
Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 1

Linux as an Embedded Operating System

Linux is a popular, UNIX compatible, open source operating system that
was designed originally for desktop computers. In a first big success wave
Linux conquered the servers in the enterprises. Whether as an operating
system for a file server or on the Internet Access gateway, Linux offers the
necessary features and the absolutely necessary stability for the unattended
continuous operation without reboots. Now Linux is taking the embedded
system market by storm.

 Figure 1: The DIL/NetPC with 64-pin IC Pinout

Introduction

Linux is a modular operating system that is available in the source code. Runtimes
of Linux are royalty free. Linux is documented outstandingly and offers a robust
multitasking operation as well as an advanced programming interface (API).
Extensive professional relief broadcasts it numerous independent companies and a
worldwide developer municipality that advances the operating system and helps

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 2

about the Internet with tips and pieces of advice mutually with almost every
problem. Linux supports almost all 32-bit processor architectures as well as
meanwhile also some low-cost 32-bit microcontrollers and offers device drivers
for any piece of hardware. Linux implies extensive functions for networking tasks
as the TCP/IP- records of the Internet. Through these features Linux is suitable for
applications in the automatic control area and in the field of measurement and
control. Particularly as a so-called "embedded operating system" within
networked automation components as for example a distributed industrial
operation it can play all advantages. In order to support the circulation of Linux as
an embedded operating system, in first days of 2000 the "Embedded Linux
Consortium (ELC)" in the USA and the "Emblix Consortium" in Japan were
setting up to work. Both institutions have important finance averages through their
numerous industrial members and want Linux through purposeful press job, fair
appearances and over a strong Internet-presence to be the leading embedded
operating system in the future.

Also the real-time ability, necessary for many embedded applications, now
subsequently receives Linux. Several companies and institutes pursue with
different approaches the destination to allow the commitment of Linux in time-
critical applications. One of these evolutions named RTLinux settles directly
about the hardware as real-time kernels below the standard Linux and lets the
standard Linux run as an own task. Through that standard Linux does not become
indeed real time capable. It is, however, possible, to let a task run with guaranteed
response times about the real-time kernel. For another approach the entire one
became Linux kernel re-works around the desired real-time ability to receive.

 Figure 2: Block Diagram for a minimum Linux Hardware

Linux can be used onto platforms with minimum resources. Some small
embedded devices need already three integrated circuits (ICs) for running a
embedded Linux: 1. a 32-bit microcontroller or microprocessor with or without
MMU (Memory Management Unit), 2. a FLASH- memory chip for the operating
system and the application-specific programs as well as 3. a (D)RAM as main
memories and RAM- disk for the root filesystem. Figure 2 shows the block
diagram for a small Linux hardware. As an example of a typical small embedded
system for embedded Linux the DIL/NetPC is supposed to serve here [1]. This
miniature module with a 10BASE-T Ethernet interface brings industrial
automation, medical instruments and measurement and control systems to
Ethernet-based networks. As a mechanical base, the DIL/NetPC is using the
JEDEC standard format of a 64-pin "Dual-In-Line (DIL)“ integrated circuit case.

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 3

The DIL/NetPC - A Example for a minimum Linux Hardware

The DIL/NetPC central functional unit is formed by a 32-bit microcontroller
SC410 of AMD. This circuit offers in a 292-pin BGA (Ball Grid Array) case a
AM486SX processor core with 33, 66 or 99 (100) MHz and all functional units of
a typical PC/AT personal computer architecture. In addition to that the SC410
contains one 16C450/16C550 compatible serial port with IrDA interface and some
general purpose parallel I/O lines.

The DIL/NetPC offers two memory devices: one 8 MByte DRAM as working
memory and for the Linux root filesystem on a RAM disk and one 2 MByte
FLASH for storing the embedded operating system together with the application
programs. The DIL/NetPC 10BASE-T Ethernet interface is build with a CS8900
LAN controller. The chip also contains the necessary Ethernet packet buffer
memory.

 Figure 3: DIL/NetPC Block Diagram

In order to mount all the components of the DIL/NetPC to a board with only 82 by
28 mm, a 8-layer printed circuit board is used. The bottom of this multilayer
printed circuit board offers a 64-pin connector in the format of a DIL-IC for
mechanical integration to existing systems. At the 64 pin's, the DIL/NetPC offers
20 parallel I/O (PIO) signals, a complete serial PC-based COM1 interface with all
handshake signals, the 10BASE-T Ethernet interface and a 8-bit I/O- extension
bus with four programmable chip select signals and five interrupt input lines.
Thus the accessibility to existing systems might not represent any great problem.
In the simplest case the combination over COM1 occurs, at more pretentious
solutions about that one I/O bus. This bus can for example A/D- and/or D/A to
access transformers or other controllers.

Also an accessibility of LCD panels (text- and/or small graphic module versions)
is possible without additional logic.

Example for a Embedded Linux Configuration

Fundamentally an embedded Linux consists of three basic modules: 1. the
bootloader, 2. the actual Linux kernel and 3. the root filesystem. There can be

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 4

these three base elements in the form of only one binary image (Figure 4.a) or also
as separate files (Figure 4.b). Even the possibility consists in this case then, that
embedded Linux can be start direct from a DOS command line.

@echo off
ECHO Start SSV Embedded Linux for DILNetPC.
loadlin zimage console=ttys0,115200 initrd=rimage.gz
ECHO SSV Embedded Linux stopped or failed !

Listing 1: Starting embedded Linux with a DOS command line

For the DIL/NetPC, a compact embedded Linux hardware platform, the
manufacturer supplies the three files LOADLIN.EXE as bootloader, ZIMAGE as
kernel and the root filesystem as a file named RIMAGE.GZ. The Linux kernel is
stored as compressed binary code which unpacks itself automatically direct after
the system starts. An example is shown in listing 1, as kernel and file system are
to be started by DOS command line. The command line parameters are especially
important. Here the kernel (ZIMAGE) is informed by the command line
parameters that a COM1-based serial console (console=ttyS0, 115200) with the
transmission speed of 115 kbps is used for console I/O. In order to get into contact
with the DIL/NetPC embedded Linux, a serial ASCII terminal or a PC with a
terminal emulation program can be used.

 Figure 4: Basic Parts of a Embedded Linux

In the DIL/NetPC a 2 MByte FLASH memory chip an embedded Linux with
TCP/IP support, Telnet, FTP and Web server as firmware is stored. Within the
framework of the Linux porting process only the components and drivers which
are required by the hardware was moved to the kernel and the root filesystem.
This kernel was combined together with the root filesystem and a modified
bootloader into one binary file (Binary Image - see Figure 4.a). Table 1 shows the
size of the basic parts for the DIL/NetPC embedded Linux.

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 5

Within the booting process the DIL/NetPC Linux kernel is responsible for setting
up all the normal hardware configuration of the SC410 microcontroller and
peripherals, things such as internal and external chip selects, DRAM controller,
internal counter/timer, interrupt controller etc. After that, the Linux kernel loads
all the necessary drivers for the serial console, Ethernet controller and so on.

Component/Module Size
Bootloader 10.819 Bytes
Kernel with TCP/IP Support 418.978 Bytes
Root Filesystem incl. Telnet, FTP and Web Server 1.098.921 Bytes
 1.528.718 Bytes

Table 1: Example of the DIL/NetPC Linux Configuration.

After the hardware setup the embedded Linux kernel builds a RAM disk within
the DIL/NetPC DRAM chip. Then the kernel decompresses the root filesystem
and forms the binary image in FLASH memory to the new empty RAM disk. This
provides a significant performance advantage. The access to DRAM is faster than
typical FLASH memory. After the file system is complete the kernel causes the
so-called "systeminit process". For that process the program init is started in the
RAM disk subdirectory /sbin. This program activates further programs under
circumstances in accordance to the content the configuration file
/etc/inittab.

Networking with Linux

Linux offers a strong TCP/IP protocol suite [2] with BSD socket interface. The
TCP/IP protocol suite started as a research project for the Department of Defence
(DoD) in the USA as a way of sending data so that a single failure does not
cripple the communication between two points. When a network connection either
becomes congested or is made inactive, data for that link are routed in a different
way. This network grew into what is known as the Internet. The TCP/IP protocol
stack manages the assembling of data into packets. The packet are transmitted
over the Internet and received at the destination where the packets are
reassembled to their original state.

Over the Linux BSD socket interface (API= Application Programming Interface)
the application programmer can access direct to the TCP and UDP protocols [3]
within the DIL/NetPC TCP/IP stack for own applications.

Above the BSD socket interface numerous TCP/IP networking applications are to
be found. Within the DIL/NetPC embedded Linux configuration, there are the
Telnet, FTP and Web server as the most important TCP/IP applications.

Telnet is a protocol used to implement a remote login facility on virtually any host
computer from a remote terminal. The idea is that a terminal creates a session on a
remote server anywhere in a network or internetwork (i.e. the Internet). Because
terminals and hosts can vary in terms of the functionality provided, the Telnet
protocol was designed to enable the host and terminal to negotiate additional

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 6

options to augment the facilities offered to the user. For using the Telnet protocol,
the host needs a Telnet server and the terminal needs a Telnet client software. The
DIL/NetPC Linux Telnet server offers a complete Ethernet-based remote login
facility for any Telnet client for example the standard telnet client within a
Microsoft Windows operating system. Figure 5 shows a Windows 98 Telnet client
connected to the DIL/NetPC Telnet server.

Figure 5: Telnet Session on the DIL/NetPC

FTP (File Transfer Protocol) provides a common approach of transferring files
between clients and servers. The DIL/NetPC Linux FTP server is used for
Ethernet-based file transfers to and from the RAM disk. The FTP client on the
other end can be running on a different operating system. Most desktop operating
systems includes a FTP client. Microsoft, for example, includes a command line
FTP client with Windows 95, 98, NT and 2000 operating system. This client can
be used for transferring files between a desktop PC and the DIL/NetPC.

The Web server within the DIL/NetPC embedded Linux configuration offers a
embedded home page with a graphical user interface (GUI) for any device or
system, which contains a DIL/NetPC. This GUI is then accessible from a PC or
any other computer with a standard Web browser over a Ethernet-based network
and over the Internet for Web-based device monitoring.

Software Development for Embedded Linux

Most Linux software development tasks for embedded systems are done in a
cross development environment. This environment consists of a host and a target.
Typical the host is a standard desktop PC with a Linux operating system. This
systems forms the development system. The target is a embedded system like the
DIL/NetPC. Figure 6 shows the block diagram of this cross software development
environemt.

Most desktop PCs runs under the Microsoft Windows operating systems. In this
case Linux should simply be installed as a second operating system to the PC hard

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 7

disk. Together with this Linux distributions comes the GNU tool chain with
compilers, assembler, linker and debuggers. Programs are written on the
development system. After each compiler/linker run, the binary output is
downloaded to the target for testing. Some parts of a embedded system
application can be developed natively. In this case the development system and
the embedded system needs the same CPU type (i.e. the AMD or Intel x86
architecture).

Figure 6: Software Development Environment

For downloading to the target and debugging the embedded system application on
the target, the development environment needs a link between host and target.
Figure 6 shows two links: one serial link over RS232 for the debugger and second
link between the PC parallel port (LPT) and the JTAG interface of the 32-bit
microprocessor or microcontroller. Over this interface, the PC can write a binary
image direct into the embedded system FLASH memory.

An enormous assistance during the software development forms an integrated
programming environment (IDE). Such a tool allows the use of editor, compiler,
linker and debugger from a homogeneous surface. Modern IDEs combine
frequently also debugger and editor, so that for example a breakpoint for the
debugger over the editor directly set into the C source code. An IDE manages all
files and libraries of a project in a hierarchical list. Today several very strong
integrated programming environments for Linux are available. Typical
representatives are the open source project Kdevelop as well as Sniff++ and
Metrowerks Codewarrior [4]. Most Linux IDEs are delivered, however, without
compilers and so forth. This IDEs works with the GNU tool chain.

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 8

Appendix 1: Pinout 64-pin Connector DNP/1486-3V (1. Part)

Pin Name Gruppe Funktion
 1 PA0 PIO Parallel I/O, Port A, Bit 0
 2 PA1 PIO Parallel I/O, Port A, Bit 1
 3 PA2 PIO Parallel I/O, Port A, Bit 2
 4 PA3 PIO Parallel I/O, Port A, Bit 3
 5 PA4 PIO Parallel I/O, Port A, Bit 4
 6 PA5 PIO Parallel I/O, Port A, Bit 5
 7 PA6 PIO Parallel I/O, Port A, Bit 6
 8 PA7 PIO Parallel I/O, Port A, Bit 7
 9 PB0 PIO Parallel I/O, Port B, Bit 0
 10 PB1 PIO Parallel I/O, Port B, Bit 1
 11 PB2 PIO Parallel I/O, Port B, Bit 2
 12 PB3 PIO Parallel I/O, Port B, Bit 3
 13 PB4 PIO Parallel I/O, Port B, Bit 4
 14 PB5 PIO Parallel I/O, Port B, Bit 5
 15 PB6 PIO Parallel I/O, Port B, Bit 6
 16 PB7 PIO Parallel I/O, Port B, Bit 7
 17 PC0 PIO Parallel I/O, Port C, Bit 0
 18 PC1 PIO Parallel I/O, Port C, Bit 1
 19 PC2 PIO Parallel I/O, Port C, Bit 2
 20 PC3 PIO Parallel I/O, Port C, Bit 3
 21 RXD SIO COM1 Serial Port, RXD Pin
 22 TXD SIO COM1 Serial Port, TXD Pin
 23 CTS SIO COM1 Serial Port, CTS Pin
 24 RTS SIO COM1 Serial Port, RTS Pin
 25 DCD SIO COM1 Serial Port, DCD Pin
 26 DSR SIO COM1 Serial Port, DSR Pin
 27 DTR SIO COM1 Serial Port, DTR Pin
 28 RI SIO COM1 Serial Port, RI Pin
 29 RESIN RESET RESET Input
 30 TX+ LAN 10BASE-T Ethernet Interface, TX+ Pin
 31 TX- LAN 10BASE-T Ethernet Interface, TX- Pin
 32 GND ---- Ground

Table 2a: Pinout Pin 1 to 32

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 9

Appendix 1: Pinout 64-pin Connector DNP/1486-3V (2. Part)

Pin Name Gruppe Funktion
 33 RX+ LAN 10BASE-T Ethernet Interface, RX+ Pin
 34 RX- LAN 10BASE-T Ethernet Interface, RX- Pin
 35 RESOUT RESET RESET Output
 36 VBAT PSP SC410 Real Time Clock Battery Input
 37 CLKOUT PSP Clock Output (Default 1.8432 MHz)
 38 IRTXD PSP SC410 IrDA TXD Pin
 39 IRRXD PSP SC410 IrDA RXD Pin
 40 INT5 PSP Programmable Interrupt Input 5
 41 INT4 PSP Programmable Interrupt Input 4
 42 INT3 PSP Programmable Interrupt Input 3
 43 INT2 PSP Programmable Interrupt Input 2
 44 INT1 PSP Programmable Interrupt Input 1
 45 CS4 PSP Programmable Chip Select Output 4
 46 CS3 PSP Programmable Chip Select Output 3
 47 CS2 PSP Programmable Chip Select Output 2
 48 CS1 PSP Programmable Chip Select Output 1
 49 IOCHRDY PSP I/O Channel Ready
 50 IOR PSP I/O Read Signal, I/O Expansion Bus
 51 IOW PSP I/O Write Signal, I/O Expansion Bus
 52 SA3 PSP I/O Expansion Bus, Address Bit 3
 53 SA2 PSP I/O Expansion Bus, Address Bit 2
 54 SA1 PSP I/O Expansion Bus, Address Bit 1
 55 SA0 PSP I/O Expansion Bus, Address Bit 0
 56 SD7 PSP I/O Expansion Bus, Data Bit 7
 57 SD6 PSP I/O Expansion Bus, Data Bit 6
 58 SD5 PSP I/O Expansion Bus, Data Bit 5
 59 SD4 PSP I/O Expansion Bus, Data Bit 4
 60 SD3 PSP I/O Expansion Bus, Data Bit 3
 61 SD2 PSP I/O Expansion Bus, Data Bit 2
 62 SD1 PSP I/O Expansion Bus, Data Bit 1
 63 SD0 PSP I/O Expansion Bus, Data Bit 0
 64 VCC ---- 3.3 Volt Power Input

 Table 2b: Pinout Pin 33 to 64

Embedded Linux for the DIL/NetPC DNP/1486-3V

SSV EMBEDDED SYSTEMS 10

Literature

[1] Web Site of SSV Embedded Systems. www.ssv-embedded.de
[2] Robin Burk a.o.: TCP/IP Blueprints. SAMS PUBLISHING 1997. Page 157 ff.
[3] Fischer/Müller: Netwerkprogrammierung unter Linux. Carl Hanser 1999.
[4] Web Site of Metrowerks. www.metrowerks.com

Contact

SSV Embedded Systems
Heisterbergallee 72
D-30453 Hannover
Germany
Tel. +49-(0)511-40000-0
Fax. +49-(0)511-40000-40
Email: sales@ist1.de
Web: www.ssv-embedded.de

Notes to this Document (Emblinx3.Doc)

Revision Date Name

1.00 31.10.2000 First Version based on a Call for Paper. KDW

This document is certain only for the internal application. The content of this
document can change any time without announcement. There is taken over no
guarantee for the accuracy of the statements. Copyright © SSV EMBEDDED
SYSTEMS 2000. All rights reserved.

