constraint tightens, the difficulty to provide
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Figure 13-7. Average delay of UDP packets as a function of the number of relay nodes, when
two TCP traffic sources are considered. The results are plotted for different values of the error
probability over the wireless channel.

acceptable quality of service to the video users increases. In Figure 139 the
PSNR is plotted versus the number of relay nodes for different values of the
playout buffer under average error probability equal to 5.53 - 1073, Even if the
channel is good, tight delay constraints are difficult to meet when the number
of hops is large, say larger than 3. For example, very low quality is provided
with a constraint of 150 ms when only 3 hops are needed to reach the destina-
tion. These results suggest that, in a multi-hop network scenario, high-quality
real-time video can be provided only under loose delay constraints and limited
distance (in terms of number of hops) between source and destination.

Finally, we assess the impact of the number of relay nodes on the perfor-
mance of data traffic. The throughput achieved by TCP connections is shown
in Figure 13-10. The increase of both loss probability and delay makes the TCP
throughout drastically decrease with the number of relay nodes.

S. CONCLUSIONS

The behavior of H.264-coded video transmission over a wireless 802.11b ad
hoc network scenario has been analyzed. The influence of some of the main
parameters involved in the transmission system has been studied by means of
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Figure 13-8.  PSNR values as a function of the number of relay nodes, when two TCP traffic
sources are considered and the playout buffer is equal to 1 s. The results are plotted for different
values of the error probability over the wireless channel.

network simulations. Various scenarios have been tested, with different levels of
background interfering traffic and with different network configurations. Results
give a clear indication on how to select the system parameters. In particular,
we have observed that a video packet size as small as 300 bytes should be used
when channel conditions are not favorable. A maximum number of transmission
attempts at the MAC layer equal to 3 enables us to obtain a high PSNR for most
channel conditions. Moreover, in case of interactive video services, the number
of TCP sources that can be admitted in the network should be limited and the
number of hops must be kept very small, i.e., smaller than 4, in order to meet
the QoS requirements.
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Abstract:
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DWT image compression for mobile communication is presented. Discrete
wavelet transform (DWT) with Haar mother function is utilized in this paper.
The exact location information of the important DWT coefficients is generally
needed for reconstructing the image. In this work, however, such information
is not needed because it can be obtained from the DWT- approximation.
Through a one dimensional directional difference operator not only the exact
location information of the DWT coefficients but also the rough estimate of the
coefficient itself can be obtained from the DWT-approximation when Haar
mother wavelet function is utilized. The direction of the difference operator are
different each other according to the DWT-details (horizontal, vertical and
diagonal detail). This paper shows highly efficient image compression can be
achieved when such DWT-approximation information is utilized well.

Image compression, wireless communication, Haar transform, Discrete
wavelet transform

1. INTRODUCTION

In these years mobile communication is broadly extended in variety
ways. For such mobile communication technology an image compression
technique is very important for fast transmission of an image. The world
wide standard of compression coding image is JPEG and/or JPEG 2000
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[1,2,3,4,5]. They are excellent but still it is needed to make effort for the
higher efficiency in image coding. The presented method is lossy
compression one and completely compatible with such a traditional coding
method. Using a directional difference on the DWT-approximation we can
get a rough estimate of the DWT-detail in the case that Haar mother wavelet
function is employed. A higher image compression rate is attained if the
above nature is utilized well.

2. DISCRETE WAVELET TRANSFORM

Discrete wavelet transform (DWT) has an interesting nature for image
compression. DWT is a relatively new transform and many mother wavelet
functions are there. Hence we can choose an appropriate mother function for
the problem under consideration. Here we utilize a Haar function as a mother
wavelet because the resulting DWT coefficients are similar to the difference
image. The DWT is defined as (Transform):

5= SRy M
P @

where ${” is a scaling coefficient as

§P =2 f e, (i

. : 3)
(9, (¢) : scaling function)
and @{” is a wavelet coefficient as
o =[_f(O¥ (Dt @

¥ m (¢): wavelet function)

B, is a scaling function sequence of Doubchies. ¢, is a wavelet function
sequence and has a relation with A as

g =(DtP-k )
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The inverse DWT is expressed as

5= E[Pn-zk's:j) + qn-ka:I):I
k

(6)
(S = f(n): original signal)

From these equations we can see that DWT coefficients are calculated by

a recursive equation. It means the calculation is fast and simple. Especially in

the case where Haar function is utilized as a mother wavelet one the

calculation is the simplest and furthermore it has an interesting nature
expressed in the next section.

3. IMAGE COMPRESSION

3.1 Haar wavelet function
The Haar function has a simple structure shown in Eq. (7):

1(0s1<1/2
w(r)={-1(1/2$1<1) )
0 (otherwise)

Fig. 14-1 shows a two dimensional DWT with a Haar mother wavelet
function.

The left upper quadrant is called a level-l DWT approximation. This
looks very similar to the original image but the size is a half of the original
one through a down sampling. The right upper, the left lower and the right
lower quadrant is called the vertical, the horizontal and the diagonal detail
respectively. The vertical detail includes the information about a vertical
element of the original image. Then it is concerned with a horizontal
directional (one dimensional) difference of the original image. Actually the
horizontal directional difference image of the DWT approximation is similar
to the vertical detail.
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Figure 14-1. DWT (level-1)

(a) (b)

Figure 14-2. (a) Difference image (Horizontal), (b) Vertical DWT-detail

Fig. 14-2(a) and 14-2(b) are the horizontal directional difference image of
the DWT approximation and the vertical DWT detail respectively. And in
fact the cross correlation coefficient between these two images is relatively
large (in the above image it is 0.735). Similarly the horizontal DWT detail
looks like the vertical directional (one dimensional) difference image of the
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DWT approximation. Fig. 14-3(a) and 14-3(b) show the similarity. The
diagonal DWT detail corresponds to the diagonal directional difference
image. In this case, first we take a horizontal directional difference and then
for the resulting result we take a vertical difference. Fig. 14-4(a) and 14-4(b)
show the relation between these two images.

(@ (b)

Figure 14-3. (a) Difference image (Vertical), (b) Horizontal DWT-detail

(@ (b)

Figure 14-4. (a) Difference image (Diagonal direction), (b) Diagonal DWT-detail
3.2 Reconstruction

As described above each directional difference image is very similar to
the corresponding detail. Actually replacing these DWT details by the
corresponding differences we get Fig. 14-5 through the inverse DWT. The
SNR of Fig. 14-5(a) is 27.3 dB. And that of Fig. 14-5(b) is 28.5 dB.

In this case it is better to take edge enhancement of the DWT-
approximation image. There are many cases such a picture quality as that of
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Fig. 14-5 is enough. For example such images can be utilized well for a
mobile phone. Then at the receiver side we can reconstruct the images whose
picture quality is like those of Fig. 14-5(a) and 14-5(b) when we can get only
the DWT approximation. This means that the data to be sent is just 1/4 of the
original. The DWT approximation can be compressed and coded through an
ordinary JPEG or JPEG2000 method. Hence, for example, if the JPEG
method gives us 4/5 reductions of the image data then the needed data to be
transmitted is only 1/20 of the whole image data.

33 Image Compression

Many DWT coefficients are nearly zero but actually not equal to zero.
Consequently we had better take the above corresponding difference instead
of zero values. Then taking a threshold value processing the bit rate
reduction can be achieved:

B ip= DG,j) :IDG.HISy
s D, jy+ e, )4 DG, > ¥ (®)
(7 Threshold value)
where,
&(i, j) = D7 (G, j)— DG, J) )

and D, (i, j) is DWT detail, D,,(,j) is the estimate of D,(,j), D(i,j) is the
corresponding difference described in the former section, and & is the error
of D,,G,j) from the true value DG, j). £G,j) has a zero mean and small
variance. Since we can create D(i,j) from the DWT approximation at the
receiver side we can reconstruct the image if we obtain &(, j). Then &, ;)
must be transmitted to the receiver side. Consequently only fewer bits are
needed to transmit because &(i, j) has small variance with zero mean.
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(a) [SNR=27.3dB]

(b) [SNR=28.5dB]

Figure 14-5. Reconstructed image with no details
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4. SIMULATIONS

If we only need almost 30 dB picture quality for the reconstructed image
then we can use a directional difference value described above and we do not
need information almost DWT-details at all. That is, the image
reconstruction is performed through the DWT-approximation only. A higher
picture quality, however, when we need, DWT-detail information is needed.
Figures 14-6 and 14-7 are the reconstructed image with an average bit rate
0.15 bits/pel for the DWT-details. The SNRs of these are 34 dB (lenna) and
35 dB (Happa) and these total average bit rates are both 0.47 bits/pel. The
DWT-approximation is coded by using an ordinary JPEG method and its
average bit rate is 1.28 bits/pel. The picture qualities of these reconstructed
images are about the same as those of JPEG 2000 and look excellent for a
practical use.

S. CONCLUSION

A new image compression method using DWT has been presented. In this
work DWT-details are estimated through its DWT-approximation. The
directional one-dimensional difference is introduced for this estimation.
Horizontal, vertical, and diagonal DWT-details have the different
corresponding one-dimensional differences respectively. In case of Haar
mother wavelet these directional one-dimensional difference is worthwhile.
We utilize our presented method only for level one-DWT of an image. It
looks interesting to use the method also for level two-DWT. It will be
considered as a future problem. In any case making IC and/or LSI with the
presented method is easy because of Haar wavelet and one dimensional
difference. Hence applying this method to a mobile phone is one of the best
utilities.
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Figure 14-7. Reconstructed image [SNR=35dB]
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Abstract

Keywords:

We present an adaptive technique to transmit speech over 802.11 wireless packet
networks. According to the proposed scheme, the speech coding rate of a network-
driven variable bit-rate coder is selected to match the instantaneous wireless chan-
nel conditions: higher rates (i.e., larger packets) for low error rates, lower rates
(i.e., smaller packets) when the channel is noisy. Packet size is, in fact, directly
related to the probability of retransmission, one of the major sources of delay and
losses in contention-based medium access control. Network simulations using
the 3GPP GSM-AMR speech coding standard show that the adaptive approach
can address the stringent quality of service requirements for two-way interactive
speech applications over wireless packet networks, reducing packet loss rates and
end-to-end delays.

wireless network, 802.11, voice over IP, adaptive speech, GSM AMR, link adap-
tation, adaptive packet size

1. INTRODUCTION

Wireless technology keeps changing the communications scenario. Wireless
local area networks (WLAN’s), in particular, are being enthusiastically adopted
by users worldwide, shaping a new world where tetherless access will be pos-
sible not only in homes and offices, but also in an increasing number of previ-

*This work was supported in part by CERCOM, the Center for Wireless Multimedia Communications,
Torino, Italy, http://www.cercom.polito.it.
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Router

Figure 15-1.  802.11-based network communications scenario.

ously unconnected places, like shopping malls, libraries, trains and other means
of mass transportation, even private motor vehicles. As soon as seamless inte-
gration with wide-area coverage provided by 2.5G/3G cellular wireless infras-
tructures is reached, wireless access will likely become the most common form
of network access for an increasing number of users.

The IEEE 802.11 WLAN standard, based on the definition of the medium
access control (MAC) protocol and the physical layer (PHY) specifications, be-
came available in 1999 [1] and since then has emerged as the most success-
ful and most widely deployed WLAN standard. Figure 15-1 shows a simple
802.11-based network scenario, with two mobile stations and an access point
(AP) connected to a wired LAN.

So far, the main usage of Wireless LAN’s has been limited to Internet based
services like Web browsing, e-mail, and file transfers. However, as already hap-
pened in the traditional wired LAN’s, a strong interest is emerging towards mul-
timedia applications over WLAN’s. Among them, interactive voice commu-
nication looks particularly appealing. WLAN-based telephony, in fact, could
not only replace and significantly extend traditional cordless telephony, but also
compete with cellular telephony in at least a certain number of scenarios. More-
over, such technology would have all the typical Voice over IP advantages, in-
cluding a single infrastructure for both data and voice, greater flexibility with
respect to traditional telephony, and the possibility of introducing new value-
added services.
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Several challenges, however, need to be addressed to make WLAN telephony
as successful as cellular and wired telephony. Not only the actually available
bandwidth for WLAN’s can be significantly below that of their wired coun-
terparts, but wireless links are also strongly time-varying and may have high
error rates. Other issues are specific of 802.11 WLAN’s, including the MAC
layer effects on performance, the consequences of interfering data traffic, and
determining the optimal configurations for both Access-Point-based and ad-hoc
802.11 networks for a given application scenario.

Previous research evaluated the performance of interactive voice traffic over
Wireless LAN’s [7][19], mainly by means of statistical analysis of throughput
and packet losses to assess the number of supportable voice conversations.

In this chapter we present a new technique for improving the quality of in-
teractive voice communications over 802.11 wireless packet networks. The op-
erating rate of a network-driven variable-bitrate speech coder is chosen on a
frame-by-frame basis according to the instantaneous channel conditions: higher
rates (i.e., longer packets) when the channel is good, lower rates (i.e., shorter
packets) when the channel is poor. Performance is measured in terms of aver-
age packet losses and average delay, with and without interfering traffic, using
a network simulator. The disadvantage of temporarily lowering the source cod-
ing quality is clearly offset by the advantages deriving from lower packet losses
and delays. The proposed system thus consistently outperforms constant-bitrate
speech transmission at the same average bit-rate.

The chapter is organized as follows. In Section 2, we introduce the wireless
Voice over IP scenario and the adaptive multi-rate speech coder. In Section 3,
we describe the proposed speech transmission scheme. Results and conclusions
are presented in Section 4 and 5, respectively.

2. VOICE OVER 802.11 WLAN’S

Voice over IP over wireless packet networks is becoming increasingly attrac-
tive. In particular, the widespread adoption of WLAN technology is creating the
basis for the introduction of a new form of cordless telephony in offices, homes,
hospitals, etc.

Two-way conversational applications, however, are characterized by stringent
requirements on the end-to-end delay. The upper limit for one-way delay is set
to only 150 ms, according to the guidelines of ITU-T Recommendation G.114.
Moreover, packet losses should be kept below 1% to prevent significant percep-
tual degradation.
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The WLAN environment is quite challenging on two counts: the wireless link
is inherently noisy, due to fading and interference; the contention-based medium
access control (MAC) layer and the retransmission-based error-control scheme
may introduce strong delays as well as packet losses.

Efficient WLAN-based telephony systems must thus be designed carefully
to overcome the difficulties of the environment if toll quality service is to be
delivered.

2.1 IEEE 802.11 Wireless LAN’s

Users may conveniently access the Internet via Wireless LAN technology.
Bridging functionality is provided by access points that interconnect wireless
nodes to the wired infrastructure, i.e. IEEE 802.11 networks in infrastructure
mode. The IEEE 802.11b physical layer —which operates in the license free
2.4 GHz ISM (Industrial, Scientific, and Medical) band— implements a Direct
Sequence Spread Spectrum (DSSS) system with an 11 Mbps top bit-rate. The
MAC sublayer is responsible for the channel allocation procedures, frame for-
matting, error checking, fragmentation and reassembly. The fundamental trans-
mission medium defined to support asynchronous data transfer on a best effort
basis is called Distributed Coordination Function (DCF). It operates in a con-
tention mode requiring all stations to contend for access to the channel for each
packet transmitted. Contention services promote fair access to the channel for
all stations.

In the IEEE 802.11 MAC, each data-type frame consists of the following ba-
sic components: a MAC header, a variable length information frame body, and
a frame check sequence. All fields except the frame body (28 bytes in total)
contribute to the MAC protocol data unit (MPDU) overhead for a data frame.
Upon packet transmission the destination station positively acknowledges each
successfully received packet by sending an ACK frame back to the source sta-
tion. When an ACK is not received, the source station contends again for the
channel to transmit the unacknowledged packet and, in case of further errors,
retries until a maximum retry limit is reached.

2.2 The GSM AMR Speech Coding Standard

The GSM Adaptive Multi-Rate (AMR) standard [10] is a state-of-the-art
network-driven variable-bitrate speech coder. Its operating bit-rate can be cho-
sen on a frame-by-frame basis to match the instantaneous channel conditions. In
the case of cellular telephony, the objective is to change the ratio between band-
width devoted to speech and bandwidth devoted to forward error correction. For
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the proposed technique, the objective is to use the speech rate, i.e. the speech
packet size, most suitable for any given 802.11 channel condition.

The GSM-AMR speech coder is a multi-rate ACELP coder with 8 modes op-
erating at bit-rates from 12.2 kbps to 4.75 kbps. The coder modes are integrated
in a common structure, where the bit-rate scalability is obtained by adjusting
the quantization schemes for the different parameters. The frame size is 20 ms,
consisting of 4 sub-frames of 5 ms each.

3. ADAPTIVE REAL-TIME MULTIMEDIA
TRANSMISSION

The time-varying nature of wireless channels as well as network congestions
may significantly degrade the quality of speech communications. Adaptive
transmission techniques are designed to match the time-varying nature of the
wireless channel, thus typically delivering the desired level of QoS for real-time
multimedia more effectively than non-adaptive schemes (see, e.g., [12]).

Although non-adaptive schemes tend to be simpler and potentially more ro-
bust, they are optimal only for the operating point used for their design: their
performance quickly decreases when the scenario worsens and they also cannot
exploit better conditions when available. Marginal channel conditions are quite
common in real systems: these are encountered, for example, just prior to hand-
off or during deep shadowing, as when a mobile station suddenly goes behind a
building or a hill.

As the condition of the radio channel varies with both the location and mobil-
ity of the terminal, it is therefore desirable to employ an adaptive solution pro-
viding the user with maximum quality for any given channel condition. Adap-
tive solutions have been proposed in the literature for different layers of the
network infrastructure and the next section will present a brief survey to the
reader.

3.1 Adaptive Techniques for 802.11

Previous works presented several techniques —located at different network
layers— to increase the quality of service of wireless networks by means of
channel or traffic adaptation.

The IEEE 802.11b physical (PHY) layer provides four PHY rates from 1 to
11 Mbps at the 2.4 Ghz band. Link adaptation mechanisms have been discussed
so that the proper PHY rate can be adaptively selected to combat the variation
of the wireless medium condition, hence improving the goodput performance of
a WLAN [14]. In fact the higher the PHY rate, the shorter the transmission time
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in one transmission attempt, but the more likely that the transmission will fail,
thus engendering retransmissions.

A link-level adaptation approach can be adopted to change the transmitted
packet size according to variations of the channel quality [6], since shorter pack-
ets are more suitable for noisy channel conditions. Transmission robustness can
then be increased enabling fragmentation whenever a local station estimator (on
the transmitter side) evaluates the channel error rate to be above a given thresh-
old.

Besides channel noise, also network congestions and interference can threaten
the performance of real-time multimedia communications over mobile networks.
Application level adaptation based on packet loss and delay reports from the re-
ceiver can be an effective approach to reduce source rate and packet size to
match the available bandwidth [5][13].

The solutions presented so far can provide better QoS, but they still suffer
from some limitations. When physical transmission rate is reduced also trans-
mission speed and throughput decrease. If fragmentation is used when the chan-
nel is noisy, the overhead introduced by fragment headers can cause even more
congestion. Source rate adaptation at the application level can be too slow to
face the time varying error characteristic of the wireless channel.

3.2 Link-Adaptive 802.11 VBR Speech Transmission

A new technique is presented whose purpose is to introduce link-layer packet
size adaptation by means of adaptive-rate speech coding.

In IEEE 802.11 wireless LAN’s, packets received without errors are pos-
itively acknowledged by the sender, otherwise they are retransmitted until a
given maximum number of retransmissions is reacherd. Changing the transmit-
ted packet size according to the error rate of the wireless link between the mobile
terminal and the access point can reduce the number of retransmissions needed
to successfully send a packet. Smaller packets, in fact, are less likely corrupted
than larger ones, and they are, therefore, more suitable for noisy channels, at the
cost of increased overhead. Less retransmissions result into less packet losses,
lower end-to-end delay and less channel congestion.

In the case of speech communications, compressed speech should be trans-
mitted using larger packets when the wireless channel is good, and smaller pack-
ets when the channel is poor. Speech coded using PCM-based techniques, e.g.,
the ITU-T G.711 64 kb/s coding standard, is particularly suitable in this re-
gard, since it can be packetized very flexibly. Most modern, bandwidth-efficient
speech coders, however, typically code 10-20 ms speech segments into frames
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of fixed size. In this case, packet sizes can be varied by changing the amount
of speech data (e.g., frames) placed into a packet: several speech frames could
be packetized together when the channel is good, just a frame or two when the
channel is noisy. Changing, however, the amount of speech data —be that PCM
samples or frames— encapsulated into packets causes causes potentially high
delays; moreover, such delay would be time-varying.

A different, constant-delay approach based on network-driven variable bit-
rate speech coders is possible. Variable bit-rate coders can compress speech seg-
ments in frames of different dimensions according to the selected codec mode.
For example, the GSM AMR can generate —as discussed in Section 15.2.2—
eight different frame sizes, all representing 20 ms of speech, ranging from
95 bits (lowest quality) up to 244 bits (highest quality). When a variable-rate
speech codec is available, higher rates (i.e., larger packets) can be used for good
channel conditions, lower rates for noisy conditions. The trade-off is, therefore,
between source coding quality —which is proportional to the speech coding
rate— and transmission performance —which depends on the packet size. For
at least some scenarios, the expectation is that the source coding degradation
experienced when the channel is noisy (when lower coding rates are employed)
is more than compensated by better transmission performance in terms of lower
packet losses, end-to-end delay and network congestion.

The proposed technique requires a channel estimation algorithm to select the
optimal output rate of the speech coder at any given time instant. The GSM
AMR standard leaves link quality estimation open. However, it provides an
example solution, which is based on burst-wise C/I estimates [11]. Channel
estimation schemes are covered in some detail in [4]. A carrier signal estimate is
computed using a training sequence known a priori. By comparing the received
training sequence and the known training sequence the receiver can estimate the
current C/I and communicate it to the sender. For codec mode adaptation, the
measure of the instantaneous channel quality has to be mapped to codec modes.
This is in principle done by quantizing the measurement where the levels of the
quantizer are mapped onto the different codec modes.

For the proposed technique, channel quality measurements are roughly quan-
tized in two states that represent good and bad channel conditions. In the bad
state, large packets have a higher probability to be in error and, therefore, to be
retransmitted, while small packets are more easily received without errors.
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33 Wireless Transmission Model

Wireless transmission is error prone with non-stationary error characteristics.
Bit error rates as bad as 10~2 or 102 are reported [3]. They are caused by path
loss, fast fading due to movement and multipath propagation, slow fading due
to moving beyond large obstacles, noise and interference from other networks
or devices like microwave ovens.

A widely used model for the error characteristics of a wireless channel is the
Gilbert-Elliot two state Markov model [20][21][8], where each state represents a
Binary Symmetric Channel (BSC). Each state is assigned a specific constant Bit
Error Rate (BER): in the “good” state (G) errors occur with low probability pg,
while in the “bad” state (B) they happen with high probability pp (pp > pg).
Within one state errors are assumed to occur independently from each other. For
a complete specification of the model the values pgp and pg¢g, that represent
the probability to switch from the good state to the bad state and vice versa, are
necessary and sufficient.

The steady state probabilities of being in the states G and B are

BG G
To = P PGB

=— M= ——, O
PBG T PGB PBG T PGB

respectively. Hence the average bit error rate produced by the Gilbert-Elliot
channel is

P =pgng + PBTB. (2)

As established by measurements, BER’s of the order of 1075 and 1073 are typ-
ical for the good and bad state, respectively. For simplicity we assume that state
transitions occur only at multiples of 20 ms and that a packet is entirely sent in
one of the two states (no state transitions occur in the middle of a packet.)

Given these restrictions we can express the packet error probability as a func-
tion of the packet size: with a b-bit packet and a BER of p, the packet will be
considered corrupted and therefore discarded with probability

1-(1-p)" 3)
For a Gilbert-Elliot channel the packet error rate can then be expressed as
Ppeke = 161 — (1 — pg)*¢] + 781 - (1 — pp)*?), 4)

where b and bg are the packet size (in bit) during the channel good and bad
states, respectively.

If retransmissions are allowed at the MAC level the source station can trans-
mit a packet at most N times before discarding it. The perceived correct rate at
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Figure 15-2. Packet loss rate as a function of the Gilbert-Elliot model parameter pae. The
value pgp is fixed at 0.6. pg is set to 1 x 1075 and peto 1.5 x 1073, The packet size at
the physical level for the higher and lower rates are 704 and 560 bits respectively. The average
rate transmission has a constant packet size equal to the average size of the adaptive transmission
packets.

the transport protocol layer is:

N
Pyeke(correct) =3 (1 = ppckt)Phopy = 1 — Ppekss )
=1
where N is the maximum number of transmission at MAC (DCF mode) and
Ppckt 18 the packet loss rate at physical layer. Consequently, the perceived loss
rate at transport protocol is
Ppckt = p;];tkt- 6)

In Figure 15-2 the packet loss rate at the transport layer is plotted for differ-
ent packet sizes corresponding to different speech coding rates. Three constant
packet sizes are considered: a 12.2 kb/s speech coding rate (rate4, the ‘higher
rate’) with a packet size at the physical layer of 704 bits, a 4.75 kb/s rate (rateg,
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the ‘lower rate”) with packets of 560 bits, and an additional constant rate (ratec,
the ‘average rate’) corresponding to the average packet size of a perfectly adap-
tive transmission that uses both rate 4 and ratep according to the equation:

rategc = wprateg + mgratey,. @)

The same figure also illustrates the analytical performance of the proposed adap-
tive transmission scheme (the ‘adaptive’ curve), which uses rate4 when the
channel is good, and ratep when the channel is bad. Since packet errors occur
almost only in the bad state the packet error rate of the adaptive solution is quite
close to the one of the lower rate. The adaptive scheme, however, can exploit
the good channel states by increasing the speech coding rate and thus the over-
all perceived quality. When the average curve is close to the higher curve, the
adaptive scheme is coding speech at an average rate close to the higher rate.

4. SIMULATIONS AND RESULTS

Adaptive transmission of speech using the GSM Adaptive Multi-Rate (AMR)
coder was tested over an IEEE 802.11 wireless channel using the NS-2 [18] net-
work simulator. Several network conditions with Voice over IP connections,
with and without interfering TCP traffic, were simulated under different chan-
nel error rates. The network simulator was modified to include a channel er-
ror model for the wireless link based on the Gilbert-Elliot two state Markov
model [9].

At the application level speech is encoded with a different GSM AMR codec
mode according to the istantaneous error rate of the wireless medium. The pos-
sible states associated to the channel are two: a “good” state with low error rate
and a “bad” state with a higher probability of bit errors. For the former, the
12.2 kb/s speech coding rate is used, while for the latter the encoder produces
an output rate of 4.75 kb/s. Sensing of the channel is performed for each speech
frame; we assume perfect knowledge of the channel state at the transmitter side.

The speech payload is sent over the network using the Real-time Trans-
port Protocol (RTP) [15] as defined in the recent RFC 3267 [16] that speci-
fies the payload format to be used for AMR encoded speech signals. We use a
bandwidth-efficient AMR payload for a single channel session carrying a single
speech frame block: compressed speech bits are arranged in descending sensi-
tivity order, ten control bits are present at the beginning of the payload to carry
information about mode request (4 bits), last frame of the payload (1 bit), cod-
ing mode (4 bits), and damaged speech frame (1 bit); finally additional bits are
added to the end as padding to make the payload byte aligned.
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Figure 15-3. Protocol stack for IP-based real-time multimedia transmission over wireless
LAN’s.

Figure 15-3 presents the protocol stack used for the wireless real-time mul-
timedia transmission. Every 20 ms the GSM AMR encoder produces a com-
pressed speech payload of 14 bytes for the 4.75 kb/s mode and of 32 bytes for the
12.2 kb/s mode. The payload is then encapsulated by the RTP protocol, UDP is
used for multiplexing different flows, and IP takes care of addressing and deliv-
ering the packets to their destination. For the RTP/UDP/IP headers, a compres-
sion scheme has been assumed that allows the 40-byte header to be compressed
in 4 bytes as defined by RFC 3095 for Robust Header Compression [17]. Each
data-type MPDU (MAC Protocol Data Unit) has a 24-byte header plus a 4-byte
frame check sequence. Finally the physical level adds additional 24 bytes for
the PLCP preamble, PLCP header, tail and pad bits.

4.1 Results

Simulations were performed for an 11 Mb/s IEEE 802.11 wireless LAN sce-
nario where an infrastructure network is populated by three mobile terminals
placed at the same distance from an access point (AP). The AP is then connected
to another host through a wired link. All the communications are directed from
the mobile stations to the wired node, and they are forwarded by the access
point. Because the wireless path represents only the first transmission hop, we
consider 20 ms as the maximum acceptable value for the one-way transfer delay
over the wireless link: the percentage of voice packets that are lost or received
with a delay greater than 20 ms is monitored on the access point.

Firstly, we tested the proposed adaptive solution against plain transmission of
a single VolP source without interfering traffic. A wireless node sends a speech
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Figure 15-4. Lost and late speech packets as a function of the bit error rate; adaptive vs. not-
adaptive technique, maximum number of retransmissions set to zero and two.

frame every 20 ms adapting the payload size (244 or 95 bits of speech data,
which correspond to 704 or 560 bits at the physical layer) to the channel state.
A bit error rate of 1 x 1072 for the channel in the “good” condition, and a BER
of 1.5 x 1073 for the “bad” condition, that represents a channel fade, are used.

The transition probability ppq of the Gilbert model has been kept constant at
the value 0.6 so that the average sojourn time in the bad state (with a time slot of
20 ms) is 1/ppg = 1.5 time slots. The ppg value has been changed to reflect
different BER’s as in Eq. 2.

Figure 15-4 compares adaptive and fixed-rate transmission at the same av-
erage bit-rate for the cases of maximum number of retransmissions zero and
two, respectively. With a bit error rate at the physical level of 1.69 x 10~* and
two retransmissions, the adaptive solution nearly halves the number of lost and
late packets from 2.9% to 1.7%. The plot also demonstrates that if the network
allows a higher number of retransmissions the gap between constant bit rate
transmission and adaptive transmission increases.
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Figure 15-5. Lost and late speech packets as a function of the bit error rate; adaptive vs. not-
adaptive technique, with and without interfering FTP traffic.

The second simulation scenario tests the performance of the adaptive trans-
mission in presence of interfering FTP traffic. Besides the VoIP transmission
two other terminals are sending FTP traffic to the wired host through the AP.
The FTP packet size was set equal to the higher rate of the voice communica-
tion and its TCP congestion window was increased to make the source more
aggressive in terms of used bandwidth against the VoIP connection. Figure 15-5
illustrates the case of two concurrent FTP sources with a maximum number of 4
retransmissions at the MAC level: the adaptive technique with interfering traffic
performs better then the non-adaptive solution without interfering traffic. This
is an important result because it shows that, in presence of network congestions,
reducing the packet size by diminishing the source bit-rate is quite effective in
improving the quality of interactive speech communications: a reduced source
bit-rate decreases the congestion caused by packet retransmissions.

Regarding end-to-end delay, the proposed adaptive transmission scheme re-
duces the average delay because less retransmissions are needed. Figure 15-6
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Figure 15-6. Packet discarded at the receiver because of their late arrival (delay larger than 20
ms) as a function of the bit error rate. Adaptive vs. not-adaptive technique.

shows the percentage of packets discarded at the receiver due to late arrival (de-
lay > 20 ms). If the speech frame dimension is adapted to the channel condition,
packets tend to arrive on time for successful playback, leading to higher percep-
tual quality.

Even more positive results were obtained for wideband speech transmission,
for which a larger range of source rates is available. The GSM AMR wide-band
codec [2] at rates of 23.85 kb/s and 6.6 kb/s was used in the same wireless sce-
nario. The behavior of a single VoIP communication without interfering traffic
is plotted in Figure 15-7 where the even larger advantage of the adaptive solu-
tion over the constant bit-rate transmission is clearly noticeable with respect to
Figure 15-4: with BER equal to 1.69 x 1074, the packet loss rate is more than
halved (from 4.3% to 2%).
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Figure 15-7. Lost and late speech packets as a function of the bit error rate; adaptive vs. not
adaptive technique for narrowband and wideband speech, maximum number of retransmissions
set to two.

S. CONCLUSIONS

An adaptive technique to transmit speech over 802.11 wireless packet net-
works was presented. The speech coding rate of a network-driven variable bit-
rate coder, the GSM AMR, is selected to match the instantaneous wireless chan-
nel conditions: higher rates (i.e., larger packets) for low error rates, lower rates
(i.e., smaller packets) when the channel is noisy. Network simulations showed
that adaptively selecting the speech packet size consistently outperforms the
constant bit-rate approach in terms of packet loss rates and end-to-end delays.
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JOINT AUDIO-VIDEO PROCESSING FOR
ROBUST BIOMETRIC SPEAKER
IDENTIFICATION IN CAR'
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Abstract: In this chapter, we present our recent results on the multilevel Bayesian
decision fusion scheme for multimodal audio-visual speaker identification
problem. The objective is to improve the recognition performance over
conventional decision fusion schemes. The proposed system decomposes the
information existing in a video stream into three components: speech, lip trace
and face texture. Lip trace features are extracted based on 2D-DCT transform
of the successive active lip frames. The mel-frequency cepstral coefficients
(MFCC) of the corresponding speech signal are extracted in parallel to the lip
features. The resulting two parallel and synchronous feature vectors are used to
train and test a two stream Hidden Markov Model (HMM) based identification
system. Face texture images are treated separately in eigenface domain and
integrated to the system through decision-fusion. Reliability based ordering in
multilevel decision fusion is observed to be significantly robust at all SNR
levels.

Keywords.‘ Speaker identification, multi-modal, multilevel decision fusion, robustness, in-
vehicle

! This work has been supported by The Scientific and Technical Research Council of Turkey
(TUBITAK) under the project EEEAG-101E038.



238 Chapter 16

1. INTRODUCTION

Biometric person recognition technologies include recognition of faces,
fingerprints, voice, signature strokes, iris and retina scans, and gait. Person
recognition in general encompasses two different, but closely related tasks:
Identification and verification. The former refers to identification of a person
from her/his biometric data from a set of candidates, while the latter refers to
verification of a person’s biometric data. It is generally agreed that no single
biometric technology will meet the needs of all potential recognition
applications. Although the performances of these biometric technologies
have been studied individually, there is relatively little work reported in the
literature on the fusion of the results of various biometric technologies [1].

A particular problem in multi-modal biometric person identification,
which has a wide variety of applications, is the speaker identification
problem where basically two modalities exist: audio signal (voice) and video
signal. Speaker identification, when performed over audio streams, is
probably one of the most natural ways to perform person identification.
However, video stream is also an important source of biometric information,
in which we have still images of biometric features such as face and also the
temporal motion information such as lip, which is correlated with the audio
stream. Most speaker identification systems rely on audio-only data [2].
However especially under noisy conditions, such systems are far from being
perfect for high security applications. The same observation is also valid for
systems using only visual data; where poor picture quality or changes in
lighting conditions significantly degrade performance [3,4]. A better
alternative is the use of both modalities in a single identification scheme.
Person identification has a variety of applications at various levels of
security. A possible low security level application could be the identification
of a specific driver/passenger in car that provides various personal control
services to the driver or to the passenger. Speaker identification performance
usually degrades under adverse environmental conditions such as car noise,
and a multi-modal identification system helps to maintain a high level
reliability for the driver/passenger identification task. The visual data could
be available through a camera located on the visor.

The design of a multimodal identification system consists of two basic
problems. The first problem is to represent the raw data acquired for each
modality with a meaningful and robust set of features, which has to be
individually able to discriminate samples belonging to different classes under
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varying environmental conditions. The second problem is to combine the
decisions of individual classifiers so as to enforce the final decision. With the
assumption that each selected feature set is individually discriminative
enough under ideal conditions, the main motivation in a multimodal fusion
scheme is to compensate possible misclassifications of a certain modality
with other available modalities and to end up with a more reliable system.
These misclassifications are in general inevitable due to environmental noise,
measurement errors or time-varying characteristics of the signals. A critical
issue in multimodal fusion is not to deteriorate the performance of unimodal
classifiers. Thus our ultimate goal should be at least not to fail whenever one
of the individual classifiers gives the correct decision. In this work, rather
than selecting the best feature set, the emphasis is on this second problem,
i.e. how to combine the decisions of different classifiers in view of the above
discussion. We claim that the crucial point here is first to assess the
reliability of each classifier, or modality, and then favor the classifiers
according to their reliabilities in an appropriate decision fusion scheme.

Existing multimodal speaker identification systems are mostly bimodal,
integrating audio and face information as in [8, 9, 10, 18], audio and lip
information as in [11, 12, 13, 16, 19] or face and lip shape as in [14]. In [10],
Sanderson et. al. present an audio-visual person verification system that
integrates voice and face modalities and compares concatenative data-fusion
with adaptive and non-adaptive decision fusion techniques, where adaptation
takes into account the acoustic noise level of speech signal. Later in [§],
enhanced PCA for face representation and fusion using SVMs and
confidence measures are presented. Another audio-visual person
identification system proposed in [9] uses a Maximum Likelihood Linear
Transformation (MLLT) based data-fusion technique. These related works
do not address lip-motion as a biometric modality for person identification
and they all do emphasize on the performance of data and decision fusion in
separate. In an eigenface-based person identification system, Kittler et. al use
the lip-shape to classify face images to enhance the face recognition
performance [14].

The only work in the literature that addresses a multimodal speaker
identification system using speech, face and lip motion is the one presented
n [19]. In [19], the information coming from voice, lip-motion and face
modalities are assumed to be independent of each other and thus the
multimodal classification is achieved by a decision fusion mechanism. The
face-only module involves a quite deal of image analysis to normalize and to
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extract salient features of the face whereas the lip movement is represented
by DCT coefficients of the corresponding optical flow vectors in the lip
region. Face and lip features are then stored as biometric templates and
classified through a set of algorithms so-called synergetic computer. The
acoustic information on the other hand is represented by cepstral coefficients
that are then classified by vector quantization using a minimum distance
classifier.

In our biometric speaker identification system, we use three different
modalities: speech, lip trace and face texture. Lip movement is a natural by-
product of the speaking act. Information inherent in lip movement has so far
been exploited mostly for the speech recognition problem, establishing a
one-to-one correspondence with the phonemes of speech and the visemes of
lip movement. It is quite natural to assume that lip movement would also
characterize an individual as well as what that individual is speaking. Only
few articles in the literature incorporate lip information for the speaker
identification problem [11, 16, 19]. Although these works demonstrate some
improvement over unimodal techniques, they use a decision-fusion strategy
and hence do not fully exploit the mutual dependency between lip movement
and speech. In a recent work [12], bimodal data and decision fusion of audio
and eigenlip stream has been studied with encouraging results. In this chapter
we present an HMM-based speaker identification scheme for joint use of the
face, the lip trace and the audio signal of a speaking individual through data
and multilevel decision fusion.

2. MULTIMODAL DECISION FUSION

The speaker identification problem is often formalized by using
probabilistic approach: Given a feature vector f representing the sample data
of an unknown individual, compute the a posteriori probability P(4, | f) for
each class A,, n=0,1,...,N,ie. for each speaker’s model. The sample feature
vector is then assigned to the class A* that maximizes the a posteriori
probability:

/l*=argrr}1axP(/1,, | ). (N
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Since P(A,| f) is usually difficult to compute, one can rewrite (1) in
terms of class-conditional probabilities. Using Bayes Rule, we have

P/ 1 A)P()

P4, 1) = )

(2)

Since P(f) is class independent and assuming equally likely class
1

distribution, P(4,)=-,Eq. (1) is equivalent to

N

A*=argmaxP(f|4,) . (3)

Computation of class-conditional probabilities P(f|4,) needs a prior
modeling step, through which a probability density function of feature
vectors is estimated for each class by using available training data. This
modeling step is also referred to as training phase.

In a speaker identification scheme, a reject mechanism is also required
due to possible impostor identity claims. A possible reject strategy is thus to
refer a reject (imposter) class 4, , so that a likelihood ratio p(f|4,) in
logarithmic domain is used for accept or reject decision:

P(S14,)

A)=1
p(f14,) OgP(fM;)

=logP(f|4,)-log P(f|4;). (4)

Ideally, the imposter class model should be constructed by using all
possible imposter observations for class n, which is practically unfeasible to
achieve. In this work we use the universal background model, which is
estimated, by using all available training data regardless of which class they
belong to. The final decision strategy can be stated as follows:

if p(f1A%)271 accept;
otherwise reject,

(5)

where r is the optimal threshold which is usually determined experimentally
to achieve the desired false accept or false reject rate.

When two or more modalities exist, the selection of the appropriate
fusion technique, whether data or decision fusion, should take into account
how these modalities are correlated to each other. In the case of decision
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fusion, i.e. when the modalities are uncorrelated, a critical issue is that
individual class-conditional probabilities, and the log-likelihood ratios as
well, usually results in values with different ranges, with different means and
variances. Thus prior to the fusion process, a common practice is to apply
normalization on resulting likelihoods, such as sigmoid normalization.
Another issue is varying reliability of each likelihood contributing to the
final decision. Thus commonly, a weighted sum of normalized likelihoods is
used:

PUisrios fr14)= 20,0, 12,) (©)

where o, values are weighting coefficients to be determined. Most of the
decision fusion schemes existing in the literature [15, 17] vary actually in the
way they interpret Equation (6). In one extreme, there are techniques that try
to estimate these coefficients, which are ideally feature and class dependent.
Coefficients can be set to some fixed values using some a priori knowledge
or can be estimated adaptively via various methods such as noise estimation
or measuring the experimental or statistical dispersion of each decision [11].
The problem of this approach is that, estimation of the reliability parameters
itself is not in general very reliable and moreover unimodal misclassification
may occur even with high likelihood ratios. Erroneous decisions keep
contributing to the final decision likelihood, hence scarifying from correct
unimodal decisions. In the other extreme, there are techniques based on the
well-known max rule [15]. In regard to Equation (6), this strategy uses the
following rule to set the coefficients @, :

(7

1 if p=argmax po(f;|4,)
., = i

o otherwise

When seen as a binary mechanism as above, the max rule may filter out most

of the erroneous contributions in the final decision. But the fact that

unimodal misclassification may occur even with high likelihood ratios is still

not taken into account. In the next subsection, we propose a decision scheme
that compromises these two extreme approaches.
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2.1 Multilevel Bayesian Decision Fusion

Looking back to Equation (5), once a threshold r is set in the likelihood
ratio test, one can claim that if the log likelihood ratio p(f|4,) is much
larger or much smaller than 7, the confidence of the decision is stronger.
Hence the absolute difference between the likelihood ratio p(f|4,) and the
threshold 7 can be used as a measure of confidence C,,

CJ‘:Ip(flAn)-Tl‘ (8)

In the multimodal scenario, the confidence measure can be used
beneficially in the decision fusion if we have enough a priori information on
the different modality streams. Let us define a multimodal scenario with
three different modalities and feature vectors f,, f, and f,. There are also
three streams of log likelihood ratios p(f,|4*), p(f,14*) and p(f;|A%),
correspondingly. If we have a priori information such that the reliability of
the modalities are in an order, such that the first modality f, is the most
reliable and the last modality f; is the least reliable source under some
controlled conditions (such as low acoustic noise, frontal face stream, etc.),
then the confidence of the decision that is coming from first modality as
defined in (8) would be beneficial for the decision fusion. Keeping this fact
in mind a Bayesian decision system can be built. In this system a decision
tree is utilized as:

a) A decision (accept or reject) is taken according to the f, modality if
the confidence measure Cj, that is coming from the most reliable
modality f;, is high enough (i.e. if C > 1),

b) Otherwise a decision is taken according to the modality with the
highest confidence among f, and f, if C;, >71,,

¢) Otherwise a decision is taken according to the modality with the
highest confidence among all three modalities.

d) Note that the decision scheme uses three confidence thresholds 7 7
and r, that have to be determined experimentally.
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2.2 WTAI Decision Fusion

The conventional max rule given by Equation (7) can be modified so as
to better handle possible false identity claims. In this slightly modified
scheme that we will refer to as winner modality takes all (WTAIl), the
likelihood ratios in (7) are substituted with confidence measures as defined in

(8):

{1 if p=argmax|o(f;|4,)-14
w, = i

0 otherwise

In this manner, a strong decision for rejection can also be taken into account
and favored even though the corresponding likelihood ratio is not the
maximum of the likelihoods resulting from all available modalities.

3. FEATURE EXTRACTION

In this section we consider a text-dependent multimodal speaker
identification. The bimodal database consists of audio and video signals
belonging to individuals of a certain population. Each person in this database
utters a predefined secret phrase that may vary from one person to another.
The objective is, given the data of an unknown person, to find whether this
person matches someone in the database or not. The person is identified if
there is a match and is rejected if not. The multimodal system uses three
feature sets extracted from each audio-visual stream that correspond to three
modalities: Face, lip trace and speech. Our goal is at least not to fail
whenever one of the individual classifiers gives the correct decision and also
to be robust against false identity claims. The overall classification is based
on the theoretical framework presented in Section 2.

3.1 Face Modality

The eigenface technique [4], or more generally the principal component
analysis, has proven itself as an effective and powerful tool for recognition of
still faces. The core idea is to reduce the dimensionality of the problem by
obtaining a smaller set of features than the original dataset of intensities. In
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principal component analysis, every image is expressed as a linear
combination of some basis vectors, i.e. eigenimages that best describe the
variation of intensities from their mean. When a given image is projected
onto this lower dimensional eigenspace, a set of r eigenface coefficients is
obtained, that gives a parameterization for the distribution of the signal.
Obtaining principal components of an image signal, i.e. eigenimages, can be
thought of as an eigenvalue problem. Suppose that the training set consists of
M mean-removed image vectors X,,X;,..X, . Then the eigenimages
v,, m = 0,1,..., M, can be computed as the eigenvectors of the following
covariance matrix X:

Each eigenimage v, is associated to an eigenvalue and principal
components are given by the first R eigenimages associated to the first R
eigenvalues when ordered with respect to their magnitudes. Usually the
reduced dimension R is much smaller than M, and the r-th eigenimage
coefficient w,, is obtained by the projection w, =v!y for a given test image

vector y.

The eigenface coefficients, when computed for every frame i of a given
test sequence, constitute the face texture feature
vector fi =[w;w,.....wgl, i =1,...,K.The face images in the training set are

all used first to obtain the eigenspace. The training set contains a number of
image sequences, say L, from each speaker class 4, . Let fZ,, j=1,...,K-L,
denote the feature vectors of these images belonging to the class A, in the
training set. Then the minimum distance d, between these two sets of
feature vectors can be used as a similarity metric between the speaker class
A, and the unknown person:

. ®

dy = min| f{ - £,

The similarity metric defined in (9) can also be expressed as a
probabilistic likelihood by making use of Gibbs distribution: Given the face
texture feature vectors fy, i, X, the class conditional probability of the
feature set can be written as
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1 a0
P S FE | A= (10)

where x = de-"“’ and o is the decay coefficient of the Gibbs distribution
function, that can be used for likelihood normalization. The log likelihood
ratio is then defined as:

PRSP o FE | A) = 108 PUSE, S s S5 | ) — 108 PUSR, S s S5 | 2)
d-d, (11)

o2

The log likelihood ratio as defined in Equation (11) requires the
definition of a universal background class A_.. For this, we will adapt the
faceness measure defined by the authors in [4]. The eigenspace origin will be
used as the representative feature vector of the face universal background
class. Hence d is defined as the distance of the feature vector f; (that
yields the minimum distance d, ) to the universal background model. The log
likelihood ratio in (11) is computed for each class 4, , and can be fused with
decisions coming from other available modalities.

3.2 Audio and Lip Modalities

The two synchronized modality streams, audio and lip, are used
separately and jointly to extract reliable identification performance under
varying environmental conditions. Audio features and lip features are
extracted separately from these synchronized streams at different rates.
Hence a rate adjustment is needed when these two modalities are jointly
fused to each other.

The audio stream is represented with the mel-frequency cepstral
coefficients (MFCC), as they yield good discrimination of speech signal. In
our system, the speech signal sampled at 16 kHz is analyzed on 25 ms frame
basis by frame shifts of 10 ms. Each frame is first multiplied with a
Hamming window and transformed to frequency domain using Fast Fourier
Transform (FFT). Mel-scaled triangular filter-bank energies are calculated
over the square magnitude of the spectrum and represented in logarithmic
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scale [S5]. The resulting MFCC features are derived using discrete cosine
transform over log-scaled filter-bank energies e;:

N .
¢, =NL2e,.cos((i—0.5)]<,—”) for j=12,.,N (12)

M =] M

where Ny, is the number of mel-scaled filter banks and N is the number of
MECC features that are extracted. The MFCC feature vector for the k-th
frame is defined as, C, =[c,c,*--cy]" . The audio feature vector £ for the k-
th frame is formed as a collection of MFCC vector C; along with the first and
second delta MFCCs, fX =[C, AC, AAC,] .

The gray scale intensity based lip stream is transformed into 2D-DCT
domain and then each lip frame is represented by the first M DCT
coefficients of the zig-zag scan excluding the O-th dc coefficient. The lip
feature vector for the i-th lip frame is denoted by “t. As the audio features
are extracted at a rate of 100 fps and the lip features are extracted at a rate of
15 fps, rate synchronization should be performed prior to the data fusion.
The lip features are computed using linear interpolation over the fi
sequence to match the 100 fps rate as follows:

fE=-a)fi +a fi

.

where i" = 3k and @, LS
20 20

The unimodal and fused temporal characterizations of the audio and the
lip modalities are performed using Hidden Markov Models, which are
reliable structures to model human hearing system, and thus they are widely
used for speech recognition and speaker identification problems [2]. In this
work a word-level continuous-density HMM structure is built for the speaker
identification task. Each speaker in the database population is modeled using
a separate HMM and is represented with the feature sequence that is
extracted over the audio/lip stream while uttering the secret phrase. First a
world HMM model is trained over the whole training data of the population.
Then each HMM associated to a speaker is trained over some repetitions of
the audio-video utterance of the corresponding speaker. In the identification
process, given a test feature set, each HMM structure produces likelihood.
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These likelihoods along with the likelihoods of the HMM representing the
world class results in a log likelihood ratio to be used in the multimodal
decision fusion.

Two possible audio-lip fusion schemes are carried out using
concatenative data fusion [12] and multi-stream HMMs [20]. The
concatenative data fusion is based on the early integration model [7] where
the integration is performed in the feature space to form a composite feature
vector of audio and lip features. Hence the joint audio-lip feature £\ is
formed by combining the audio feature rk and the interpolated lip features
fL for the k-th audio-visual frame: ff =[f¥ fL]

Face
Localization

» Face Recognition

Lip Localization
> &
Feature Extraction

Interpolation ]
; Audio-Lip Speak
: io-Lip Speaker
(DataFusD——t Recognition
i

Identification

Acoustic Audio-Only
e —»  Feature |——n Speaker
Extraction Recognition

Figure 16-1. Multimodal speaker identification system.

4. EXPERIMENTAL RESULTS

The block diagram for the multimodal audio-visual speaker identification
system is given in Figure 16-1. The database that has been used to test the
performance of the proposed speaker identification system includes 50
subjects. Training and testing are performed over two independent set of
recordings with each having five repetitions. A set of impostor data is also
collected with each subject in the population uttering five different names
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from the population. The audio-visual data MVGL-AVD have been acquired
using a Sony DSR-PD150P video camera at Multimedia Vision and Graphics
Laboratory of Kog¢ University. A collection of sample images from the
audio-visual database is presented in Figure 16-2.

Equal error rate (EER), where false accept rate (FAR) equals false reject
rate (FRR) operating point, is used in the performance analysis of speaker
identification system. False accepts occur when an imposter is identified as
an accepted client or when a client from the accept database identified
incorrectly. False rejects occur when a client from the accept database is
rejected. The false accept and the false reject rates are computed as,

#of falseaccepts and FRR =100x #of falserejects ,
+N N

a r a

FAR =100x

where N, and N, are the total number of trials in the accept and reject
scenario, respectively.

The temporal characterization of audio, lip and audio-lip fused streams
have been obtained using a 6-state left-to-right two-mixture continuous
density HMM structure for each speaker. The acquired video data is first
split into segments of secret phrase utterances. The visual and audio streams
are then separated into two parallel streams, where the visual stream has
gray-level video frames of size 720x576 pixels containing the frontal view of
a speaker’s head at a rate of 15 fps and the audio stream has 16 kHz sampling
rate. The acoustic noise, which is added to the speech signal to observe the
identification performance under adverse conditions, is picked to be either
car noise or a mixture of office and babble noise.

The audio stream processing is done over 10 ms frames centered on 25
ms Hamming window. The MFCC feature vector, C,, is formed from 13
cepstral coefficients excluding the o" gain coefficient using 26 mel-
frequency bins. The resulting audio feature vector, fx of size 39, includes
the MFCC vector and the first and the second delta MFCC vectors. Two
variations of the audio feature vector are defined based on the frequency
selectiveness in MFCC calculation. The first mel-band that calculates the
first energy term ¢, (see Eq. 12) is picked to start at 50 Hz and at 250 Hz,
where these features are called MFCC and high-pass MFCC (MFCC+HP),
respectively. In the audio-only scenario the identification performance
degrades rapidly with decreasing SNR as seen from Table 16-1. The high-
pass MFCC features are observed to be more robust under environmental
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noise. The performance of the speaker identification system significantly
increases with MEFCC+HP feature set, especially under car noise, as car noise
is spectrally concentrated at low frequencies. We even observe some
performance improvement under clean conditions with the high-pass MFCC
features, as low frequency contributions do not convey significant
information for speaker identification.

Equal Error Rate (EER) (%)
Audio Only Car Noise Level (dB SNR)
Clean | 20 10 0 -5 -10 -15
MFCC 2.8 4.0 13.7 26.1 33.9 44.3 48.0
MFCC+HP 2.4 24 2.4 3.6 6.0 11.6 28.7
Audio Only Babble & Office Noise Level (dB SNR)
Clean | 25 20 15 10 7 5
MFCC 2.8 2.8 3.6 6.0 12.8 24.7 32.8
MFCC+HP 2.4 24 4.0 6.0 10.7 17.5 24.5

Table 16-1. Equal error rate performances of the audio only speaker identification system with
the MFCC and MFCC+HP features

Each video stream is around 1 second in duration and during this time it
is assumed that the subject does not considerably move her/his head. Hence,
detected lip regions are used to crop 64x40 lip frames to form the lip
sequence of each visual stream. The lip feature vectors f; , which are used in
both training and testing of the HMM-based classifier, are obtained as
described in Section 3.2 with M = 60. As for the extraction of face feature
vectors, an eigenspace of dimension R = 20 is computed using two pictures
from each utterance in the training part of the face sequence set. A sample
face image and corresponding lip sequence is presented in Figure 16-3.

A summary of the modalities together with the decision fusion
techniques is given in Table 16-2. Face-only and lip-only equal error rates
are found to be 8.40% and 20.0%, respectively. The lip-only performance
has a decent equal error rate. For the face-only case, we have to point out that
the images in the training and testing set have varying backgrounds and
lightings; this is why the face-only identification performance may seem to
be worse than expected.
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Figure 16-2. Selected sample images from the MVGL-AVD database.

Figure 16-3. A sample image from the database and six frames from the corresponding lip
sequence.
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A Audio only modality
L Lip only modality
F Face only modality
Aldf Audio-Lip data fusion with concatenation

ALms Audio-Lip with multi-stream HMMs (audio & lip weights are 0. &0.3,
respectively)

+ Decision fusion with weighted sums (@ = 0.6y, for k =2,...,P such that w;+ -

+wp=1)

Decision fusion with WTAII

. Multilevel Bayesian decision fusion (leftmost being the most reliable modality)

Table 16-2. Abbreviations and descriptions for modalities and fusion techniques.

The multimodal identification results are shown in Tables 16-3 and 16-4,
where we observe the equal error rates at varying levels of acoustic noise.
Table 16-3 displays the equal error rates obtained for audio-lip fusion, which
is based on concatenative data fusion and two-stream HMM  structure.
Although the performance figures for the audio-lip streams do not convey
significant improvement and stay well under audio-only performances, they
bring some independent information to the decision fusion using audio-lip
correlations, especially under environmental noise. Decision fusion results
are presented in Table 16-4, where summation, WTAIl and Bayesian types of
decision fusion techniques are evaluated.

Decision fusion techniques significantly improve identification rates, as
they address the independence between different modalities. It is clear in
Table 16-4 that the summation rule suffers under low SNR conditions.
Although the weights in the summation rule are picked to be optimal with the
existing modality reliabilities, the poor improvement under noise is mainly
due to the variations of the reliabilities under adverse environmental
conditions. However, WTAII decision fusion favors the confident modality,
and performs better for low SNR conditions. On the other hand, multilevel
Bayesian decision fusion favors confident enough modality if it stands higher
in the reliability ordering, which introduces further improvement over all
SNR conditions. In the multilevel Bayesian fusion, the reliability ordering of
the modalities decreases from left to right. For example, in the Bayesian
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fusion A ¢ F ¢« ALms, the most reliable and the least reliable streams are the
audio-only and the multi-stream audio-lip, respectively. The reliability
orderings are assigned considering their single modality performances. The
most promising decision fusion can be set as (A+F+ALms)*A°F, where
weighted summation A+F+ALms is picked to have the most reliable source
of information as it performs better under high SNR conditions, and audio-
only and face-only are picked to be the other two modalities for multilevel
Bayesian decision fusion. The benefit of multilevel Bayesian decision fusion
is clear from the performances of A * F ¢« ALms and (A+F+ALms)*A°F.
Even though weighted summation achieves high performance results for
multimodal systems, we observe further performance improvements using
Bayesian decision tree over different likelihood streams with the prior
knowledge of associated stream reliabilities.

Equal Error Rate (EER) (%)
Modality Car Noise Level (dB SNR)

Clean 20 10 0 -5 - -
ALdf 18.5 18.5 18.6 18.8 19.0 19.2 19.6
ALms 16.0 15.9 16.0 16.0 16.2 16.5 17.6

Babble & Office Noise Level (dB SNR)

Clean 25 20 15 10 7 5
ALdf 18.5 18.6 18.8 19.0 19.5 19.8 20.0
ALms 16.0 16.2 16.4 16.5 17.6 173 18.0

Table 16-3. Equal error rate performances of the audio-lip speaker identification systems at
varying acoustic noise levels.

S. CONCLUSIONS

We have presented a multimodal (audio-lip-face) speaker identification
system that improves the identification performance over unimodal schemes.
These three independent sources of information with different reliabilities are
put together to propose a reliability ordering based multilevel decision
fusion. We observed significant improvement with WTAII decision fusion,
and a further improvement is achieved using the multilevel Bayesian
decision fusion. The reliability ordering is fixed with respect to the EER
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performances of individual likelihood sequences under acoustically clean
conditions.

Equal Error Rate (EER) (%)
Decision Fusion Car Noise Level (dB SNR)

Clean 20 10 0 -5 -10 -15
A +F + ALms 0.8 0.8 0.8 1.2 3.6 8.4 19.9

A F ALms 1.8 1.8 1.8 2.0 2.8 3.7 5.9
A-F 1.4 1.4 1.4 1.4 1.8 4.0 7.4
A+F-L 1.2 1.2 1.2 1.2 1.6 3.6 6.3
A+*F+* ALms 1.2 1.2 1.2 1.2 1.6 2.8 52
(A+F+ALms)*A+ F 0.4 0.4 0.4 0.7 1.6 37 8.7

Babble & Office Noise Level (dB SNR)

Clean 25 20 15 10 7 5
A+ F + ALms 0.8 0.8 1.2 4.4 6.8 12.8 15.7

A F ALms 1.8 1.6 2.0 3.2 4.8 5.2 5.5
A*F 1.2 1.6 2.0 3.2 6.0 8.4 8.4
A+F-L 1.2 1.2 1.2 2.0 4.4 5.2 5.9
A+F+ALms 1::2 1.2 1.2 2.0 4.0 4.6 5.6
(A+F+ALms)-A- F 0.4 0.4 0.8 1.9 5. 5.4 8.1

Table 16-4. Equal error rate performances of the speaker identification systems for various
decision fusion techniques at varying acoustic noise levels.

6. CONCLUSIONS

We have presented a multimodal (audio-lip-face) speaker identification
system that improves the identification performance over unimodal schemes.
These three independent sources of information with different reliabilities are
put together to propose a reliability ordering based multilevel decision
fusion. We observed significant improvement with WTAIIl decision fusion,
and a further improvement is achieved using the multilevel Bayesian
decision fusion. The reliability ordering is fixed with respect to the EER
performances of individual likelihood sequences under acoustically clean
conditions. However we should note that this reliability ordering is not
optimal under varying environmental conditions. Hence a better alternative is
to adaptively predict the reliability of each modality, so that an optimal
reliability ordering can be achieved for multilevel Bayesian decision fusion.



16. Joint Audio-Video Processing for .. Speaker Identification... 255

Robust estimation of reliabilities is yet an important and challenging
problem, which is currently under investigation for future enhancements.
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Abstract:
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1.

In this chapter, uniqueness of driver behavior in vehicles and the possibility to
use in personal identification has been investigated with the objectives to
achieve safer driving, to assist the driver in case of emergencies, and to be part
of a multi-mode biometric signature for driver identification. Towards that
end, the distributions and the spectra of pressure readings from the accelerator
and brake pedals of drivers are measured. We have attempted to use the linear
combination of these pedal pressure signals as the feature set. Preliminary
results indicate that drivers apply pressure to pedals differently. Are they
distinctly unique to be used an independent biometric to identify the
individual? Even though our findings at this time are not conclusive, additional
features, time-series analysis of the collected data and/or integration these
features with audio and video inputs are being investigated.

Driving Behavior, biometric signatures, break pedal pressure, acceleration,
acceleration pedal pressure, steering wheel angle, data collection vehicle,
linear prediction, multi-mode sensors, and Gaussian mixture model.

INTRODUCTION

Automated biometric identification is a multidisciplinary scientific field
to determine the identity individuals from a set of features based on who they
are, what do they posses and how they behave. A number of biometrics has
been evaluated in trust building for numerous civic and business transactions,
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and in forensic authentication applications [1-6,18,19]. These include
identification of individuals from their physical features such as fingerprints,
hand geometry, face, retina, and iris.

The second class is classified as behavioral signatures, which include
voice, style of hand-writing, key-stroke dynamics, motion video, gait, lip-
reading, and several others.

Personal identification by digital signatures based on Public Key
Infrastructure (PKI), passwords and smart-cards fall into the class of what we
posses.

Finally, Deoxyribo Nucleic Acid (DNA) is the one-dimensional ultimate
unique code for a person’s uniqueness - except for the fact that identical
twins have identical DNA patterns. Together with dental records, it has been
widely used in personal identification mostly for forensic applications. Since
these last two groups do not involve signal processing and they have not
been normally studied in the realm of signal processing. Furthermore, they
have no applicability in vehicular applications.

Traditionally, features used in identification have been extracted from
answers to only one of the three fundamental questions above. Depending on
the application, the performance in terms of accuracy and robustness can
vary between excellent to unacceptable. In particular, the chamber, where the
systems are deployed has been the major deciding factor between the success
and failure. For instance, the systems which give excellent results in a
controlled testing environment have yielded almost all the time unacceptably
poor performance in real-life situations. These include the cockpit, crowded
rooms, shopping centers and, in particular, moving vehicles.

Many practical and even costly signal enhancement procedures have been
resorted to improve the performance without much success, which in turn,
has significantly limited the penetration of biometrics into the realm of e-
transactions, i.e., e-business, m-commerce (business in mobile environment)
and p-commerce (secure transaction over phone.)

Recently, algorithms using the multi-mode sensor approach to biometric
identification have been developed with encouraging results in Chapter 16
and in [10-12]. In particular, the combination of feature sets extracted from
iris, finger and video information [10-12]; the fusion of audio and video
characteristics in Chapter 16 and the resulting improved performance can be
shown as examples in the right direction.

In this paper, we focus on behavioral signals obtained from the driving
characteristics of individuals, namely, the distributions and the spectra of



17. Is Our Driving Behavior Unique? 259

pressure readings from the accelerator and brake pedals under various
driving conditions. At first, an answer to the question in the title of this paper
will investigated:

Is our driving behavior unique? Or equivalently,

Can we use signals obtained from our driving behavior as feature sets in

personal identification?

Subsequently, we would like to address the issue of utilization of these
behavioral signals for identifying driver behavior with objectives of safer
driving, intelligent assistance for road emergencies, and robust
communications. Eventually, we hope to develop personal identification with
high accuracy and robustness within the framework of a multi-mode e-
transaction in cars.

2. IN-CAR DATA COLLECTION

As part of an on-going study on collection and analysis of in-car spoken
dialog corpus, 800 drivers have driven a specially equipped vehicle in
Nagoya, Japan between 1999 and 2001. Recorded data specifications are
listed in Table 17-1, which consists of twelve channels of dialog speech,
three channels of video from different angles, the accelerator pedal pressure
and brake pedal pressure readings, the vehicle speed in km/h, the engine
speed in rpm and the steering angle in degrees. In addition, the location of
the vehicle has been recorded every second by a differential GPS device
mounted in the vehicle. Detailed information on this corpus study can be
found in Chapter 1 and in [14, 16]. In this work, we have utilized only three
out of a total of five different vehicle control signals, namely, the accelerator
pedal pressure, brake pedal pressure and the vehicle speed in kilometers per
hour (km/h). The pressure readings were sampled at 1.0 KHz.

Speech Sampling: 16 kHz, 16-bit/sample, 12 channels

Video MPEG-1, 29.97frames per second, 3channels

Control Signals Acceleration, Accelerator Pedal Pressure, Brake Pedal
pressure, Steering Wheel Angle, Engine RPM,
Vehicle Speed: Each at 16 bit/sample and 1.0 kHz.

Location Differential GPS: one reading per second

Table 17-1. Recorded Data Specifications
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3. FREQUENCY-DOMAIN ANALYSIS

To avoid the temporal effects, we have decided to study the problem in the
frequency-domain with the hopes of extracting feature sets for driver
individuality in a precise, robust and consistent manner. Towards that end,
we have explored the variations in the long-term spectra of the accelerator
pedal and the brake pedal for several drivers, which are illustrated in Figure
17.1. Spectra are computed from the signals over a period of approximately
twelve minutes for each driver. As it can be observed that the amplitudes are
greater in the low-frequency region, which implies that these pedal pressures
tend to change relatively slowly. In spite of significant driver-to-driver
differences there is no clear-cut indication of driver individuality form these
long-term frequency spectra. We think that the long-term spectra do not take
into account the non-stationary characteristics of moving vehicles, traffic, the
road conditions, and the driver behavior as response to these. Therefore, we
have decided to focus on other signal processing avenues.

4. PEDAL PRESSURE STATISTICS

After observing non-conclusive results from long-term spectral analysis,
we have turned our attention to the probability theory by computing the
distributions of the accelerator and brake pedal pressures among drivers -
both female and male. These are displayed in Figure 17-2. These plots show
the relative frequency as a function of pressure readings in kilogram-force
per centimeter square (kgf/cm?) for the accelerator pedal and the break pedal,
respectively --1.0 kgf is equal to 9.8 Newtons. It is worth noting that these
readings are taken from sensors attached to the pedals.

There are noticeable differences among drivers the way they press each
pedal. Their habits in applying pressure to these two pedals in handling a
vehicle differ significantly as well. Some drivers accelerate in multiple
stages, whereas others tend to press the accelerator in a continuous and
smooth manner.
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Figure 17-1. Long-term spectra of the accelerator pedal pressure for eight different drivers
(top) and that of brake pedal pressure (bottom).
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Similarly, the brake pressure application is observed to vary from driver
to driver considerably. There are drivers who exhibit a single-step continuous
breaking action, an initial big kick in the pedal followed by a number of
smaller kicks, and multiple kicks with close values. This can be attributed to
the way a particular driver has adjusted himself/herself to best use the
vehicle they normally drive.

In particular, the relative frequency of the accelerator pedal pressure is
concentrated under 2.0 kgflem® for driver 1 with a peak at 0.35. However, its
brake pressure has sharp peaks around 0.25 and 1.7 kgf/cmz. The first peak is
expectedly the initial impact on the brake pedal after making the decision to
stop or to slow down.

On the other hand, driver 3 has multiple peaks over a very long range
after the initial impact for the accelerator behavior but it has a sharp peak
around 3.9 in the brake pressure plot. Yet another observation is the brake
histograms for drivers 2 and 3 are regularly higher that of driver 6.

Despite the apparent variations among these eight drivers, unfortunately,
it was not clear from these plots that neither of the two measurements alone
would be sufficient to identify the driver completely.

S. INTEGRATION OF MULTI-SENSOR DATA

Limitations imposed by unimodal treatment of driving features could be
overcome by using multiple modalities or data fusion as it was recently done
in a number biometric systems (Chapter 16 in this book and [10,17].
Preliminary findings from such systems, known as multimodal biometric
systems indicate higher performance and more reliable due to the presence of
multiple, independent pieces of evidence. Data fusion has been effectively
used in speech processing community very successfully since 1970s.
Excitation signals, gain, zero-crossing rate, pitch information, and LPC
coefficients or their offsprings have been fused in one form or another in
speech compression, speech/speaker recognition and speaker verification
applications. In this section, we propose a multiple sensor version of the
ubiquitous linear prediction model for studying the driver individuality.
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Figure 17-2. Distributions of accelerator pedal pressure (top) and of brake pedal pressure
(bottom).

5.1 Combined Observation of Multiple Sensor Data

Time-stamps of the accelerator pedal pressure, the brake pedal pressure,
the acceleration itself, and the speed of the vehicle have been plotted in
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Figure 17-3. As the accelerator pedal pressure raises, i.e., large positive, the
vehicle starts accelerating. On the other hand, as the brake pedal pressure
increases, the vehicle slows down with a negative acceleration. Since the
drivers can only apply pressure to either the accelerator pedal or the brake
pedal, i.e., both feet are not used at the same time, these two signals are
mutually exclusive, which is explicitly seen in the plots. By integrating these
facts and the significantly different driving tendencies among the collected
data, it is quite possible to extract the individuality of drivers using the linear
prediction theory.
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Figure 17-3. Plots of acceleration pressure, the brake pedal pressure and the vehicle speed as a
function of time.
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5.2 Linear Prediction Model for Driver Behavior

With a goal of extracting individuality from these three measurements
and the physical realities of moving vehicles a method based on Linear
Prediction (LPC) Theory is proposed. LPC is now a ubiquitous method not
only for speech but also other signal processing realms including image
processing, geophysics and earthquake studies due to is effectiveness,
tractability and computational ease.

At a given discrete time ¢, let us assume that the relation between the
acceleration signal x, and the acceleration pedal pressure y,, and the brake
pedal pressure z ; is given by:

P P P
XA X+ By Vi =&, (1)
i=l1 i=1 i=l

where &, is an uncorrelated random variable with zero mean and
variance & . In linear prediction (LPC) theory, the present acceleration value
is estimated in terms of its previous values, the associated excitation signals,
and the parameter set 6 :

g = {al’aZ"”’aP’ ﬂ]’ﬂza'"9,819,7/]:}/2,"',}’;3}

where the first group of parameter set forms the weights for the acceleration
history, the second and third sets {f;} and {y;} are the coefficients for the

pressure sensor history for the accelerator and the break pedal, respectively.
As expected, £, would be the excitation at the time instant . We have thus

reformulated the vehicle acceleration behavior as an extended multi-sensory
linear prediction problem.

In our case, the optimum parameter set is found by the usual
minimization of the total prediction error E:

-fde

i=l

W Mw;

P 2
Z By +>: ¥z ] )
i=] i=1
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We differentiate E with respect each and every parameter in (2) and set to
Zero:

_6£:_6£:_5_Zi_0 fori=12--P (3)
da; Of; Oy,

The resulting set of simultaneous equations become:

L

P 1 P 1
kZak .Zx,_,..x,_k + Z,Bk.Zx,_,. Vi
=1

1=ty k=1 t=ly

. (42)
+Z;"kz 1-i* tkz_lexx
k=1 =ty =1,
P 1 P 1y
Z Z Xe-k +kZ:1:Bk'Zyr—i~yt—k
k=1 1=ty = =ty
. , ) (4b)
Z Yiei-2 _Zyr—i X
k=1 t=t, 1=ty

Z ZZ,’ lk+Zﬂk Zz—lylk
k=1 =ty =ty
(4c)

+Z’?~ ZZ-: 2k = ZZ~:

=1, 1=ty

where i=1/,2,...,P and P is the order of prediction in this linear model.
Simultaneous solutions of (4a, 4b, 4c) yield the optimum linear feature set
for the acceleration signal at time .

5.3 Multi-Sensor Linear Prediction Experiments

In this set of experiments, we have utilized the data from 84 different
drivers. Each driver was observed to make different number of stops and
accelerations depending upon the prevailing traffic from the start to the
turning off of the engine. We have decided to break the trip into segments.
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The term called “period” is used as the basic temporal unit and it is defined
as the time elapsed from the instant any pressure applied to the accelerator
until the next stop. All together there were a total of 510 periods of data
from our driver set. The accelerator pedal pressure, the brake pedal pressure,
and the acceleration signal were the inputs to the prediction model as
proposed in (1). The acceleration signal is calculated as the simple time
gradient of the vehicle speed between two adjacent samples. In the data
collection phase, these three pieces of information were digitized at a
sampling rate of 1.0 kHz. However, we have down-sampled by a factor of
1:100 resulting at a data rate of 10 Hz in our experiments.

First, it is investigated how the prediction accuracy would change for
varying prediction orders P=1, 2, 4, 8, 16, 32. The results are displayed in
Figure 17.6 and they will be discussed later in this section after identifying
four specific cases we have looked into.

Next we have next studied the change in intra-driver prediction error
residual characteristics for four different cases:

1. Acceleration only {x,_;}; i.e., the case where accelerator pedal
pressure and the brake pedal pressure are forced to zero.

2. Acceleration and accelerator only {x,_;}and {y,_;}; brake pressure is

Zero
3. Acceleration and brake only {x,_,-}and {z,;}; accelerator is zero.
4. No term in Equation (1) is forced to zero; i.e., all three terms are
presents.
The resulting error defined in (2) is plotted in Figure 17-4 for each of these
four different scenarios together with the acceleration signal itself on the top.

Similarly, we have computed the inter-driver residual error signal as
shown in Figure 17.5, where {x,_,-}, {y,_,.}, and {z,_,.}in equation (1) are from
one driver, while the LPC parameters {c,,5;,7;} are from another driver.
As in other technique, it is extremely difficult to have a sense for
individuality of drivers.
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Figure 17-4. Acceleration signal and the intra-driver residuals for four different scenarios.

In Figure 17-6, we have plotted the normalized mean-square error (MSE)
as a function of the prediction order P for these four specific cases. The
prediction order in the range 20-30 seems to be sufficient. The drop in MSE
between cases 2 or 3 and 4 is insignificant. In other words, having all three
parameter sets in (1) does not improve the performance; any two results in
fairly close results.
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Figure 17-5. The inter-driver residuals signal for Equation (1).
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Figure 17-6. Mean-Square Error (MSE) as a function of prediction order P.
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Figure 17-7. Distribution of MSE variance for intra-driver and inter-driver tests.

Finally, we have studied the distribution of the error variance for intra-
driver and inter-driver scenarios. These are plotted in Figure 17-7. It is again
apparent that there are considerable differences between these two situations.
While the dynamics of the intra-driver is higher, the inter-driver curve is very
smooth.



17. Is Our Driving Behavior Unique? 271

6.

6.1

LESSONS LEARNED AND RECENT
EXPERIMENTS

Lessons Learned

In this study, we have explored the possibility of driver identification

from three behavioral signals measured in a data collection vehicle specially
designed for construction of an in-car spoken dialog corpus. These were the
pressures applied to accelerator and brake pedals and the speed of the
vehicle, more precisely, and the acceleration signal. There are a few
interesting yet enlightening findings from these costly experiments,
traditional spectral and statistical methods, and the proposed extended linear
prediction analysis technique:

There are significant differences among drivers the way they apply
pressure to the accelerator and the brake pedal from a probabilistic
approach, which can be used in identification when a robust and
consistent algorithmic platform is developed.

Albeit considerable differences in the frequency-domain behavior,
there is no simple indication for individuality.

Dynamics of intra-driver and inter-driver in terms of linear prediction
residual are observably different, which again could be very valuable
inidentifications tasks.

Linear prediction model as proposed in this chapter has an apparent
potential for extracting individuality but it needs to be modified. In
particular, the backbone of the LPC approach, i.e., equation (1) does
not take one physical fact into consideration: Drivers do not use the
brake and accelerator at the same time, where as the model permits
that. The curve trajectories of Figures 17-3 and 17-6 clearly support
this.

To remedy this weakness in the model, a switching function, as it is
done by a voicing mechanism in the speech processing community,
can be incorporated.

An alternative technique could be to recast the problem within the
framework of Kalman Filtering or time-series analysis.
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6.2 Recent Experiments

At present, we are investigating two alternative approaches to this
problem: First technique is based on correlation filters, which have been very
used with encouraging results in multi-sensor biometric identification [2,11].
A similar approached using these two pressure readings, the acceleration
signal (vehicle speed), and other behavioral data including the steering wheel
information can be developed to better identify the drivers. Experiments are
being currently carried out for developing “meaningful and computationally
feasible” MACE filters for each driver. The findings will be reported later. It
is difficult to present any meaningful quantities as this stage but the promise
is much better that the earlier techniques studied above.

In the second technique, however, we are trying to incorporate Gaussian
Mixture Models (GMM) for modeling driver behavior. GMM based
techniques have resulted in promising results for speaker
identification/verification [3, 4, 18, 19]. In our preliminary experiments, we
have chosen a small subset of the 800 driver database (30 drivers with equal
gender split) and the average length of the driving data was approximately 20
minutes. The first half of the each data was used for modeling the driver and
the latter half has been employed for testing the system. We have
experimented with 1, 2, 4, 8 Gaussian mixtures and the sum of the log-
likelihood was used as the identification measure.

We have obtained a correct identification rate of 73.3 percent using the
both the static and dynamic information of accelerator and brake pedal
pressure.

7. CONCLUSIONS

After a number of very interesting and yet-not-so-encouraging results from
several different approaches, this encouraging preliminary finding (first
success story!) is a very important milestone to achieve our goals of safer
driving, assisting drivers in road emergencies, and to be part of a multi-mode
biometric signature for driver identification. We are planning to present our
GMM approach details and the results in the near future.
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ROBUST ASR INSIDE A VEHICLE USING BLIND
PROBABILISTIC BASED UNDER-DETERMINED
CONVOLUTIVE MIXTURE SEPARATION
TECHNIQUE

Shubha Kadambe
HRL Laboratories, LLC, 3011 Malibu Canyon Rd., Malibu, CA 91320, USA;
Email: skadambe @hrl.com

Abstract:  Spoken dialogue based information retrieval systems are being used in mobile
environments such as cars. However, the car environment is noisy and the
user’s speech signal gets corrupted due to dynamically changing acoustic
environment and the number of interference signals inside the car. The
interference signals get mixed with speech signals convolutively due to the
chamber impulse response. This tends to degrade the performance of a speech
recognition system which is an integral part of a spoken dialogue based
information retrieval system. One solution to alleviate this problem is to
enhance speech signals such that the recognition accuracy does not degrade
much. In this Chapter, we describe a blind source separation technique that
would enhance convolutively mixed speech signals by separating the
interference signals from the genuine speech. This technique is applicable for
under-determined case i.e., the number of microphones is less than the number
of signal sources and uses a probabilistic approach in a sparse transformed
domain. We have collected speech data inside a car with variable number of
interference sources such as wipers on, radio on, A/C on. We have applied our
blind convolutive mixture separation technique to enhance the mixed speech
signals. We conducted experiments to obtain speech recognition accuracy
using with and without enhanced speech signals. For these experiments we
used a continuous speech recognizer. Our results indicate 15-35 %
improvement in speech recognition accuracy.

Keywords: Blind source separation, convolutive mixture, under determined, signal
enhancement, speech recognition accuracy.
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1. INTRODUCTION

Spoken dialogue information retrieval applications are becoming popular
for mobile users especially, in automobiles. Due to the typical presence of
background noise, echoes, and other interfering signals inside a car, speech
recognition accuracy reduces significantly. Since it is very hard to know a
priori (a) how the acoustic environment inside a car is changing, (b) the
number of interfering signals that are present, and finally, (c) how they get
mixed at the microphone (sensor), it is not practical to train recognizers for
the appropriate range of typical noisy environments. Therefore, it is
imperative that the ASR systems are robust to mismatches in training and
testing environments. One solution to robustness is speech enhancement
based on spectral estimation followed by subtraction. The speech signal
enhancement techniques developed so far (a) remove noise by estimating it
in the absence of speech (e.g.., [1]) and (b) separate noise i.e., interference
signals from the intended signals (e.g., [2]).

In this Chapter, we consider the problem of signal enhancement as the
separation of mixed signals (instead of subtracting the noise effect by
estimating it) that are received by an array of typically two microphones. For
this, it is necessary to apply blind techniques since the nature and the number
of signals and the environment which is mixing these signals are not known a
priori. Most of the blind techniques developed so far are based on
Independent Component Analysis (ICA). These techniques work well when
the number of microphones is equal to the number of signals (intended
speech signal plus unintended interfering signals). Since it is not practical to
know the number of signals present before hand and also this number could
be dynamically changing, the techniques based on ICA are not very
appropriate in real-life applications. In addition, due to the chamber effect
inside a car signals get mixed convolutively. Hence, we need techniques that
can separate convolutively mixed signals and work well when the number of
microphones is less than the number of signals present. The blind techniques
that work when the number of microphones is less than the number of signals
is referred to as under-determined Blind Source Separation (BSS). We have
developed one such technique using a probabilistic approach in the sparse
domain [3].

In this chapter, we apply that technique for signal enhancement. In the
next section, an over view of this technique is provided. In section 3, data
collection details inside a vehicle are provided. Section 4 provides the details
of ASR experiment and the results. In this section the recognition accuracy
results obtained using with and without convolutive under-determined BSS
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technique are compared. In section 5, we summarize and indicate future
direction of our research in this area.

2. UNDER-DETERMINED BLIND CONVOLUTIVE
MIXTURE SEPARATION

The method of blind source separation (BSS) attempts to estimate the
sources or inputs of a mixing system by observing the outputs of the system
without knowing how the sources were mixed together (no a priori
knowledge of the system) and what the sources are. The BSS is an important
problem and has many applications: e.g., interference free wireless
communication and robust automatic speech recognition in spoken dialogue
systems on mobile platforms. It is worth noting that in this chapter, the BSS
is applied within the framework of robust automatic speech recognition
problems. There are two cases (i) instantaneous mixture (IM) where the
mixing system has no memory and (ii) convolutive mixture where the length
of the filters that are used to represent a mixing system is greater than one.
Let N be the number of sensors used to observe the source signals and M be
the number of sources. Then the IM case can be written in matrix form as:

x(n) = as(n) + v(n) (H)

where x(n) is the mixed signal output matrix of size NxK, s(n) is the matrix
of source signals of size MxK, v(n) is the additive noise matrix of size NxK,
n =1, 2...K are the time samples and a is the mixing matrix (mixing system)
of size N by M which is represented in terms of angles or directions of arrival
of source signals at the sensors i.e., a is a function of .

The BSS is an easier problem to solve when N = M (finding a matrix);
several techniques have been developed. However, the BSS is a more
difficult problem to solve when N < M. In practice it is not possible to know
a priori how many sources are present (e.g., in the case of wireless
communication the sources correspond to the signals that get reflected from
various scatterers such as buildings and noise and in the case of spoken
dialogue systems they correspond to other speakers and noise) and they vary
dynamically as the environment changes and hence we will not know how
many sensors (e.g., antenna elements in the case of wireless communication
and microphones in the case of spoken dialogue system) to use so that it is
equal to the number of sources to observe the mixed signals. Therefore, BSS
when N < M has more practical applications and a more practical problem to
solve.
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Recently, several authors have shown the feasibility of BSS when N is
less than M for IM case [4-5, 7]. This can be achieved by transforming the
sensor (mixed) signals to the time-frequency domain and using the property
of sparseness in the transformed domain to help in the estimation of the
mixing matrix. After the mixing matrix has been estimated, it is used to
estimate the sources where the sources are assumed to be independent and
exhibits a Laplacian density in the sparse transformed domain. Note that in
all these methods probabilistic techniques have been and a posteriori log
probability has been maximized. This maximization with the assumption of
independent sources, the sources exhibiting Laplacian density in the sparse
transformed domain and additive white Gaussian noise leads to the
minimization of L2 and L1 norms. In [4], the mixing matrix is first estimated
as mentioned above and then the source signals are separated using this
mixing matrix and minimizing the L1 norm. However [7] uses what the
authors call “dual update” approach that iteratively refines the estimate of the
source and mixing matrix jointly by minimizing L1 and L2 norms. We have
extended this to the convolutive mixture in [3] which is reviewed in the
following section.

2.1 Probabilistic BSS for underdetermined IM

This section summarizes our previous algorithm described in [7] and
generalizes it with some modifications (a) to handle more than 2 mixtures,
(b) to robustly estimate the initial mixing matrix and (c) to speed up the
iterative “dual update” algorithm.

2.1.1 Review of ‘‘dual update” algorithm

Consider the observed signal x given in the Eq. (1). The most efficient
techniques for the source separation in the case of underdetermined IM are
based on probabilistic approach. These approaches mainly correspond to
minimizing the negative log of a posteriori likelihood function P s|x, a) with
respect to s. Note that the maximization of log a posteriori probability is
equivalent to minimizing the negative log posteriori probability. This
likelihood function can further be written as

P(slx, a) oc P(x a, s)P(a, s) = P(xla, s)P(a)P(S)

by applying the Bayes theorem and assuming statistical independence
between a and s. Here, P(a) and P(s) correspond to prior probabilities of a
and s, respectively. By applying the negative log operation to P slx,a we
get:
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- L(slx, a) = —L(x a, s) - L(a) - L(s)

where L corresponds to log(P()). The minimization of the negative log
likelihood function of P s|x,a then basically corresponds to minimizing
-{\L xla,s + L(s)) with respect to s since there is no prior information on a.
Since the accuracy of estimated separated source signals s depends on the
accuracy of estimated @ we think that by jointly optimizing the above log
likelihood function with respect to both @ and s (as evidenced by simulation
results and as described in [9]) we can separate the sources signals from the
observations more efficiently. For this joint optimization, we developed a
“dual update” algorithm in [7] that is briefly described below.

Description of joint minimization algorithm — ‘“‘dual update”: For the
joint optimization problem, we consider a sparse domain i.e., the domain
where most of the coefficients that correspond to non-signals are small (near
zero). In other words, the sparse domain is a domain in which signals can be
efficiently represented. This has the advantage of reducing the complexity of
the problem (i.e., need to deal with sparse matrix compared to full matrix) of
separation of mixed signals. Examples of domains where signals can be
efficiently represented are Fourier and wavelet. Here we choose Fourier.
Note that in this chapter, when we refer to Fourier, we mean short-time
Fourier transform and we are not making a specific distinction between
Fourier and the short-time Fourier since it is a special case of Fourier i.e., the
windowed Fourier. When we compute the Fourier transform we use the fast
Fourier transform (FFT) technique. Next, we assume that (a) the source
signals are statistically independent to each other (which is not a strong
assumption since in practice source signals are statistically independent to
each other and researchers commonly make this assumption) and follow
Laplacian probability distribution function in the sparse domains (it has been
observed that the Fourier and wavelet coefficients do exhibit Laplacian
behavior [9]) and, (b) noise v is white Gaussian.

As mentioned above, we first transform the mixed signals in to the sparse
domain by applying the Fourier transform. We then apply the probabilistic
approach of BSS in the sparse domain. The observed mixed signals in the
transformed domain can be written as:

W(x) = aW(s)+ W(v) (2)
where W is the Fourier transform. This has the same form as the mixed

observed signals in the time domain (see Eq.(1)). Therefore, without loss of
generality, the problem of BSS in the signal domain and in the transformed
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sparse domain can be considered equivalent. Therefore, the general
probabilistic approach mentioned before applies in the transformed sparse
domain. However, to get the separated source signals back from the
transformed domain to the time domain, we apply the inverse Fourier
transform.

We start with the negative log likelihood function i.e., the cost function
L(W (s]W (x),a) in the sparse domain. With the assumption of Laplacianity of
source signals in the sparse domain the prior probability:

~AeT|w
() = %e PO hereeT = 1,1

’

a unit vector. By applying the “Laplacianity” of signals, “Gaussianity” of
noise and no prior information on a, it can be shown that:

Lwsla,w )= [(W(x) —aw ()l R;Vl(v) (W (x) - aw (s))+ acT |W(s)ﬂ

where RW(V) is the noise covariance matrix. 3)

For mathematical simplicity we assume that the noise covariance matrix is an
identity matrix. However, the proposed “dual update” approach works for
non-Gaussian noise with covariance greater than unity [7]. With unit
covariance assumption and re-writing the above equation in terms of
n=1.2,K we get:

K
Lw | (x),a)= X (W (x,) -l (s,)) + AcT‘W(sn )‘

where X, & §, are the column vectors of X & s. 4)

From (4), it can be seen that the first term corresponds to L2 norm where as
the second term corresponds to L1 norm. Therefore, our “dual update”
approach corresponds to minimizing L2 and L1 norms simultaneously. Note
first, we consider the minimization of L2 norm that leads to the estimation of
unknown mixing matrix a. For this the above equation is differentiated with
respect to @ and set to zero. By doing this we get:

oL @ x),a)
Oa

K :
=21 (7 (x,) -2l (s ) Wesly) =0 (5)
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Using the individual columns; of W(s), @ and replacing the summation with
the expectation operation, the above equation can be written as:

. M . ,
E{W(x,,)TW(sﬁ,)}=E{(ﬁlafW(s,f, T)W(si,)}. (6)

By substituting:
iT o) J R
E{W(sn) W(Sn)}=0f0rl¢j

based on the assumption that the source signals are statistically independent
in the sparse domain the above equation can be written as:

Sys =[81,85,a,, JEs where I is the cov¥(s)) = E ()" W(s)}  (7)

and

Sxs = EF W (©)}= 0% 0%, s, | (8)
Then the estimated a matrix is:

a=[a,a, 4, |=2,Z. ©)

There is no closed form solution to minimize both L2 and L1 norm of (4)
simultaneously. However, we can solve this system iteratively by applying
the Linear Equality Constraints (LEC) optimization technique [10] by noting
that (9) can be used as the set of linear constraints. The LEC corresponds to:

minimize Ac” IW (§)|
(10)
subject tod = Z, T}

The LEC in essence corresponds to finding W(8) under the linearity
constraint such that the ]W(§] (L1 norm) is minimized. The LEC
optimization problem can be solved by applying the line search together with
the projection gradient method. One of the ways to find the lines or direction
of lines is by applying Armijo rules of line search. We applied this technique.
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In short, by applying the above described LEC, we can solve our
problem, i.e., the minimization of (4) iteratively by using the following two
steps:

1. Find W(S) that min AcT|W(§)‘ (This corresponds to minimizing

|W(§] under the linear constraint: a = szZ§l )

A

2. Use W(S§) from Step 1 and estimate a = szzg‘ (This corresponds

to finding lines or directions of lines.)

From the above set of equations, it can be seen that to get a fairly good
initial estimate of s i.e. S§that is used in the step 1 to begin the iterative
process, a good initialization of @ is needed. Note that even though splitting
of the minimization of Eq. (4) into two parts as described above is not
theoretically justified since @ is not convex, however, we have found that
given a good initial estimate of @, the “dual update” algorithm converges fast
and results in accurate final estimation of @ and s. For the initial estimate of a
an information theoretic based method was used which is described in detail
in [7].

Note that the “dual update” approach described above is not a single
maximum a posteriori estimation (MAP) of a. However, it corresponds to
much more tractable joint MAP ofa and s.

It is important to note that the initialization of @ matrix should not be
confused with the classical approach of single MAP estimate of a and the
estimation of separated source signals by inverting the estimated a. Instead,
the initialization is only for a good starting point for the iterative dual update
algorithm.

To summarize, the steps of our “dual update” algorithm are:

1. Find W(8) that minimizes lcTIW(§)| under the linear constraint

aly =Zq

2. Use W(8) from Step 1 to create a new estimate of the mixing matrix
Aa=X,5

3. Repeat Steps 1 and 2 until a convergence or stopping criterion is
met.

We start our “dual update” algorithm with an initial estimate of the
mixing matrix obtained using the technique based on mutual information and
angle thresholding technique described in [7].

212 Generalization of the ‘“‘dual update” algorithm for IM

By representing the Fourier (short time Fourier) transform W(x) =
X(k,m), W(s) = S(k,m) and W(v) = V(k,m) which are the time-frequency
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representations of x(n), s(n) and v(n), respectively, and W(a) = A(k,m)
equation (2) can be re-written as

X(k,m) = A(k,m)S(k,m)+ V(k,m) (11)

Since a represents an instantaneous system, A(k,m) = A(k) = A and is
constant for all frequency bands k and time m.

In order to find an initial estimate of A the mutual information between
sensors is computed for each sub-band. The sub-band with the maximum
mutual information is chosen since it represents a band that exhibits the most
separation and hence, can best estimate initial a. For this estimation the
following equation is used:

Xj(k,n)
Hl-j(k,n) = arctan| ————— (12)
’ X;(k,n)

where k is the chosen sub-band and i and j represent the signal received at the
™ and /™ sensors. If Sy(k,n) is much larger than all the other at a particular k
and n then equation (12) simplifies to:

4,8, (k,n) 45
6; ;(k,n) = arctan ~—~ | =arctan ~li=1.N,j=1.i-1 (13)
7 A; Sy Ue.m) Al

This results in clusters of measurements that correspond to the arctangent
of the ratios of rows of Aj and Ai. Several methods could be used to find
these clusters. Some authors use peak picking of the histogram [7,11] and
others use potential function [4]. The peak picking of the histogram has the
disadvantage of difficulty in accurately picking the local maxima.

On the other hand, we use here a hierarchical clustering approach where
each observation is taken in succession and merged with nearest neighbor.
This is computationally less intensive than finding the two observations that
are closest together and then merging them. The result of hierarchical
clustering is used as an initial guess for the k-means clustering algorithm.
The means of the clusters that are obtained when the k-means clustering
algorithm converged are then used for the initial estimate of the mixing
matrix. The number of clusters is used as the estimate of the number of
sources to be separated. It was empirically observed that the combination of
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hierarchical and k-means clustering algorithms works better than using either
the hierarchical or k-means clustering algorithms individually.

The next step is to jointly minimize the cost function (“dual update™). In
this case the sources are modelled as a Laplacian and the noise is assumed to
be white Gaussian as mentioned before, so the resulting cost function - log
likelihood L is:

£(s]A, %)) = [(x ~As)) (x - AS)+ ch|s|} (14)

with the assumption that the noise covariance matrix is a unity matrix. Here
¢ =[Ll,---1], T denotes the Hermitian transpose of a matrix and indices k
and m are not specifically mentioned to simplify the expression. This
expression is optimized by first finding S(k,m) that minimizes Ac'|S(k,m)|
under the constraint that:

Xk, my=AK)S(k,m).

The second part of the procedure re-estimates A(k) so that the sources
will be more independent.

The easiest way to perform the first part of the “dual-update” method is to
recognize that there is a local minimum whenever there are N — M zeros in
the S(k,n) vector. This can be shown by using a geometrical argument. First
we draw the shape formed by all points at a certain cost & The resulting
shape is an N-dimensional cube with vertices located on the axes at a
distance & away from the origin. Now the constraint has dimension N — M.
So, when there is one more source than the sensor the constraint is a line. If
the line goes through the cube then the portion inside the cube is at a lower
cost and the portion outside is at a higher cost.

If the cube is shrunk until the constraint only touches the edge of the
cube, the point of intersection is the lowest cost. If the line is parallel to one
of the sides of the box, then there are an infinite number of solutions. This
case corresponds to A matrix having at least two identical column vectors.
The other case requires that the line intersect a vertex of the cube. Of course
this occurs when the line passes through a plane created by all combinations
of M axes or in other words there are N — M zeros in S(k,n), which yields a
finite number of points to check. The point with the lowest cost is the global
minimum. Inclusion of this geometric constrained based search not only has
speeded up our original “dual update” algorithm and also has generalized it
to handle more than two sensors.
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2.2 Challenges for the convolutive case

This section focuses on the problems to be addressed when using the
above mentioned method (“basic method”) to separate signals in the
convolutive case where the mixing matrix is not constant as in the case of IM
but is a function of time. The logical extension of the “basic method” would
be to take the Fourier transform of the signal with an FTT length that is long
enough to ensure that the convolution can be approximated as multiplication
in the frequency domain. Then the “dual update” algorithm can be applied in
each subband independently.

This approach does have several drawbacks. First of all, the algorithm
finds the signal separation within an arbitrary scale factor and arbitrary
permutation. This means that the scale factors and permutations will need to
be consistent between different subbands. Incorrect scale factors cause
spectral distortion.

Currently, there is no good method that can come up with consistent scale
factors for all the bands. However, the solution adopted in this study is to
constrain the mixing system’s filter structure such that:

el =

where Aj(k) is the jlh column vector of A(k). This was also used in [6].

Permutation estimation: For finding the correct permutation between bands
several methods have been developed which are detailed and compared in
[12]. Here, we use the inter frequency correlation. The inter frequency
correlation relies on the non-stationarity of the sources [8]. It has been shown
that for non-stationary signals, adjacent sub-bands are correlated. This can be
used in the following equation:

) Kkl _ _
P(k)=argmax= 3 3 (P)Sk,m)) 8(jsm) (16)

1
P(k) n=1j=l

where P(k) is the permutation matrix and S(k,n) is the envelope of signal

S(k,n). The envelope signal is created by passing the absolute values of the

source signals through a low pass filter. The permutation of the first sub-
band is designated as the correct permutation. The permutation of the next
sub-band is estimated by using (16). The source signals at that subband are
permuted according to the resulting P(k). This is continued for all sub-bands.
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Modification of initial estimate of A for a complex case: Next, in the case
of convolutive mixture A(k) is complex. So the initial estimate of the mixing
matrix described in section 2.1 needs to be modified. It is modified as
follows. The ratio in polar coordinates of the i and jth rows for the n™
column of A is:

17)

Using an argument similar to Equation (12) that S,(k,n) is larger than all
other sources results in:

¢, = £X j(k,n) = £X;(k,n)
= LSI (k,n)+ AAJ-’; (k))—- (LSI (k,n)+ LAI-’; (k)) (18)

where ¢ is the phase difference and £ represent the angle operator. This
shows that the estimation of A(k) requires two components — the ratio of
magnitudes of A(k) elements to obtain 8 and the difference in phase between
the elements to obtain ¢.

The remaining procedure is same as before as described in section 2.1 in
that the clustering approach is used to determine the initial estimate of A(k).
Since ¢ is between 0 and 27 and 8 is between 0 and 7/2, ¢ is appropriately
weighted in the clustering so that the same amount of weight will be placed
on the ¢ components as the ® components. A value of ¢ that is slightly larger
than 0 should be considered closed to a value that is slightly less than 2m. If
the phase difference is close to 0 or 2r then the clustering algorithm could
see two clusters. In order to avoid this possibility the histogram of ¢ is
computed and the values are shifted so that the discontinuity will occur at a
point that would not divide a cluster.

An example scatter plot of ¢ versus 8 is shown in Figure 18-1. From this
figure it can be seen that three clusters corresponding to three sources are
formed without much overlap whose mean values are pretty close to the true
values (circled x). Unfortunately, due to the ambiguity in the scale factor the
actual phase values of the mixing matrix cannot be determined. However, the
use of the phase difference ¢ greatly improves the robustness of the
separation for convolutive mixtures and complex IM.

Lastly, the “dual update” algorithm for underdetermined IM chooses a
particular frequency sub-band by using mutual information measure to
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estimate a. However, now A(k) is no longer constant for all k. This means
that each sub-band has to be used. Unfortunately, the separation will perform
better in some bands than the others. This is a reality that cannot be escaped.
In summary, the steps involved in the BSS of underdetermined convolutive
mixture are:
1. Compute the FT (short) of the observed mixtures.
2. For each frequency sub-band
(a) Obtain an initial estimate of A matrix using the procedure
described above.
(b)Apply the “dual update” algorithm iteratively to refine the
estimates of A and S.

3. Find the appropriate permutation of sources in each frequency band
using the final estimates of A and S that are obtained after the “dual
update” algorithm converged.

4. Obtain the separated source signals and the final estimate of a by
applying the inverse FT.

A block diagram of the proposed algorithm for BSS of underdetermined
convolutive mixtures is provided in Figure 18-2.

3. IN-VEHICLE DATA COLLECTION DETAILS

A linear microphone array of five microphones was built by CSLR,
University of Colorado and was used to collect in-vehicle speech data (see
Chapter 2). This array was placed on the visor of the driver side. Another
linear microphone array built by Andrea Electronics was placed on the visor
of the front passenger.

A reference microphone was placed behind the driver seat facing the rear
passenger. Using an eight channel digital audio recording device, seven
channels that correspond to five microphones of the linear array, one output
of the Andrea microphone array (separate microphone outputs are not
available in the case of Andrea microphone array) and one reference
microphone data was recorded. A Sport Utility Vehicle (SUV) was employed
for this data collection task. Navigation related speech data including the
phrases “how far is the airport from Malibu?”’, “Can you give me directions
to the airport?”, etc. was collected in side the vehicle for two speakers (one
male and one female) under three conditions - quiet (window was up, radio
and A/C were off and there was no presence of cross talk), radio on and cross
talk present.
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Figure 18-1. Scatter plot of data for BSS of three sources using 2 sensors. The circled x shows
the true value computed from the mixing matrix.

Fifty one utterances per speaker for each condition were collected. While
digitally recording this data it was sampled at 44.0 KHz. This data was then
down loaded to a computer in .wav format and was transcribed
orthographically. The speech data was downsampled to 8.0 KHz since the
segment based continuous speech recognizer that we used in our experiments
expects the data to be sampled at 8.0 KHz.

4. EXPERIMENTS

Speech recognition performance in terms of word recognition accuracy
percentage was obtained using the database both using the blind convolutive
mixture separation algorithm proposed above and without. An example of a
mixed speech signal from two channels and separated four speech signals
from the mixed signals using our approach is provided below in Figures 18-3
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and 18-4, respectively. From this, it can be seen that our algorithm separated
all four speech signals fairly well. The speech recognizer that we have used
in this study is a segment based continuous speech recognizer with a
vocabulary size of 3000 words. Each segment and segment boundaries are
modelled using Gaussian mixture model (GMM). Duration models were also

used.
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Figure 18-2. The block diagram of the proposed algorithm for BSS of convolutive mixture in

the underdetermined case.
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Figure 18-3. Mixed speech signals from two channels.
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Figure 18-4. Separated four speech signals from two mixtures after applying our algorithm.

While applying the proposed convolutive mixture separation algorithm,
the speech data from two channels out of seven - one corresponding to
channel 1 of our microphone array and the second corresponding to Andrea
microphone array was considered. First, the speech data from channel 1 of
our microphone array was used to test the speech recognizer. Next, the
speech data that was enhanced by applying the mixture separation algorithm
was used. In the Table 18-1 word recognition accuracy for all the three
conditions - quiet, radio on and cross talk present with and without
enhancing speech signals is provided. From this table, it can be seen that
there is a significant improvement in speech recognition accuracy in all three
cases. In the case of quiet even though other sources such as radio, cross talk
was not present but due to the presence of car engine noise and road noise
the speech recognition accuracy degraded; however, when the mixture
separation algorithm was used to enhance the speech signals, the accuracy
improved significantly (15 %). Note that the number of utterances used for
each case is 102.
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Operating conditions Word recognition Word
% recognition %

Without With
enhancement enhancement

Quiet 70 % 85 %

Moving vehicle but Radio & A/C are
off, window up, No cross talk present)

Radio on 51.5% 81.4 %
Moving vehicle with Radio on, A/C off,
window up, no Cross talk present.

Cross talk 453 % 80.2%
Moving vehicle, radio & A/C off,
window up, other passengers talking.

Table 18.1. Speech recognition performance under different conditions with and without the
proposed speech enhancement technique.

S. CONCLUSIONS

In this chapter, for robust automatic speech recognition (ASR) inside a
vehicle (car), a speech enhancement technique based on blind separation of
convolutively mixed signals is applied. This technique is applicable for
under-determined case and hence, is a more practical approach to use in real
applications such as RASR inside a car as compared to other BSS techniques
that work well when the number of sources is equal to the number of sensors.
The signal enhancement capabilities of this technique are verified using a
measure of improvement in speech recognition accuracy. Our preliminary
recognition results of navigation related speech data that was collected in an
SUV show that a significant improvement in speech recognition accuracy -
15 to 35% can be obtained by using our blind convolutive mixture separation
algorithm. Future work warrants testing of the proposed technique using a
larger data set such as the in-vehicle speech data collected by CSLR,
Colorado University (see Chapter 2). Also, the performance of our blind
convolutive mixture separation can be improved if adaptive beamforming
and mixture separation is combined. We are currently working on this.
Future work also warrants using this combined beamforming and blind
source separation based signal enhancement approach to further improve the
speech recognition performance.
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Abstract In this paper, we describe a method for multichannel noisy speech recogni-
tion that can adapt to various in-car noise situations during driving. Our
proposed technique enables us to estimate the log spectrum of speech at a
close-talking microphone based on the multiple regression of the log spec-
tra (MRLS) of noisy signals captured by a set of distributed microphones.
Through clustering of the spatial noise distributions under various driv-
ing conditions, the regression weights for MRLS are effectively adapted
to the driving conditions. The experimental evaluation shows an aver-
age error rate reduction of 43 % in isolated word recognition under 15
different driving conditions.

Keywords: In-car-ASR, multiple microphone, linear regression

1. INTRODUCTION

Array-microphone signal processing is known for sometime now to be
effective for spatially selective signal capture and, in particular, noisy
speech recognition when the locations of the speaker and noise sources are
predetermined. However, when the spatial configuration of the speaker
and noise sources are unknown or they change continuously, it is not easy
to steer the directivity adaptively to the new conditions [1], [2], [3].

Previously, we have proposed multiple regression of log spectra (MRLS)
to improve the robustness in the case of a small perturbation of the spa-
tial distribution of the source and noise signals. In that study, log spectra
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of the signals captured by distributed microphones have been used to ap-
proximate that of the close-talking microphone, through linear regression
[4]. In addition, we have employed MRLS technique for speech recogni-
tion in vehicles and have shown its effectiveness in improving the accuracy
of noisy speech recognition. Through the experiments, we also found that
further improvement of the recognition accuracy can be achieved if the
regression weights are trained for each speaker and/or a particular in-car
sound condition that is mainly set the vehicle itself. These scenarios in-
clude the background music from the audio system, windows are closed
or open, noise from fan/A.C., and the speed of the vehicle. It is worth
noting that the computation of regression weights regression weights for a
given speaker at enrolment is not difficult. Whereas, changing the weights
in order to adapt to the driving conditions is not easy.

The aim of this study is to improve the MRLS so that regression weights
can be changed adaptively to the in-car noise conditions. For this purpose,
we attempt to benefit from distributed microphones for capturing the
spatial distribution of noise sounds.

The rest of the paper is arranged as follows. First, in Section 2, we de-
scribe the in-car speech corpus recorded using distributed microphones.
The basic idea of MRLS and its extension to the adaptive method are
described in Section 3 and Section 4, respectively. In Section 5, experi-
mental evaluations and their results are discussed. Section 6 is a summary
of this paper.

2. MULTIPLE REGRESSION OF LOG
SPECTRA

2.1 Two-dimensional Taylor-expansion of
log-spectrum

Assume that speech signal z;(t) at i® microphone position is give by
a mixture of the source speech s(t) and the noise n(t) convolved with the
transfer functions to the position, h;(t) and g;(t), i.e.,

i(t) = hi(t) * s(t) + gi(t) x n(2),

as shown in Figure 19-1. Assume also that the power spectrum of z;(t) is
given by the ‘power sum’ of the filtered speech and noise, i.e.,

Xi(w) = |Hi(w)*Sw) +Gi(w)|*N (),
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where S(w), Xj(w) and N(w) are the power spectra of the speech signal at
its source position, the noisy speech signal at i*" microphone position and
the noise signal at its source position, respectively. (The frequency index
(w) will be omitted in the rest of paper.) Consequently, the corresponding
log-power-spectrum of the signals at the ' microphone positions are
given by

log X; = log {|H;|*S + |G|*N} .

M O—— X,
G
_o— X

0D—— X,

Figure 19-1. Signal captured through distributed microphones.

The derivative of log X; can be calculated by

Olog X; Olog X;
X, = ———rf
Alog 810gSA10gS+ Flog N

= a;AlogS +b;AlogN.

Alog N

Where a; and b; are given by
o = |Hi|*S
" Hi’S +|GiPN
b = —AGIEN
¢ |H:)%2S + |Gi|2N°
Note that both a; and b; are the functions of the ratio between signal
and noise at their source positions, i.e., S/N. Small deviations of the
log-power-spectrum of the signal at the i* microphone position can be

approximated by a two-dimensional Taylor series expansion around X?,
1.e.,

(2)

log X; — log X2 ~ a;(log S — log %) + b;(log N — log N9), (3)
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where

log X? = a;log S® + b; log N°.
Using superscript (¢){@ for the deviationfrom (e)°, e.g. log X¢ = log X; —
log Xzo, the Taylor expansion can be rewritten by

log Xi(d) ~ a;log S + b;log N(@, (4)

2.2 Multiple regression of multi-channel signals

Approximation of log S (@) by the multiple-regression of log XZ-(d) has the
form

N
log $(49) ~ Z A; log Xi(d).

i=1
By substituting equation (4), the regression error of the approxima-
tion, €,can be calculated as follows.

N 2
£ = logS(d)——Z)\ilogXi(d)}

L i=1

N 2
= log S(d) - Z)\i {ai log S(d) + b; logN(d) }:l

L =1

r N N 2
= L(1 -3 )\iai) log S@ — %" \ib; log N(d)}

i=1 1=1

Assuming the orthogonality between log S® and log N(@| the expec-
tation value of the regression error becomes

N 2 N 2
E (1 -3 )\iai) {log §@}2 4 {Z )\ibi} {log N2 | .
The minimum regression error is then achieved when
N N
Y Efa}hi=1, > E{b}r=0.
=1 =1

Thus, the optimal {A;} can be uniquely determined as a vector that is
orthogonal to {b;} and its inner product with {a;} is equal to unity. The
relationship among these three vectors are shown in Figure 19-2.
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Figure 19-2. The geometric relationship among optimal regression weights A and the
Taylor series coefficients @ and b. In the log-power-spectrum domain, a; + b&; = 1
continues to hold.

a; and b; correspond to the Signal-to-Noise and Noise-to-Signal ratios,
respectively, at the microphone position, and the relationship

a;+b;, =1

holds for every microphone position. Therefore, once A; is given, both
a; and b; are uniquely determined. Multiple regression on the log-power-
spectrum domain can be regarded as an implicit estimation of the local
SNR at each microphone position.

On the other hand, when multiple-regression is performed on the power-
spectrum domain, since

X; = |Hi|*S +|Gi|*’N
holds, {a;}and {b;} are given by
a; = |H;[*
b = |Gil*.
(5)

However unlike in the log-power-spectrum domain, |H;| and |G;| are in-
dependent, they can not uniquely related to the optimized A;.
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2.3 Implementation

We have th following procedure to implement the technique. Log-
power-spectrum is calculated through Mel-filter-bank analysis followed
by log operation[8]. The spectrum of the speech captured by the close-
talking microphone, Xg, is used as the speech at the source position S.
Alllog-power-spectrum log X; are normalized so that their means over an
utterance become zero, i.e.,

log Xi(d) ~ log X; — log X;.

Note that in this implementation, the minimisation of regression error
is equivalent to minimising the MFCC distance between the approximated
and the target spectra, due to the orthogonality of the discrete time cosine
transform (DCT) matrix. Therefore, the MRLS has the same form as
the maximum likelihood optimization of the filter-and-sum beamformer
proposed in [5].

3. AUTOMATIC ADAPTATION OF MRLS

In the previous report[4], we found that changing regression weights
adaptively to the driving conditions is effective in improving the recog-
nition accuracy. In this section, we propose a method of discriminating
in-car noise conditions, which is mainly affected by driving conditions,
using spatial distribution of noise signals, and of controlling the regres-
sion weights for MRLS. The basic procedure of the proposed method is as
follows. 1) Cluster the noise signals, i.e., short-time non-speech segments
preceding utterances, into several groups. 2) For each noise group, train
optimal regression weights for MRLS, using the speech segments. 3) For
unknown input speech, find a corresponding noise group from background
noise, i.e., the non-speech segments, and perform MRLS with the optimal
weights for the noise cluster.

If there is a significant change in the sound source location, it greatly
affects the relative intensity among distributed microphones. Therefore,
in order to cluster the spatial noise distributions, we have developed a
feature vector based on the relative intensity of the signals captured at
the different positions to that of the nearest distant microphone, i.e.,

R = [Ra(k), Ra(k), Rs(k), R7(k)] k=4,5, - 24,

where R;(k) = X;(k)/Xs(k) is the relative power at the k** mel-filterbank
(MFB) channel calculated from the i** microphone signal. We do not use
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(1)normal  {2)music (3)fan lo. (4)fan hi. (5)opn win.
cluster 1
idle 545 10 0 0 232
city 784 69 130 8 100
highway 895 111 190 0 40
cluster 2
idle 328 873 7 0 3
city 109 827 1 2 1
highway 3 77T 5 2 0
cluster 3
idle 24 15 890 900 28
city 0 2 769 886 5
highway 1 3 695 898 2
cluster 4
idle 3 2 3 0 637
city 7 2 0 0 794
highway 1 9 2 0 858

Table 19-1. Distributions of the noise samples in the four clusters.

the lower frequency channel because the spectra of stationary car noise is
concentrated in the lower frequency region. Thus, R is a vector with 84
elements. As shown in Figure 19-1, the 6 microphone is the one nearest
to the driver. Finally, the 84 elements are normalized so that their mean
and variance across elements are 0 and 1.0, respectively. Prototypes of
noise clusters are obtained by applying the k-means algorithm to the
feature vectors extracted from the training set of noise signals.

An example of the clustering results are illustrated in Table 19-3, where
we how many samples of each driving condition each noise class contains
when four clusters of noise are learned. As seen from the table, clus-
ters are naturally formed for ‘normal’, ‘music playing’, ‘fan’ and ‘open
window’ situations, regardless of the driving speeds. From the results,
it is expected that the relative power of the sound signals at different
microphone positions can be a good cue for controlling MRLS weights.

4. IN-CAR SPEECH CORPUS FOR
DISTRIBUTED MICROPHONE

The distributed microphone speech corpus is a part of the CIAIR (Cen-
ter for Integrated Acoustic Information Research) in-car speech database
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collected at Nagoya University [7], which contains data from 800 speak-
ers. They include isolated word utterances, phonetically balanced sen-
tences and dialogues recorded while driving. The data collection is per-
formed using a specially designed data collection vehicle that has multiple
data acquisition capabilities of up to 16 channels of audio signals, three
channels of video and other driving-related information, i.e., car position,
vehicle speed, engine speed, brake and acceleration pedals and steering
handle.

Five microphones are placed around the driver’s seat, as shown in Fig-
ure 19-3, where the top and the side views of the driver’s seat are depicted.
Microphone positions are marked by the black dots. While microphones
#3 and #4 are located on the dashboard; #5, #6 and #7 are attached to
the ceiling. Microphone #6 is closest to the speaker. In addition to these
distributed microphones, the driver wears a headset with a close-talking
microphone (#1).

1)

Figure 19-3. Microphone positions for data collection inside the vehicle: Side view
(top) and top view (bottom).

In the majority of the corpus, the speaker is driving in the city traffic
near Nagoya University. Considerable part of the corpus that we use in
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this study was collected under carefully controlled driving conditions, i.e.,
combinations of three car speeds (idle, driving in a city area and driving
on an expressway) and five car conditions (fan on (hi/lo), CD player
on, open window, and normal driving condition). For this part of the
corpus, 50 isolated word utterances of 20 speakers were recorded under
all combinations of driving speeds and vehicular conditions.

5. EXPERIMENTAL EVALUATIONS
5.1 Experimental Setup

Speech signals used in the experiments were digitized into 16 bits at
the sampling frequency of 16 kHz. For the spectral analysis, 24-channel
mel-filterbank analysis is performed by applying the triangular windows
on the FFT spectrum of the 25-ms-long windowed speech. This basic
analysis is realized through HTK standard MFB analysis [8]. The regres-
sion analysis is performed on the logarithm of MFB output. Since the
power of the in-car noise signal is concentrated in the lower frequency
region, the regression analysis is performed for the range of 250-8kHz,
i.e., 4" to 24*M spectral channels of the MFB. Then DCT is executed to
convert the log-MFB feature vector into the MFCC vector for the speech
recognition experiments.

Three different HMMs are trained:

close-talking HMM is trained using the close-talking microphone speech,

distant microphone HMM is trained using the speech at the nearest
distant microphone, and

MRLS HMM is trained using MRLS results.

The regression weights optimized for each training sentence are used for
generating the training data of MRLS HMM.

The structure of the three HMMs is fixed, i.e., three-state triphones
based on 43 phonemes that share 1000 states; each state has 16-component
mixture Gaussian distributions; and the feature vector is a 25 (12 MFCC
+ 12 A MFCC + A logpower)-dimensional vector. The total number
of training sentences is about 8,000. 2,000 of which were uttered while
driving and 6,000 in an idling car.
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5.2 Baseline Performance of MRLS

For the evaluation of the baseline performance of MRLS, five recogni-
tion experiments are performed:

CLS-TALK recognition of close-talking speech using close-talking HMM

MRLS SPKER recognition of MRLS output optimized for each speaker
using MRLS HMM

MRLS DR recognition of MRLS output optimized for each driving con-
dition using the MRLS HMM

MRLS ALL recognition of MRLS output optimized for all training data
using MRLS HMM and

DIST recognition of nearest distant microphone speech by the distant
microphone HMM.

The resulting recognition accuracies are listed in Table 19-4, and the
average accuracies over fifteen driving conditions are shown in Figure 19-4.
It is found that MRLS outperforms the nearest distant microphone result
even in “MRLS ALL”, where a set of universal weights are used for all
conditions. This result confirms the robustness of the MRLS to the change
of the location of the noise sources, because the primary noise locations
are different depending on driving conditions. It is also found that the
improvement is greater when the performance of the distant microphone
is lower.

53 MRLS Performance with Weight Adaptation

To evaluate the MRLS performance with weight adaptation, optimal
regression weights for the four noise clusters of Section 3 are trained.
Using a 200 ms non-speech segment preceding the utterance, the nearest
prototype of the noise cluster is searched; then the utterance is recognized
after MRLS with the regression weights optimized for the corresponding
noise cluster using the same MRLS HMM. The results of the experi-
ments are shown in Figure 19-5, where the performance of the MRLS
using adaptive regression weights is as high as the results of using the
optimally trained weights for each driving condition. Furthermore, the
MRLS outperforms the MLLR adaptation (five-word supervised adapta-
tion) applied to the close-talking speech [9]. Therefore, the effectiveness
of the proposed method is confirmed.
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100
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Accuracy [%]
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5
CLS-TALK SPKER DR ALL DIST
L—— mRLs —

99.24% 88.69% 89.27% 82.94% 80.48%

Figure 19-4. Recognition performance averaged over various driving conditions. Close-
talking (CLS-TALK), MRLS with optimized weights for a speaker (SPKER), with op-
timized weights for each driving condition (DR), with optimized weights for all training
data (ALL), MLLR and distant microphone (DIST), from left to right.
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(1)els-talk (2)mrls spker (3)mrls dr (4)mrls all (5)dist.

NORMAL
idle 99.67 99.67 99.56  99.89  99.56
city 99.78 98.67 9878  98.33 98.22
highway  99.56 96.56 97.00 92.56 92.44
MUSIC PLAY
idle 99.33 88.78 9522  90.89 84.00
city 99.00 90.56  93.22  90.22 85.56
highway  99.78 9156 92.89  88.89 86.89
A.C. FAN ON LOW
idle 98.56 98.11 9833  97.00 95.00
city 99.89 97.89 97.44 9500 95.11
highway  99.44 9533 9533 89.44 90.78
A.C. FAN ON HIGH
idle 98.89 75.22 76.22  59.44 53.89
city 98.55 7879  79.58 6551 61.38
highway  98.78 76.78  T7.67  61.00 56.89
OPEN WINDOW
idle 99.56 95.67 9544  92.56 88.33
city 98.89 86.22 8556 77.11 75.78
highway  99.00 60.56 56.78  46.33 43.33

Chapter 19

Table 19-2. MRLS accuracy results obtained under various driving conditions.
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88.69% 89.27% 88.93% 86.06% 82.94%

Figure 19-5. Recognition performance of MRLS with optimized weights for a speaker
(SPKER), with optimized weights for a driving condition (DR), proposed weight adap-
tive method (ADAPT), with optimized weights for all training data (ALL), from left
to right.

6. SUMMARY

In this paper, we described a multichannel method of noisy speech
recognition that can adapt to various in-car noise conditions during driv-
ing. The method allows us to estimate the log spectrum of speech at
a close-talking microphone based on the multiple regression of the log
spectra (MRLS) of noisy signals captured by multiple distributed micro-
phones. Through clustering of the spatial noise distributions under var-
ious driving conditions, the regression weights for MRLS are effectively
adapted to the driving conditions. The experimental evaluation shows an
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error rate reduction of 43 % in isolated word recognition under various
driving conditions.
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