ESC-321: Embedded Streaming Media with GStreamer

WHITE PAPER

ESC Boston 2008
Class: ESC-321

By Todd Fischer
R&D Manager
RidgeRun

Executive Summary

Beagleboard has many features
supporting streaming audio and
video thanks to the OMAP™ 3 ar-
chitecture. Developing a multime-
dia application that utilizes all of
the hardware accelerators that are
available is a daunting task unless
a streaming media framework is
available. GStreamer is such a
framework, available for OMAPS3,
that simultaneously simplifies ap-
plication development and utilizes
the hardware accelerators.

This document provides an
overview of GStreamer, how using
GStreamer simplifies multimedia
application development, and
compares GStreamer to other mul-
timedia frameworks like Texas In-
strument's DMAI and OpenMax.

Embedded
Streaming Media
with GStreamer

Introduction

BeagleBoard features powerful streaming audio and video capa-
bilities thanks to the use of the Texas Instruments OMAP™ 3530
application processor with an Cortex A-8 ARM processor sup-
porting the NEON instruction set and an integrated C64 DSP
with a video hardware accelerator. GStreamer makes multime-
dia easy on the BeagleBoard.

GStreamer

GStreamer uses the notion of sources, filters, and sinks con-
nected in a pipeline to handle streaming audio and video data.
The GStreamer framework has been around 9 years and has
wide adoption on GNOME desktop, with a rich set of media play-
ers, recorders, audio and video editors, among other uses.
There are over 200 GStreamer plug-ins available. Much of this
GStreamer infrastructure can be used directly in embedded mul-
timedia devices. Multimedia frameworks options for embedded
devices is expanding with the emerging support for OpenMAX
and development of hardware specific solutions like Texas In-
struments DMAI. This paper presents examples on using
GStreamer to cement the key concepts, discusses potential
challenges when GStreamer is used in embedded devices, and
compares GStreamer to other multimedia frameworks for em-
bedded devices.

10f9

ESC-341: Introduction to creating 3D Ul with BeagleBoard

Pipeline Creation

GStreamer elements consist of sources, filters, and sinks. A group of elements is also an element
called a bin. The top-level bin is called the pipeline. The pipeline can be controlled by setting the
state, to play or pause, for example. The other bit of GStreamer terminology that is used frequently
are pads. Elements have source pads and sink pads. The pipeline is connection of source pads to
sink pads. Figure 1 Simple mp3 player shows the filesrc source element which reads data from a file
named music.mp3, a mad filter element that converts MP3 encoded data to binary, and an alsasink
sink element that passes the data to ALSA audio output'.

/pipeline \

Figure 1: Simple mp3 player /
The following C source code example is a modified version from the GStreamer Application Develop-
ment Manual hello world example. In addition to the main() function, a bus_call() function is used to
handle end of stream, as shown below:

static gboolean bus call (GstBus *bus, GstMessage *msg, gpointer data)
GMainLoop *1loop = (GMainLoop *) data;
switch (GST _MESSAGE TYPE (msg)) {

case GST MESSAGE EOS:
g print ("End of stream\n");
g main loop quit (loop);
break;

case GST_MESSAGE ERROR:
g print ("Error\n");
g main loop quit (loop);
break;

default:
break;
}

return TRUE;
}

1 The pipeline can be created using the gst - Launch program which can build and run a GStreamer pipeline from the
command line.

gst-launch filesrc location=music.mp3 ! mad ! alsasink
20f9

ESC-341

Code Sample 1: MP3 player pipeline bus monitor

The example main() has been simplified and made to align with the vala example given later. The key
aspects of the example are the various elements and how they are connected in a controllable
pipeline. Each of the four elements are created, the file location is set for the filesrc file ready source,
the source, filter, and sink are connected added to the pipeline. The src and sink pads of the elements
are connected together in the pipeline. The bus_call() end-of-stream handler connected to watch for
bus events, the pipeline state is set to play, and then we turn it loose with a call to g_main_loop_run()
to activate the pipeline.

#include <gst/gst.h>
#include <glib.h>

int main (int argc, char *argv[])

{

GMainLoop *1loop;
GstBus *bus;
GstElement *source;
GstElement *filter;
GstElement *sink;
GstElement *pipeline;

gst _init (&argc, &argv);
loop = g_main_loop_new (NULL, FALSE);

pipeline = gst pipeline new ("mp3 player");

source = gst element factory make ("filesrc", "file reader");
filter = gst element factory make ("mad", "MP3 decoder");

sink = gst element factory make ("alsasink", "ALSA output");

g object set (G OBJECT (source), "location", “music.mp3”, NULL);

gst bin add many (GST BIN (pipeline), source, filter, sink, NULL);
gst element link many (source, filter, sink, NULL);

bus = gst pipeline get bus (GST PIPELINE (pipeline));
gst bus add watch (bus, bus call, loop);
gst _object unref (bus);

gst element set state (pipeline, GST STATE PLAYING);
g main_loop run (loop);

return 0;

Code Sample 2: MP3 player main logic

There are many of resources describing GStreamer details. See the References section for a list.

3of 9

ESC-341

Vala Pipeline Example

GStreamer is based on GObject, the object model in GLib. The wide acceptance of GObject, driven by
GNOME, brought about the development of Vala, a C# like programming language. Vala supports
objects, which are compatible with GObject, thus providing programmers with syntax support for the

GObject type system. Vala compiles a vala source file into a C source file.

using GLib;
using Gst;

public class ValaExample : GLib.Object {

public void run (string[] args) {

}

MainLoop loop;
Element src;
Element filter;
Element sink;
Pipeline pipeline;

loop = new MainLoop (null, false);

Gst.init (ref args);

pipeline = (Pipeline) new Pipeline ("mp3 player");
src = ElementFactory.make ("filesrc", "file reader");
filter = ElementFactory.make ("mad", "MP3 decoder");
sink = ElementFactory.make ("alsasink", "ALSA output");
pipeline.add many (src, filter, sink);

src.link (filter);

filter.link (sink);

src.set ("location", "music.mp3");

pipeline.set state (State.PLAYING);

loop.run ();

public static int main (string[] args) {

}
}

var example = new ValaExample ();
example.run (args);
return 0;

Code Sample 3: Vala MP3 player

If you are developing an object oriented application that uses GStreamer, you might consider using the
vala programming language.

4o0f 9

ESC-341

Performance Concerns

The example so far has been trivial, just enough to give you the flavor of GStreamer sources, filters,
sinks connected in a pipeline. Let's say you are developing a video phone with audio and video
streaming in both directions. You can create two pipelines for mux-ing and dex-ing the audio and
video streams, running each of the streams (now up to 4) through compressors / decompressors, all in
a just a few hundred lines of code. If you have a big enough CPU, maybe it will keep up, but not likely.
To overcome the performance issues, processors for embedded multimedia devices, like Texas Instru-
ment's OMAPS3, have a variety of hardware to improve performance.

Using On-Chip Hard-
ware Accelerators

CEAx+™ DSP and Display Subsystem

Video Accelerators LCD Video 10-bit DAC

(3525/3530 only) Cont- | "f ¢ 10-bit DAC

ARM®
Cortex'-A8
CPU

When running GStreamer on an
OMAP3430 the CPU load and

overall system performance is

2D/3D
Graphics

Camera I/F
Image

dependent on how effectively
the GStreamer elements utilize
the OMAP3430 hardware capa-
bilities. Using general purpose
GStreamer filters allows any
data conversion available in a
GStreamer plug-in to be usable
in an OMAP3. All the iz
encoding / decoding is being
done by Cortex A8 processor.
Any A8 optimizations supported
by the GNU toolchain will help performance. This is the baseline performance. We can improve on
the baseline by taking advantage of the on-chip hardware accelerators.

(3515/3530 only) Pipe Parallel I/F

L3/L4 Interconnect

System

Timers
GP x12
WDT =2

Peripherals Connectivity

USBE 2.0 HS use
OTG Host
Controller Controller x2

Serial Interfaces Program/Data Storage

":27 HDQ/ -wire SDRC MMC/

SD/f
GPMC SDID

x3

Figure 2: OMAP3 Architecture

Some of the GStreamer codecs are being tuned to use the NEON Single Instruction Multiple Data
(SIMD) instruction set. NEON is designed specifically for media and signal processing. The ffmeg li-
brary, available as a GStreamer plug-in, can be built to use the NEON instruction set. Utilizing the
Cortex A8 NEON hardware can lower CPU requirements while leaving the other OMAP3430 hardware
accelerators available for other tasks.

In another incantation, the encode / decode can be done using the C64 digital signal processor (DSP).
The data is routed though the C64 for conversion, again freeing up the A8 for other tasks. A variation
on this approach is to have the algorithm running on the C64 DSP take advantage of the video hard-
ware accelerator that is part of the OMAP IVA2 macrocell. Using the video hardware accelerator in-
creases the video image size the C64 is able to process in real-time. The application software com-
plexity to directly use the C64 and video hardware accelerator is significant. In the past most compa-
nies purchased proprietary software in order to utilize the DSP for multimedia data processing.

50f 9

ESC-341

The above simplified description of one way to take advantage of on-chip hardware accelerators un-
covers the many challenges involved. We went from using a simple GStreamer pipeline created using
general purpose GStreamer plug-ins, to needing plug-ins customized to use the OMAP3430 hardware.
How is bus contention in the OMAP3 handled? How do you minimize moving the stream data be-
tween the different OMAP3 subsystems? How is cache coherency maintained? How do the different
hardware accelerators work together when they may be in different elements in the GStreamer
pipeline? As you will see shortly, a software framework is now available that addresses these needs,
thus simplifying the use of the DSP by Linux applications.

Minimizing Data Copies

As the audio and video data streams move from source to sink, going though various filters in the
GStreamer pipeline, general-purpose GStreamer filters will often read data from a GstBuffer, process
the data, and store the results in another GstBuffer. So far, so good. But what happens when a hard-
ware accelerator is used? The gst buffer alloc() method for GstBuffer creation simply
malloc()s space in virtual memory. The hardware accelerator need the data in contiguous physical
memory, thus requiring a data copy if the buffer is in virtual memory.. Another case is when multiple
filters are running on the C64, like a decoder filter and an equalizer filter. If these are two filters work
completely independently, the data will be stored in GstBuffer as the data moves between the two fil-
ters. However, an optimization is possible where the stream data is kept local to the C64 and each
data chuck is processed by both filters before being stored back into a GstBuffer.

GStreamer designers recognized the performance issues with unnecessary data copying and endeav-
ored to create a streaming multimedia framework that does as little data copying as a highly tuned tar-
geted application. One improvement is supporting the gst _pad alloc buffer() mechanism to allo-
cate a buffer in addition to the more general malloc() based gst buffer alloc() function.

gst pad alloc buffer() allows the sink pad to allocate a buffer in a manner optimal for the sink,
and only if that is not available uses malloc(). Since the sink pad knows what type of memory is
needed for optimal performance, this provides a simple mechanism to get the steam data in the right
type of memory the first time, thus avoiding data copies. Minimizing data copies is key performance
requirement.

GStreamer and Texas Instruments DMAI

In one multimedia application development approach there is a simple extensible framework called
GStreamer that makes it easy to create pipelines for processing streaming media and another ap-
proach is a what appears to be a highly coupled, processor specific tuned solution taking advantage of
all the on-chip hardware accelerators. To simplify multimedia application development that takes ad-
vantage of available hardware accelerators, Texas Instruments developed DMAI, the Davinci Multime-
dia Application Interface.

Texas Instruments created a GStreamer plug-in to maintain the easy-to-understand and widely used
GStreamer pipeline model utilizing the high performance DMAI sub-system. DMAI, a library (including
source code) is available now from Texas Instruments and the GStreamer DMAI plug-in is in develop-

6of 9

ESC-341

ment at the time of this writing. Check the Texas Instru-
ments website for availability.

For chips containing both an ARM processor and a DSP,
the software components used are shown in Figure 3
GStreamer with DMAI. The DMAI layer understands
Codec Engine and the multimedia related OMAP3 device
drivers. Codec Engine provides a consistent API to audio
and video codecs independent of what hardware trans-
forms the data. For the case of a video codec running on
the C64 DSP using the video hardware accelerator, Codec
Engine uses DSPLink to exchange data with the codec al-
gorithm running on the C64 DSP. The algorithm uses the
DSP BIOS operating system and can directly control the
video hardware accelerator. If an application writer at-
tempted to use the C64 based video hardware accelerator
directly, you can see many, many hardware details that
would need to be taken into account, including cache co-
herency, DMA, C64 data exchange, and video hardware
accelerator usage.. Using the appropriate level of abstrac-
tion, either at the DSPLink, Codec Engine, or DMAI API al-
lows the right balance between code portability and hard-
ware acceleration. With the GStreamer DMAI plug-in, the
hardware accelerators can be utilized by a GStreamer
aware application without the application having to directly
control the hardware.

DMAI introduces a buffer abstraction that allows a refer-
ence to a data buffer to moved from one multimedia pro-
cessing subsystem to another, minimizing the need for a

audio = video ' display

gst — DMAI — gst

frame
copy

VISA OSAL CMEM

— plug-in — plug-in — plug-in ——

ARM Cortex with NEON

data copy. If a data copy is required, the DMAI Framecopy

module will perform the copy in an optimal manner for the
hardware available at the time the copy occurs. DMAI
coupled with Codec Engine and Linux device drivers al-
lows arbitrary processing pipelines to be created in an effi-
cient manner. The GStreamer plug-in allows this underly-

data processing.

IVS2 with C64 DSP

Figure 3: GStreamer with DMAI

ing high performance flexible multimedia pipeline to fit within the standard GStreamer framework. Ap-
plications using the DMAI enabled plug-in get the best of both worlds — GStreamer pipelines and fast

70f 9

ESC-341

GStreamer and OpenMAX

OpenMAX was developed for embedded systems as a way to
provide key abstractions to the three important aspects of mul-
timedia data handling. Using GStreamer terminology, the 3
layers are application, data filters, and hardware acceleration.
Using OpenMAX terminology, the 3 layers are application
(AL), integration (IL), and development (DL). The application
layer exposes the multimedia framework to applications. The
integration layer has the pipeline building blocks including
sources, sinks, and filters. The development layer provides
the low-level building blocks allowing, for example, codec fil-
ters to used optimized routines tuned for a particular hardware
platform. OpenMAX enables vendors of codecs to use hard-
ware optimized routines without knowing anything about the
hardware.

At first glance, OpenMAX, like DMAI, appears to offer an API
similar to GStreamer in that all 3 frameworks allow arbitrary
multimedia pipelines to be created dynamically. Are Open-
MAX, DMAI and GStreamer competing technologies? In
some sense, yes. If you analyze OpenMAX (or DMAI), and ~ Figure 4: OpenMAX Architecture
identify all the multimedia functionality your application requires is available, GStreamer may not add
much value. However, if you need to break apart MPEG packaged audio and video streams, transfer
multimedia data over the network, or perform some other function supported by the over 200
GStreamer plug-ins, then you may want to base your application on the GStreamer framework.

There is a gst-openmax GStreamer plug-in for hardware with OpenMAX support. The OpenMAX
plug-in maps integration layer standard components to GStreamer elements. OpenMAX is in develop-
ment and is usable, but not production ready. The current OpenMAX focus is on encoding and decod-
ing filters. In the Bellagio integration layer effort, many of these filters are based on the same open
source libraries used by GStreamer elements. The difference is the heavy lifting is passed across the
OpenMAX development layer to use hardware optimized routines.

There is work underway at the development layer as well. For ARM processors, ARM Inc. published a
development layer implementation that takes advantage of the NEON instruction set. Texas Instru-
ments has an OpenMAX development layer implementation that uses algorithms running on the C64
in the OMAP3 processor. At the time of this writing, AAC decode, MPEG4 decode, and an A/V player
with MPEG4 AAC decoder are implemented. Source code is available from the OMAP zoom website.

8of 9

ESC-341

References

GStreamer — http://www.gstreamer.org

OMAP3 - http://www.ti.com/omap3

Vala— GStreamer support: http://www.vala-project.org

DMAI - http://wiki.davincidsp.com/index.php?title=Davinci Multimedia Application Interface
OpenMAX - http://www.khronos.org/openmax

GStreamer and OpenMax — http://freedesktop.org/wiki/GstOpenMAX

OMAP3 and OpenMax — https://omapzoom.org/gf/project/openmax

Presentation Examples with Makefile: http://tfischer.public.ridgerun.net/rr-gst-examples.tar.gz

About the Author

Todd Fischer has focused on embedded Linux since 2000, specializing in developing USB, SD, audio
and video drivers for custom consumer electronics hardware. Prior to 2000, Todd was with Hewlett-
Packard working on embedded software for Laserdet printers. Todd has 20 years experience defining
system architectures for embedded devices, and holds a BS in Electrical Engineering / Computer Sci-
ence from the University of Colorado, Boulder and a MS in Electrical Engineering / Computer Science
from University of Minnesota, Minneapolis. Todd can be contacted at todd.fischer (at) ridgerun.com.

9of 9

	GStreamer
	Using On-Chip Hardware Accelerators
	Minimizing Data Copies

