{'f TEXAS
INSTRUMENTS

MSP430x1xx Family

User’s Guide

2003 Mixed Signal Products
SLAU049C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subjectto TI's terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x1xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational paramenters differ
from device-to-device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipmentis intended for use in alaboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

Notational Conventions

Program examples, are shown in a speci al typef ace.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
I/0
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See Basic Clock Module
See RISC 16-Bit CPU
See FLL+ in MSP430x4xx Family User’s Guide

See System Resets Interrupts and Operating Modes

See Digital I/0O

See System Resets Interrupts and Operating Modes

See Basic Clock Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See Basic Clock Module
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

ro Read as 0

rl Read as 1

w Write only

w0 Write as 0

wl Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

hO Cleared by hardware

hl Set by hardware

-0,-1 Condition after PUC
—(0),—(1) Condition after POR

vi

Contents

1 INtrOdUCTION .o e e 1-1
L1 AIChItECIUNE . . . 1-2
1.2 Flexible CloCK System i e e 1-2
1.3 Embedded Emulation i 1-3
1.4 AdAreSS SPaACEttt e 1-4

1.4.1 Flash/ROM 1-4
14,2 RAM 1-4
1.4.3 Peripheral Modules 1-5
1.4.4 Special Function Registers (SFRS) 1-5
1.45 Memory Organizationcouuiuiinein ittt 1-5
2 System Resets, Interrupts, and Operating Modes 2-1
2.1 System Resetand Initialization i e 2-2
2.1.1 Power-On Reset (POR) ...t e e e e 2-3
2.1.2 Brownout Reset (BOR) ...t e e e 2-4
2.1.3 Device Initial Conditions After SystemReset oo 2-5
2.2 I NEITUDES .ot 2-6
2.2.1 (Non)-Maskable Interrupts (NMI) 2-7
2.2.2 Maskable INterruptst 2-10
2.2.3 Interrupt ProCesSINgttt 2-11
224 INterrUPL VECIOIS . . . oottt e e 2-13
2.2.5 Special Function Registers (SFRS)t e 2-13
2.3 0perating MOOESt e 2-14
2.3.1 Entering and Exiting Low-Power Modes oo, 2-16
2.4 Principles for Low-Power Applicationsiiiiiiii i 2-17
2.5 Connection of Unused PiNS e 2-17

Vii

Contents

3 RISC 16-Bit CPU ..o e 3-1
3.1 CPRUINIOAUCTION oottt e e e e et e e e e 3-2
3.2 CPU REOISIEIS oottt e e 3-4

3.2.1 Program Counter (PC)t 3-4
3.2.2 Stack Pointer (SP) e 3-5
3.2.3 Status Register (SR)t 3-6
3.2.4 Constant Generator Registers CG1and CG2ccovvvnnnn. 3-7
3.2.5 General-Purpose Registers R4-R15t 3-8
3.3 AdAressing MOESottt 3-9
3.3. 1 Register Mode 3-10
3.3.2 Indexed MOdet 3-11
3.3.3 SymbolicMode 3-12
3.3.4 ADBSOIUtE MOOE ... 3-13
3.3.5 Indirect Register MOOEttt 3-14
3.3.6 Indirect Autoincrement Mode 3-15
3.3.7 Immediate MOde 3-16
3.4 INSHUCHON SeL . ..ot e 3-17
3.4.1 Double-Operand (Format |) Instructionsccciiiiiven... 3-18
3.4.2 Single-Operand (Format Il) Instructionsot 3-19
4.3 JUMIPS ottt 3-20
3.4.4 Instruction Cyclesand Lengths i 3-72
3.4.5 Instruction Set DesCriptionttt 3-74

4 Basic Clock Module 4-1
4.1 Basic Clock Module INtroduction i 4-2
4.2 Basic Clock Module Operationt 4-4

4.2.1 Basic Clock Module Features for Low-Power Applications 4-4
4.2.2 LEXTLOSCIIAIOr e 4-5
4.2.3 XT2OSCIlIAtOr\t 4-6
4.2.4 Digitally-Controlled Oscillator (DCO)cuuiiiii i 4-6
4.25 DCO MoAUIAtOr 4-9
4.2.6 Basic Clock Module Fail-Safe Operation oo, 4-10
4.2.7 Synchronization of Clock Signals i i 4-13
4.3 Basic Clock Module Registerso e 4-14

5 Flash Memory Controller 5-1
5.1 Flash Memory INtroduCtiont e 5-2
5.2 Flash Memory Segmentation it 5-3
5.3 Flash Memory Operationt e 5-4

5.3.1 Flash Memory Timing Generatorc.cuiiiiiiiiinnieninennann. 5-4
5.3.2 Erasing Flash Memory i e e 5-5
5.3.3 Writing Flash Memory 5-8
5.3.4 Flash Memory Access During Writeor Erase ..., 5-14
5.3.5 StoppingaWriteor Erase Cycle 5-15
5.3.6 Configuring and Accessing the Flash Memory Controller 5-15
5.3.7 Flash Memory Controller Interrupts 5-15
5.3.8 Programming Flash Memory Devicescciiiiiiineninnnn. 5-15
5.4 Flash Memory RegiSters e e et et et e 5-17

viii

Contents

6 Supply Voltage SUPEIVISOrt e e e 6-1
6.1 SVSINrodUCTION 6-2

6.2 SVS OPErationttt e 6-4
6.2.1 Configuring the SVS 6-4

6.2.2 SVS Comparator Operationouuiiuiii i 6-4

6.2.3 Changingthe VLDX BitS e 6-5

6.2.4 SVSOperating RanNgeiiiiii i e 6-6

8.3 SV S REQISIEIS .ttt 6-7

7 Hardware Multiplier 7-1
7.1 Hardware Multiplier Introduction i e 7-2

7.2 Hardware Multiplier Operationccoiiiiiii i ittt 7-3
7.2.1 Operand Registers ...ttt e 7-3

7.2.2 ReSUIt REQISIEIS . ..ot 7-4

7.2.3 Software EXamples 7-5

7.2.4 Indirect Addressing Of RESLOt e 7-6

7.25 USINg INteITUPLS . .o 7-6

7.3 Hardware Multiplier RegiSters i e 7-7

8 DMA CoNtroller ... 8-1
8.1 DMAINrOAUCHION . ..ottt e et e e e 8-2

8.2 DMA OPEIatiONttt e e e 8-4
8.2.1 DMAAddressing Modeso 8-4

8.2.2 DMATransfer Modest 8-6

8.2.3 Initiating DMA Transfers e e e 8-9

8.2.4 Stopping DMA Transferscco i i 8-10

8.2.5 DMA Channel Priorities i 8-10

8.2.6 DMA Transfer Cycle TiIMe e 8-11

8.2.7 Using DMA with System Interrupts i, 8-11

8.2.8 DMA Controller Interrupts oot 8-11

8.3 DMA REQISIEIS .ottt e 8-12

9 DIgital O o 9-1
9.1 Digital O IntrodUCtion o 9-2

9.2 Digital I/O Operation,o.iuii i e 9-3
9.2.1 InputRegister PnIN 9-3

9.2.2 Output Registers PnOUT i e et 9-3

9.2.3 Direction Registers PnDIR e 9-3

9.2.4 Function Select Registers PNSEL o i 9-4

9.25 PLland P2 INtEITUPLSottt e e 9-5

9.2.6 Configuring Unused Port Pins i 9-6

9.3 Digital I/O ReQISIErS ... 9-7

Contents

10 Watchdog Timer ... e e e et e e e e 10-1
10.1 Watchdog Timer Introduction ittt i e i e 10-2
10.2 Watchdog Timer Operationttt e e 10-4

10.2.1 Watchdog Timer COUNTEr it 10-4
10.2.2 Watchdog Mode 10-4
10.2.3 Interval Timer MOOeot e e 10-4
10.2.4 Watchdog Timer INterruptso ot e e et 10-5
10.2.5 Operationin Low-Power Modes ..., 10-6
10.2.6 Software Examples i e 10-6
10.3 Watchdog Timer RegiStersot e et et et et 10-7

N 0 1= 11-1
11.1 Timer_ A IntroduCtiont e e e e e 11-2
11.2 Timer_A OpPEratioNttt e e e e e e 11-4

11.2.1 16-Bit Timer COUNErttt et e e e 11-4
11.2.2 Starting the Timer 11-5
11.2.3 Timer Mode COoNtrol o 11-5
11.2.4 Capture/Compare BIoCKS 11-11
11,25 Output Unit ... e e 11-13
11.2.6 Timer_AINtEImUPLS .. oot e e e et e 11-17
11.3 Timer_A ReQISIEIS ...ttt e e e 11-19
12 TiMEr B . e e 12-1
12.1 Timer B IntroduCtion i e e 12-2
12.1.1 Similarities and Differences From Timer_A i, 12-2
12.2 Timer B Operationottt e e 12-4
12.2.1 16-Bit Timer COUNErot e et e 12-4
12.2.2 Starting the Timer 12-5
12.2.3 Timer Mode CoNntrol o 12-5
12.2.4 Capture/Compare BIoCKS 12-11
12.2.5 Output Unito 12-14
12.2.6 Timer B INterruptso 12-18
12.3 Timer B ReQISIEIS ... ot e e 12-20

13 USART Peripheral Interface, UART Mode e 13-1
13.1 USART Introduction: UART Modeottt 13-2
13.2 USART Operation: UART MOdeot e et 13-4

13.2.1 USART Initializationand Reset, 13-4
13.2.2 Character Format e 13-4
13.2.3 Asynchronous Communication Formatsc.coiiieien... 13-5
13.2.4 USART Receive Enable i 13-9
13.2.5 USART TransmitEnable 13-10
13.2.6 UART Baud Rate Generationouuiiiiineiiinennnneennn.. 13-11
13.2.7 USART INtermUPtS ..ot e e et et e 13-17
13.3 USART Registers: UART Modet e 13-21

14

15

16

17

Contents

USART Peripheral Interface, SPIMoOde ... i 14-1
14.1 USART Introduction: SPIMOdEt e 14-2
14.2 USART Operation: SPIMode e 14-4
14.2.1 USART Initializationand Reset i 14-4
14.2.2 Master MO ... oot e e e e e 14-5
14.2.3 Slave MOGEo 14-6
14.2.4 SPIENaDIEe 14-7
14.2.5 Serial Clock CoNntrol 14-9
14.2.6 SPLINEITUPLS . .ot e e e e 14-11
14.3 USART Registers: SPIMOdet e 14-13
USART Peripheral Interface, 1I2C MOcoiirrinrei i, 15-1
15.1 12C Module INtrodUCHION\ttt ettt e et e e e e e e e 15-2
15.2 12C MOdule OPErationttt e e e e e e 15-4
15.2.1 12C SEHAI DAA « . .ot et ettt ettt e 15-5
15.2.2 12C START and STOP ConditionScoeuririranaaeaenn... 15-6
15.2.3 12C AAressing MOGESo.iuriri et e 15-7
15.2.4 12C Module Operating MOGESirree it 15-8
15.2.5 The I2C Data Register I2CDRttt e 15-15
15.2.6 12C Clock Generation and Synchronization 15-16
15.2.7 Using the I2C Module with Low Power Modes 15-17
15.2.8 Using the 12C Module with the DMA Controller 15-17
15.2.9 Configuring the USART for 12C Operationc.ovuuueiueenn... 15-18
15.2.10 I2C INEITUPES . .o vttt e ettt e e e e e e e e e e e e e 15-19
15.3 12C Module REJISIEIS\ttt e et 15-21
oM P AN AL O A o e 16-1
16.1 Comparator_A INtroduCtion i e 16-2
16.2 Comparator_ A Operationt 16-3
16.2.1 COMPATALOF . . o\ ittt e et e e e e 16-3
16.2.2 Input Analog SWItChes i 16-3
16.2.3 OUtpUt Filter ..o 16-4
16.2.4 Voltage Reference Generatoro, 16-4
16.2.5 Comparator_A, Port Disable Register CAPDcooviiun... 16-5
16.2.6 Comparator_A INterruUPLSt 16-5
16.2.7 Comparator_A Used to Measure Resistive Elements 16-6
16.3 Comparator_A RegiSters 16-8
AD C L o 17-1
17.1 ADCI2 INtrodUCLiON\t e e e e e 17-2
17.2 ADCL2 OPEration . ..ottt ettt e ettt e e e e 17-4
17.2.1 12-Bit ADC COrE ..ttt ittt et e e e 17-4
17.2.2 ADCI12 Inputs and Multiplexer 17-5
17.2.3 Voltage Reference Generatort 17-6
17.2.4 Sample and Conversion TIMINGt 17-7
17.2.5 CoNVErsion MEMOIY ...ttt e ettt ettt 17-10
17.2.6 ADC12 Conversion MOdes ot 17-10
17.2.7 Using ADC12 with the DMA Controller i, 17-15
17.2.8 Using the Integrated Temperature SeNSorc.ccoviineeenn... 17-16
17.2.9 ADC12 Grounding and Noise Considerations 17-17
17.2.10 ADC L2 INteITUPES oottt ettt e e et e e 17-18
17.3 ADCIL2 ReQISIEIS . ottt e e e 17-20

Xi

Contents

18 ADC L0 ittt 18-1
18.1 ADCILO INtrodUCHION . ..ottt et e e e e e e e e e e e e e 18-2
18.2 ADCLO OPEIALION . .. oottt ettt e e e e e e e e e 18-4

18.2.1 10-Bit ADC COrE ..ttt ittt ettt e e e e e et e 18-4
18.2.2 ADCI10 Inputs and MUltiplexer 18-5
18.2.3 Voltage Reference Generatort 18-6
18.2.4 Sample and Conversion TIMINGttt ettt 18-7
18.2.5 Conversion MOAeSot 18-9
18.2.6 ADC10 Data Transfer Controllercco ... 18-15
18.2.7 Using the Integrated Temperature SENSOrc.cvvieunennann.. 18-21
18.2.8 A/D Grounding and Noise Considerationsc.cciivunoo... 18-22
18.2.9 ADCILO INtEITUPLS . . .ottt e e e e 18-23
18.3 ADCILO REQISIEIS . ..ttt ittt e 18-24

1O DA C L . e 19-1
19.1 DACIL2 INtrodUCLiONottt e e 19-2
19.2 DACILI2 OPErationttt et e et e e e e e e 19-4

19.2.1 DACIL2 COB . vt ittt ettt e e e e e e 19-4
19.2.2 DACIL2 REfEIENCE\ttt e e e e 19-5
19.2.3 Updating the DAC12 Voltage OQutput ...t 19-5
19.2.4 DACI12 xDAT Data Formatc..uuiiiiii it 19-6
19.2.5 DAC12 Output Amplifier Offset Calibration 19-7
19.2.6 Grouping Multiple DAC12 Modulesttt 19-8
19.2.7 Using DAC12 With the DMA Controller 19-9
19.2.8 DACILZ2 INtEITUPLS . . .ottt ettt e e e et 19-9
19.3 DACI2 REQISIEIS . .ottt e e e 19-10

Xii

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
1.1 ArChIteCtUre ..o 1-2
1.2 Flexible Clock System i 1-2
1.3 Embedded Emulation i 1-3
1.4 AdAreSS SPaACE ...ttt 1-4

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430 include:

(1 Ultralow-power architecture extends battery life
W 0.1-pA RAM retention
W 0.8-pA real-time clock mode
W 250-pA / MIPS active

(1 High-performance analog ideal for precision measurement
B 12-bit or 10-bit ADC — 200 ksps, temperature sensor, VRef
W 12-bit dual-DAC
W Comparator-gated timers for measuring resistive elements

HW Supply voltage supervisor

(1 16-bit RISC CPU enables new applications at a fraction of the code size.
MW Large register file eliminates working file bottleneck
B Compact core design reduces power consumption and cost
W Optimized for modern high-level programming
W Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

1 In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency uxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 6 ps.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power stand-by mode

[High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1. MSP430 Architecture

r--—-——H——————F"FFF""""F""©©?T~"VF"""™"F""~"F""F"T """ 7""7""7"— A
| |
Clock [ACLK Flash, . ! .
: Sy;gm b sveLk R%SM/ RAM Peripheral : Peripheral : Peripheral :
| |
| MCLK NN NN AN AN AN |
| |
! ol messE [|
| |[rRisccPu| |8 |
g a)

| 16-Bit) |
| = |
| 5 WoBiss Bus K MDB 8-Bit S
| = Conv.\q l) |

|
I AV ARVAV VAR SAVAR SR VA) I
| ACLK — | || || |
: SMCLK —9 Watchdog [| Peripheral Peripheral[| Peripheral[|Peripheral :
| |
| |
e e e d

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

[Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

[0 Development is in-system subject to the same characteristics as the final
application.

(1 Mixed-signalintegrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is 64 KB with future expansion planned.

Figure 1-2. Memory Map

Access
OFFFFh
Interrupt Vector Table Word/Byte
OFFEOh
OFFDFh
Flash/ROM Word/Byte
!
v RAM Word/Byte
0200h
01FFh
16-Bit Peripheral Modules Word
0100h
OFFh
8-Bit Peripheral Modules Byte
010h
OFh . .)
oh Special Function Registers Byte

141 Flash/ROM

142 RAM

1-4 Introduction

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is OFFFFh.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (OFFFEh).

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

Address Space

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

YY) XXXAh

15 14 .. Bits .. 9 8 xxx9h
7 6 .. Bits ... 1 0 Xxx8h
Byte XxxX7h

Byte Xxx6h

Word (High Byte) Xxx5h

Word (Low Byte) xxx4h

(X Y xxx3h

Introduction 1-5

1-6 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x1xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initialization 2-2
2.2 N ITUPES o e 2-6
2.3 Operating Modesttt 2-14
2.4 Principles for Low-Power Applications 2-17
25 Connectionof Unused Pinsttt 2-17

2-1

System Reset and Initialization

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2—1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2—1. Power-On Reset and Power-Up Clear Schematic

T T
POR POR S
——o—)|
Detect Delay POR
»S Lach [—® POR
| | —»{Rr
ov ov

RSTNMI >
NMI(WDTCTL5)! =

PUC_DCO

WDTTSELT m— &

V\\//VDID'I'TISGnT —E J Resetwd1
EQUT) Resetwd?2

KEYV
(from flash module) +

PUC

+ YVYVYVYY

MCLK

t From watchdog timer peripheral module

A POR s adevice reset. APOR is only generated by the following two events:
[Powering up the device
1 A low signal on the RST/NMI pin when configured in the reset mode

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

[A POR signal

(1 Watchdog timer expiration when in watchdog mode only
(1 Watchdog timer security key violation
U

A Flash memory security key violation

2-2 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.1 Power-On Reset (POR)

When the V¢ rise time is slow, the POR detector holds the POR signal active
until Vcc has risen above the V(poR) level, as shown in Figure 2-2. When the
Ve supply provides a fast rise time the POR delay, tpor_peLAY). Provides
active time on the POR signal to allow the MSP430 to initialize.

If power to the MSP430is cycled, the supply voltage Vcc mustfall below V(min)
to ensure that another POR signal occurs when V¢ is powered up again. If
Vcc does notfallbelow V(myin) during acycle oraglitch, aPOR is not generated
and power-up conditions do not set correctly. See device-specific datasheet
for parameters.

Figure 2-2. POR Timing

v A
[[vVCC .
vecmin |- e —— R cp— SN Y e WSS —
| | [
| | |
v . _ s ____ L __ e
POR | I/l
| | POR | J1 POR
| | [
| | If 1
l l if ! No POR
Vi I - ___AL_ e
(MIN) | [|
l l l l >
| | [
| | [
A | | [
| | [
Set Signal for ' '
POR circuitry : :
| |
| |
T T >
| | | [|
| | | [|
| [(€—> Y(POR_DELAY) | > YPOR_DELAY)

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Brownout Reset (BOR)

Some devices have a brownout reset circuit (see device-specific datasheet)
that replaces the POR detect and POR delay circuits. The brownout reset
circuit detects low supply voltages such as when a supply voltage is applied
to or removed from the V¢ terminal. The brownout reset circuit resets the
device by triggering a POR signal when power is applied or removed. The
operating levels are shown in Figure 2—3.

The POR signal becomes active when V¢ crosses the Vecstart) level. It
remains active until Ve crosses the V(g _j1+) threshold and the delay tgoR)
elapses. The delay t goR) is adaptive being longer foraslow ramping V¢, The
hysteresis Vpygs_|7-) ensures that the supply voltage must drop below
V(B_IT-) to generate another POR signal from the brownout reset circuitry.

Figure 2—-3. Brownout Timing

\ \ v, | |
s | T~
Viys@_IT-) | : I
Ve v | D Y
VB_IT-) TF T A <
\ | | |
B N N

Veestart) |

v

POR circuitry

v

|
\
\
\
\
Set Signal for }
\
\
\

Asthe V(g |1 levelis significantly above the V(N level of the POR circuit,
the BOR provides a reset for power failures where V¢ does not fall below
V(miN). See device-specific datasheet for parameters.

2-4 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.3 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

a
a

L

Software Initialization

The RST/NMI pin is configured in the reset mode.
I/O pins are switched to input mode as described in the Digital /0 chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFEh). CPU execution begins at that address.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

a
d
d

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the application.

Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2

Interrupts

The interrupt priority is shown in Figure 2—4. The priorities are defined by the
arrangement of the modules in the connection chain. The nearer a module is
to the CPU/NMIRS, the higher the priority.

There are three types of interrupts:

[System reset

d (Non)-maskable NMI

[Maskable

Figure 2—4. Interrupt Priority

2-6

Priority High

_ Low

CPU

GMIRS
a

@i
Module

NMIRS 1

A 4

A4

A
PUC

Module
2

WDT
Timer

Module
m

Module
n

Ay

Y,

|;/_:

PUC

Circuit

OSCfault
Flash ACCV

[Reset/NMI

PN

/_:
Bus

Grant

T WDT Security Key

Flash Security Key \/ \/

A4

A4

AV

MAB — 5LSBs

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMl interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (ACCVIE, NMIIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2-5.

A (non)-maskable NMI interrupt can be generated by three sources:
[An edge on the RST/NMI pin
(1 An oscillator fault occurs

[An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the NMIES bit generates an NMI interrupt if the NMIIE bit is
set. The RST/NMI flag NMIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMlI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying NMIES

When NMI mode is selected and the NMIES bit is changed, an NMI can be
generated, depending on the actual level at the RST/NMI pin. When the NMI
edge select bit is changed before selecting the NMI mode, no NMI is
generated.

System Resets, Interrupts, and Operating Modes 2-7

System Reset and Initialization

Figure 2-5. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV W
ACCVIFG
S B
FCTL1.1 |

ACCVIE
IEL5
Clear
PUC J + Flash Module
RST/NMI
% POR PUC
\ KEYV vee
i 1 g —»— PUC
g System Reset
L
! Generator
> —»— POR
A A A
4
NMIFG
S
_)7{> >— NMIRS
IFG1.4 —
Clear NMIES TMSEL NMI WDTQn EQU PUC POR
ik . .
PUC
NMIIE r T T T T T T —— ==
| - WDTIFG |
IEL4 | } IRQ |
Clear | IFGL.0 — |
| Clear |
PUC | WDT |
| Counter |
OSCFault j | POR |
OFIFG | |
s) | |
IFG1.1 |/ | |
| IRQA |
| |
OFIE | TMSEL |
| WDTIE |
IE1.1 | |
Clear | IELO |
_f + NMI_IRQA | Clear |
PUC]
| |
l Watchdog Timer Module puC l
IRQA: Interrupt Request Accepted - - _l

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization
Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMl interrupt is a multiple-source interrupt. An NMl interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2—6.

Figure 2—6. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIE, ACCVIE

| -
>
Reset OFIFG Reset ACCVIFG Reset NMIIFG
User’s Software, User’s Software, User’s Software,
Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional v
Set NMIIE, OFIE, : Example 1:
ACCVIE Within One BI'S #(NM | E+OFI E+ACCVI E), &l E1
Instruction _|
| Example 2:
¢ |BI'S Mask, & E1 ; Mask enables only
RETI) | ; interrupt sources
End of NMI Interrupt
L Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

The ACCVIE, NMIIE, and OFIE enable bits should not be setinside of an NMI
interrupt service routine, unless they are set by the last instruction of the
routine before the RETI instruction. Otherwise, nested NMI interrupts may
occur, causing stack overflow and unpredictable operation.

2.2.2 Maskable Interrupts

2-10

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in time mode. Each maskable interrupt
source can be disabled individually by an interrupt enable bit, or all maskable
interrupts can be disabled by the general interrupt enable (GIE) bitin the status
register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only

the

individual enable bit must be set for (hon)-maskable interrupts to be

requested.

Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2—7. The interrupt logic executes
the following:

1)
2)
3)

4)

5)

6)

7

Any currently executing instruction is completed.
The PC, which points to the next instruction, is pushed onto the stack.
The SR is pushed onto the stack.

The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

The SR is cleared with the exception of SCGO, which is left unchanged.
This terminates any low-power mode.

The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2—7. Interrupt Processing

SP —»

Before After
Interrupt Interrupt
Item1 Iteml
Iltem2 TOS Iltem2
PC
SP —» SR TOS

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2-8.

1) The SRwithall previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where itwas
interrupted.

Figure 2—-8. Return From Interrupt

Before After
Return From Interrupt

lteml lteml
ltem2 SP —» Item2 TOS
PC PC
SP —» SR TOS SR

Interrupt nesting is enabled if the GIE bit is set inside the interrupt service
routine.

2-12 System Resets, Interrupts, and Operating Modes

2.2.4 Interrupt Vectors

System Reset and Initialization

The interrupt vectors and the power-up starting address are located in the
address range OFFFFh — OFFEOh as described in Table 2-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt

vector list.

Table 2—1. Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE INTFESE(;"PT IN?'\I;SRTREUNFI’T A;VD%FE%S PRIORITY
Zosvgirvy;’cﬁgtoeg;,nal \livé)J\'/FG Reset OFFFEh 15, highest
flash password

NMI, oscillator fault, NMIIFG (non)-maskable

flash memory access OFIFG (non)-maskable OFFFCh 14
violation ACCVIFG (non)-maskable

device-specific OFFFAh 13
device-specific OFFF8h 12
device-specific OFFF6h 11
Watchdog timer WDTIFG maskable OFFF4h 10
device-specific OFFF2h 9
device-specific OFFFOh 8
device-specific OFFEEh 7
device-specific OFFECh 6
device-specific OFFEAhQ 5
device-specific OFFE8h 4

VO Port P2 ﬁ;:ig:g © maskable OFFE6h 3

VO Port P1 Ei:ig:g 0 maskable OFFE4h 2
device-specific OFFE2h 1
device-specific OFFEOh 0, lowest

2.2.5 Special Function Registers (SFRs)

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.

See the device-specific datasheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

2-13

Operating Modes

2.3 Operating Modes

Figure 2-9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes

The MSP430 family is designed for ultralow-power applications and uses

different operating modes shown in Figure 2-10.

The operating modes take into account three different needs:
(J Ultralow-power
(1 Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-9.

340
315

270 +
225 1
180 1
135 +

225
B Vec=3V
B Vcc=22vV

ICC/ uA

90 + 70 65

45 + 17
o % % 1,21 , 0101

AM LPMO LPM2 LPM3 LPM4
Operating Modes

The low-power modes 0—4 are configured with the CPUOFF, OSCOFF, SCGO,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCGO0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effectimmediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

2-14 System Resets, Interrupts, and Operating Modes

Operating Modes

Figure 2-10. MSP430x1xx Operating Modes For Basic Clock System

RST/NMI

Vee O
Reset Active ccon
POR
WDT Active,
Time Expired, Overflow WDTIEG = 1 WDTIFG =0
PUC) RST/NMI is Reset Pin
WDTIFG =1 WDT is Active
. RST/NMI
WDT Active, NMI Active
Security Key Violation
Active Mode
CPUOFF = 1 CPU Is Active CPUOFF = 1
SCGO=0 Peripheral Modules Are Active OSCOFF =1
SCG1=0 SCGO0=1
SCG1=1
LPMO
CPU Off, MCLK Off, LPM4
SMCLK, ACLK On CPU Off, MCLK Off, DCO
Off, ACLK Off
CPUOFF =1 CG off
— enerator
gggg = (1) CPUOFF =1
‘ CPUOFF =1 SCGO0=1
SCG0=0 SCGl1=1
LPM1 scGl=1 LPM3
CPU Off, MCLK Off, CPU Off, MCLK Off, SMCLK
SMCLK. ACLK On Off, DCO Off ACLK On
' LPM2
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On DC Generator Off
not used in active mode
SCG1 SCGO0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 Active CPU is active, all enabled clocks are active
LPMO CPU, MCLK are disabled
SMCLK , ACLK are active
0 1 0 1 LPM1 CPU, MCLK, DCO osc. are disabled

DC generator is disabled if the DCO is not used for
MCLK or SMCLK in active mode
SMCLK , ACLK are active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO osc. are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

System Resets, Interrupts, and Operating Modes 2-15

Operating Modes

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

[Options for returning from the interrupt service routine:

W The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

; Enter LPMD Exanpl e
BIS #Q E+CPUCFF, SR ; Enter LPM
P ; Program stops here

; Exit LPMD Interrupt Service Routine
BIC #CPUOFF, O(SP) ; Exit LPMD on RETI
RETI

; Enter LPM3 Exanpl e
BIS #GQ E+CPUOFF+SCGL+SCQ0, SR ; Enter LPM3
.. ; Program stops here

; Exit LPMB Interrupt Service Routine
Bl C #CPUCOFF+SCGL+SCQ), 0(SP) ; Exit LPMB on RETI
RETI

Extended Time in Low-Power Modes

The negative temperature coefficient of the DCO should be considered when
the DCO is disabled for extended low-power mode periods. If the temperature
changes significantly, the DCO frequency at wake-up may be significantly
different from when the low-power mode was entered and may be out of the
specified operating range. To avoid this, the DCO can be set to it lowest value
before entering the low-power mode for extended periods of time where
temperature can change.

; Enter LPM4 Exanple with | owest DCO Setting
BIC #RSEL2+RSEL1+RSELO, &BCSCTL1 ; Lowest RSEL
BIS #Q E+CPUOFF+OSCOFF+SCGL+SCQD, SR; Enter LPWA

y ; Program stops

; Interrupt Service Routine

BIC #CPUOFF+OSCOFF+SCGL+SCA), O(SR); Exit LPMA on RETI
RETI

2-16 System Resets, Interrupts, and Operating Modes

2.4 Principles for Low-Power Applications

Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430's clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
allinterrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up.

[J Use interrupts to wake the processor and control program flow.

(] Peripherals should be switched on only when needed.

[Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

[Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

(1 Avoid frequent subroutine and function calls due to overhead.

[Forlonger software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-2.

Table 2—2. Connection of Unused Pins

Pin Potential Comment

AVcce DVce

AVss DVss

VREF+ Open

VeREF+ DVss

VRer/Verer- DVss

XIN DVgg

XOuT Open

XT2IN DVss 13x, 14x, 15x and 16x devices
XT20UT Open 13x, 14x, 15x and 16x devices
Px.0to Px.7 Open Switched to port function, output direction
RST/NMI DVccorVee Pullup resistor 100 kQ
Test/Vpp DVgs P11x devices

Test DVgs 11xx and 12xx devices

TDO Open

TDI Open

T™MS Open

TCK Open

System Resets, Interrupts, and Operating Modes

2-17

2-18 System Resets, Interrupts, and Operating Modes

Chapter 3

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and instruction
set.

Topic Page
3.1 CPRUINtroductiono 3-2
3.2 CPU REQISIEIS ittt e e e e 3-4
3.3 Addressing Modes ... 3-9
3.4 INStruction Set 3-17

3-1

CPU Introduction

3.1 CPU Introduction

3-2

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

J
a

a
-

RISC architecture with 27 instructions and 7 addressing modes.

Orthogonal architecture with every instruction usable with every
addressing mode.

Full register access including program counter, status registers, and stack
pointer.

Single-cycle register operations.
Large 16-bit register file reduces fetches to memory.

16-bit address bus allows direct access and branching throughout entire
memory range.

16-bit data bus allows direct manipulation of word-wide arguments.

Constant generator provides six most used immediate values and
reduces code size.

Direct memory-to-memory transfers without intermediate register holding.

Word and byte addressing and instruction formats.

The block diagram of the CPU is shown in Figure 3—1.

RISC 16-Bit CPU

Figure 3—1. CPU Block

MDB — Memory Data Bus

Diagram

AN

15 0

RO/PC Program Counter |0

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

QA

L0000 III0EITTY

Memory Address Bus — MAB

AN

R10 General Purpose
Ll | -
R11 General Purpose
Ll | -
R12 General Purpose
Ll | -
R13 General Purpose
Ll | -
R14 General Purpose
Ll | -
R15 General Purpose
~
16 | N
Zero, Z —
gsgr);io(\:/v, v 16-bit ALU MCLK
Negative, N
<
\V4

CPU Introduction

RISC 16-Bit CPU 3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0O) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3—2 shows the program counter.

Figure 3—2. Program Counter

15 1 0

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MoV #LABEL, PC; Branch to address LABEL
MoV LABEL, PC ; Branch to address contained in LABEL
MoV @R14,PC ; Branch indirect, indirect Rl4

3-4 RISC 16-Bit CPU

CPU Registers

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3—-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3—-4 shows stack usage.

Figure 3—3. Stack Pointer
15 1 0

Stack Pointer Bits 15 to 1 0

MOV 2(SP),R6 ; ItemI2 —> R6
MoV R7,0(SP) ; Overwite TOS with R7

PUSH #0123h ; Put 0123h onto TCOS
POP R8 ; R8 = 0123h
Figure 3—4. Stack Usage
Address PUSH #0123h POP R8
Oxxxh 11 11 11
Oxxxh — 2 12 12 12
Oxxxh — 4 13 <— SP 13 13 <4— SP
Oxxxh — 6 0123h — SP| 0123h
Oxxxh — 8

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP POP SP

SPoig —¥
sp; —¥ SPp sp, —¥ SPy

The stack pointer is changed after The stack pointer is not changed after a POP SP
a PUSH SP instruction. instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3—6 shows the SR bits.

Figure 3—6. Status Register Bits

15

OSC|CPU

Scel OFF [oFF

Reserved \% SCGO GIE| N|Z]|C

rw-0

Table 3—1 describes the status register bits.

Table 3—-1.Description of Status Register Bits

Bit

Description

\Y

SCG1
SCGO

OSCOFF

CPUOFF
GIE

N

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(. B) , ADDC(. B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive,

otherwise reset

SUB(. B), SUBC(. B), CMP(. B) Setwhen:
Positive — Negative = Negative
Negative — Positive = Positive,

otherwise reset
System clock generator 1. This bit, when set, turns off the SMCLK.

System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

CPU Registers

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 ————- Register mode

R2 01 0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh —1, word processing

The constant generator advantages are:

(1 No special instructions required

] No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3, dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
I NC dst

is replaced by:

ADD 0(R3), dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 - R15

The twelve registers, R4—R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and

can be accessed with byte or word instructions as shown in Figure 3—7.

Figure 3—7. Register-Byte/Byte-Register Operations

3-8

Register-Byte Operation

High Byte Low Byte

Unused Register

Byte Memory

Example Register-Byte Operation
R5 = 0A28Fh

R6 = 0203h

Mem(0203h) = 012h

ADD. B R5, O(R6)

08Fh
+012h
0Alh

Mem (0203h) = 0Alh
C=0,Zz=0,N=1

(Low byte of register)
+ (Addressed byte)
—>(Addressed byte)

RISC 16-Bit CPU

Byte-Register Operation

High Byte Low Byte

Example Byte-Register Operation
R5 =01202h

R6 = 0223h

Mem(0223h) = 05Fh

ADD. B @r6, R
05Fh
+ 002h

00061h

R5 = 00061h
C=0,Z=0,N=0

(Addressed byte)
+ (Low byte of register)

—>(Low byte of register, zero to High byte)

Byte Memory

oh Register

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rn is used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE and TONI

Throughout MSP430 documentation EDE and TONI are used as generic

labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3—4.

Table 3—4.Register Mode Description

Assembler Code Content of ROM
MOV R10, R11 MOV R10, R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10, R11
Before: After:

R10 0A023h R10 0A023h
R11 OFA15h R11 0A023h

PC PCold PC PCoig + 2

I
Note: Datain Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3-5.

Table 3-5.Indexed Mode Description

Addressing Modes

Assembler Code

Content of ROM

MoV

2(R5), 6(R6) MOV X(R5), Y(R6)

X=2
Y=6

is incremented

PC
R5
R6

Register

01080h
0108Ch

Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter
automatically so that program execution continues with the
next instruction.
Comment: Valid for source and destination
Example: MOV 2(R5), 6(R6):
Before: After:
Address Register Address
Space Space
Oxxxxh
OFF16h | 00006h R5] 01080h OFF16h | 00006h
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h | Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 1092n ["01234n
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h | Oxxxxh
01082h
01082h | 01234h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

RISC 16-Bit CPU

3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3—6.

Table 3-6. Symbolic Mode Description

3-12

Assembler Code Content of ROM
MOV EDE, TONI MOV X(PC), Y(PC)
X =EDE -PC
Y =TONI-PC

Length: Two or three words
Operation: Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.
Comment: Valid for source and destination
Example: MOV EDE, TONI ; Source address EDE = 0OF016h
; Dest. address TONI =01114h
Before: After:
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h 011FEh OFF16h 011FEh
OFF14h 0F102h OFF14h 0F102h
OFF12h | 04090h | PC OFF12h | 04090h
OFF14h
0F018h Oxxxxh +0F102h 0F018h Oxxxxh
OF016h | 0A123h OF016h oro16h [0AL23h
0F014h Oxxxxh 0FO014h Oxxxxh
OFF16h
01116h | Oxxxxh +011FEh 01116h | Oxxxxh
01114h
01114h 05555h 01114h 0A123h
01112h Oxxxxh 01112h Oxxxxh

RISC 16-Bit CPU

3.3.4 Absolute Mode

The absolute mode is described in Table 3—7.

Table 3—7. Absolute Mode Description

Addressing Modes

Assembler Code

Content of ROM

MOV &EDE, &TONI

MOV X(0), Y(0)

X =EDE

Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Valid for source and destination

MOV &EDE, &TON

Address
Space

01114h

0F016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

01234h

Oxxxxh

PC

Register

: Sour ce address EDE=0F016h,
;dest. address TONI =01114h

After

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Address
Space
Oxxxxh

01114h

0F016h

04292h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

Register

PC

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.35

Table 3-8. Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10, O(R11)

MOV @R10, O(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

O0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV. B @R10, O(R11)

0000h

R10

04AEBh

PC R11

0xxxxh

Oxxxxh

05BC1lh

Oxxxxh

Oxxh

012h

Oxxh

Register

OFA33h

002A7h

OFF16h
OFF14h
OFF12h

OFA34h
O0FA32h
OFA30h

002A8h
002A7h
002A6h

Address

Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h

002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+, O(RL1)

MOV @R10+, O(RL1)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

010AAh
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is O(Rd) plus second instruction INCD Rd.

Address
Space

0xxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

0xxxxh

01234h

0xxxxh

R10
pC Ri11

MOV @R10+, O(R11)

Register

0FA32h
010A8h

OFF18h
OFF16h

OFF14h
OFF12h

OFA34h
OFA32h
OFA30h

010AAh
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

0xxxxh

05BC1h

0xxxxh

Register

OFA34h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3-8.

Figure 3—8. Operand Fetch Operation

Instruction

Address

\ 4

Operand

+1/ +2

RISC 16

-Bit CPU

3-15

Addressing Modes

3.3.7

Immediate Mode

The immediate mode is described in Table 3-10.

Table 3-10.Immediate Mode Description

3-16

Assembler Code Content of ROM
MOV #45h, TONI MOV @C+, X(PC)
45
X =TONI-PC

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAhN
010A8h
010A6h

RISC 16-Bit CPU

Two or three words

It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the

destination.
Valid only for a source operand.

MOV #45h, TONI

) After:

Address Register Address

Space Space
OFF18h | Oxxxxh
01192h OFF16h | 01192h
00045h OFF14h | 00045h
040BOh | PC OFF12h | 040BOh

OFF16h

Oxxxxh +01192h 010AAh Oxxxxh
01234h 010A8N 510a8h [00045h
0xxxxh 010A6h Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 24 core instructions and 27
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(g Dual-operand

1 Single-operand

d Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

Note: Use of Labels EDE and TONI

Throughout MSP430 documentation EDE and TONI are used as generic
labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | B/IW As D-Reg

Table 3—-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z cC

MOV(. B) src,dst src - dst - - - -

ADDX . B) src, dst src+dst - dst * * * *
ADDC(.B) src,dst src+dst+C - dst * * * *
SUB(. B) src,dst dst+.not.src+1 - dst * * * *
SUBC(.B) src,dst dst+.not.src+C - dst * * * *
CVP(. B) src, dst dst-src * * * *
DADD(.B) src,dst src+dst+C - dst(decimally) * * * *
Bl T(. B) src, dst src.and. dst 0 * * *

Bl C(. B) src, dst .not.src .and. dst — dst - - - -
Bl S(. B) src, dst src.or. dst - dst - - - -
XOR(. B) src, dst src .xor. dst - dst * * * *
AND(. B) src, dst src.and. dst - dst 0 * * *

* The status bit is affected

- The status bit is not affected
0 The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the Bl T and AND instructions.

3-18 RISC 16-Bit CPU

Instruction Set

3.4.2 Single-Operand (Format Il) Instructions

Figure 3-10 illustrates the single-operand instruction format.

Figure 3—10. Single Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code B/W Ad D/S-Reg

Table 3-12 lists and describes the single operand instructions.

Table 3—-12.Single Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V. N z ¢C
RRC(. B) dst C - MSB ... LSB - C * * * *
RRA(.B) dst MSB - MSB -...LSB . C 0o = * *
PUSH(.B) src SP -2 . SP, src - @SP - - - -
SWPB dst Swap bytes - - - -
CALL dst SP -2 .. SP,PC+2 . @SP - - - -
dst - PC
RETI TOS - SR,SP+2 . SP * * * *
TOS . PC,SP+2 - SP
SXT dst Bit 7 - Bit8........ Bit 15 0 * * *

* The status bit is affected

— The status bit is not affected
The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.

RISC 16-Bit CPU 3-19

Instruction Set

3.4.3 Jumps

Figure 3—-11 shows the conditional-jump instruction format.

Figure 3—-11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3—-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ JZ Label Jump to label if zero bit is set
JNE/ INZ Label Jump to label if zero bit is reset
JC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JWP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from —511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PChew = PColg + 2 + PCoffget X 2

3-20 RISC 16-Bit CPU

ADC[.W]
ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z. Setifresult is zero, reset otherwise

C: Setif dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADD[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif resultis zero, reset otherwise

C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) = 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDC[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z: Setif resultis zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

AND[.W]
AND.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

3-24

Source AND destination
Source AND destination

AND src,dst or AND.W src,dst
AND.B src,dst

src .AND. dst —> dst

The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

N: Setif result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;

...... : Result is not zero

; or
AND #0AA55h, TOM
Jz TONI

The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h, TOM ; mask Lowbyte TOM with R5
JZ TONI :
...... : Result is not zero

RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax

Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src .AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #0FCOOh,LEO ; Clear 6 MSBs in MEM(LEO)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W] Set bits in destination
BIS.B Set bits in destination
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .OR. dst —> dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM,; set the six LSBs in RAM location TOM
Example The three MSBs of RAM byte TOM are set.
BIS.B #0EOh,TOM ; set the 3 MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BIT.W src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Setif MSB of result is set, reset otherwise

Z. Setifresult is zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V. Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

JINZ TOM ;' Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
TXXXX OXXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC ccce
; N N
; MSB LSB
; Serial communication with MSB is shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
7 XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; ccee ccee
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

* BR, BRANCH Branchto destination

Syntax BR dst

Operation dst—> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address

space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

: Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 : Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect RS
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

3-28 RISC 16-Bit CPU

CALL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Subroutine

CALL dst

dst —>tmp dst is evaluated and stored
SP-2 —> SP

PC —> @SP PC updated to TOS

tmp —>PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ;Callonlabel EXEC orimmediate address (e.g. #0A4h)
; SP-2 - SP, PC+2 -~ @SP, @PC+ - PC

EXEC ; Call on the address contained in EXEC
; SP-2 - SP, PC+2 - @SP, X(PC) - PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
: EXEC
; SP-2 - SP, PC+2 - @SP, X(0) - PC
; Indirect address

R5 ; Call on the address contained in R5
:SP-2 .. SP,PC+2 . @SP,R5 - PC
; Indirect R5

@R5 ; Call on the address contained in the word

; pointed to by R5
:SP-2 - SP, PC+2 - @SP, @R5 - PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 - SP, PC+2 - @SP, @R5 - PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 - SP, PC+2 - @SP, X(R5) - PC
; Indirect indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W]
* CLR.B

Syntax

Operation

Emulation

Description

Status Bits

Example

Example

Example

Clear destination
Clear destination

CLR dst or CLR.W dst
CLR.B dst

0 —> dst

MOV #0,dst

MOV.B #0,dst

The destination operand is cleared.
Status bits are not affected.

RAM word TONI is cleared.

CLR TONI ;0 —>TONI
Register R5 is cleared.

CLR R5

RAM byte TONI is cleared.

CLR.B TONI ; 0 —>TONI

3-30 RISC 16-Bit CPU

*CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0—>C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

*CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0 el N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

*CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

0 - Z
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto0

C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZz

RISC 16-Bit CPU 3-33

Instruction Set

CMPL.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1
or
(dst — src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)

Z: Setif result is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 =R6?
JEQ EQUAL ; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
L$1 CMP &BLOCK1,&BLOCK2 ; Are Words equal?

JNZ ERROR ; No, branch to ERROR

DEC R5 ; Are all words compared?

INZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI : MEM(EDE) = MEM(TONI)?
JEQ EQUAL . YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z: Setif dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) :Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADDI[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The resultis
not defined for non-BCD numbers.

N: Setifthe MSB is 1, reset otherwise
Z: Setif result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; CLEAR CARRY

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; Clear Carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT : =DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst—1 —>dst

SuB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

<oNz

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

: to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3-12.

Figure 3-12. Decrement Overlap

EDE
4 —>
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W]
* DECD.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Double-decrement destination
Double-decrement destination

DECD dst or DECD.W dst
DECD.B dst

dst—2 —> dst

SUB #2,dst
SUB.B #2,dst

The destination operand is decremented by two. The original contents are lost.

Set if result is negative, reset if positive

Set if dst contained 2, reset otherwise

Reset if dst contained 0 or 1, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location

; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+OFEh

Example

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1

Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)
Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

*DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0 - GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; Allinterrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set
*EINT

Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Enable (general) interrupts
EINT

1- GIE
or
(0008h .OR. SR —> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 0 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

* INC[.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z. Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte of a process STATUS is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

* INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst

dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Setif result is negative, reset if positive

Z. Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Setif dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV.W]
* INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #0OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Setif dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Setif initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = OFF51h
INC R5 ; R5is now negated, = R5 = 0FF52h

Content of memory byte LEO is negated.

MOV.B #OAEN,LEO ; MEM(LEO) = OAEh
INV.B LEO Invert LEO, MEM(LEO) = 051h
INC.B LEO : MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal —> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 = 15
...... ; Continue here if R5 <15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

If Z=1: PC + 2 x offset —> PC
If Z = 0: execute following instruction

The status register zero bit (2) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 : Test R7
JZ TONI ; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
Jz LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) =0 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
andV are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 = (R7)?, compare on signed humbers
JGE EDE ; Yes, R6 = (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if less
JL label

If (N .XOR. V) = 1 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset —> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
—511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N=1: PC + 2 x offset —> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. Ifit is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT : COUNT — R5 — COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT=0

CLR COUNT

RISC 16-Bit CPU 3-49

Instruction Set

JNC Jump if carry not set
JLO Jump if lower
Syntax JNC label
JLO label
Operation if C=0: PC + 2 x offset —> PC

if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the nextinstruction following the jump is executed. INC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The resultin R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 —> BUFFER

JNC CONT ; No carry, jump to CONT
ERROR ... ; Error handler start
CONT ... ; Continue with normal program flow
Example Branch to STL2 if byte STATUS contains 1 or O.

CMP.B #2 STATUS
JLO STL2 : STATUS < 2
...... : STATUS = 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
JNZ label

If Z=0: PC + 2 x offset —> PC
If Z = 1: execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOVI[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst
src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer

MOV #020h,R9 ; Prepare counter

MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter

JNZ Loop ; Counter # 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying

...... ; Copying completed

3-52 RISC 16-Bit CPU

* NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

[To hold one, two or three memory words
[To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
*POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP —>temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

: Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack
POP SR

(

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSH.W src
PUSH.B src

SP-2 . SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

*RET
Syntax

Operation

Emulation

Description

Status Bits

3-56

Return from subroutine
RET

@SP- PC
SP+2 - SP

MOV @SP+,PC

The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status bits are not affected.

RISC 16-Bit CPU

Instruction Set

RETI Return from interrupt
Syntax RETI
Operation TOS - SR
SP +2 - SP
TOS - PC
SP +2 - SP
Description The status register is restored to the value at the beginning of the interrupt

service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3—13 illustrates the main program interrupt.

Figure 3—13. Main Program Interrupt

PC -6 YY)
PC -4
Interrupt Request
PC -2 /
PC v Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi (YY)
Onto Stack
PC +4 PCi +2
PC +6 PCi +4
PC +8 °
v :
PCi +n—-4
PCi +n-2
PCi +n RETI
y

RISC 16-Bit CPU 3-57

Instruction Set

* RLA[.W] Rotate left arithmetically

*RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C<-MSB <-MSB-1.... LSB+1<-LSB<-0

Emulation ADD dst,dst

ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst = 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3—-14. Destination Operand—Arithmetic Shift Left

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst = 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:
the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h < dst < 0COh; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.
RLA R7 : Shift left R7 (x 2)

Example The low byte of R7 is multiplied by 4.
RLA.B R7 ; Shift left low byte of R7 (x 2)
RLA.B R7 ; Shift left low byte of R7 (x 4)

Note: RLA Substitution
The assembler does not recognize the instruction:

RLA @R5+ nor RLA.B @R5+.
It must be substituted by:
ADD @R5+,-2(R5) or ADD.B @R5+,—-1(R5).

3-58 RISC 16-Bit CPU

Instruction Set

* RLC[.W] Rotate left through carry

*RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C<-MSB<-MSB-1.... LSB+1<-LSB<-C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3—15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3—15. Destination Operand—Carry Left Shift
Word 15 0

——————————————————

Byte 7 0

Status Bits Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < OCOh; reset otherwise

<oNzZ

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R5 is shifted left one position.
RLC R5 :(R5x2)+C—>R5
Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Infformation —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO - Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Emulation

The assembler does not recognize the instruction:
RLC @R5+.

It must be substituted by:
ADDC @R5+,-2(R5).

RISC 16-Bit CPU 3-59

Instruction Set

RRA[.W]
RRA.B

Syntax

Operation

Description

Figure 3—-16.

Status Bits

Mode Bits

Example

Example

Rotate right arithmetically
Rotate right arithmetically

RRA dst or RRA.W dst
RRA.B dst

MSB —> MSB, MSB —> MSB-1, ... LSB+1 —>LSB, LSB—>C

The destination operand is shifted right one position as shown in Figure 3—16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Destination Operand—Arithmetic Right Shift

Word 15 0
N — >
Byte | |
15 0

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the LSB

Reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 i R5/2—>R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH R5 ; hold R5 temporarily using stack
RRA RS iR5x0.5 —> R5

ADD @SP+R5 ;R5x05+R5=15xR5 —>R5
RRA R5 :(1.5xR5)x0.5=0.75 x R5 —> R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 —> Rb5: operation is on low byte only
; High byte of R5 is reset
RRA.B R5 ;R5x05 —> R5
PUSH.B R5 ;R5x05 —> TOS
RRA.B @SP ;TOSx0.5=0.5xR5x0.5=0.25%xR5 —>TOS
ADD.B @SP+R5 ;R5x05+R5x0.25=0.75xR5 —>R5

3-60 RISC 16-Bit CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C—>MSB—>MSB-1... LSB+1—>LSB—>C

The destination operand is shifted right one position as shown in Figure 3—17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3—17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the LSB

Set if initial destination is positive and initial carry is set, otherwise reset

<oNzZ

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h —> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z. Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V. Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-hit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

* SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSuUB

Instruction Set

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C:. Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 3987 and R6 = 4137

ADD #6666h,R5 ; Move content R5 from 0-9 to 6—0Fh
; R5 = 03987 + 6666 = 09FEDh

INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1

DADD R5,R6 ; Emulate subtraction by addition of:

- (10000 — R5 — 1)
R6 =R6 +R5 + 1
- R6 = 4137 + 06012 + 1 = 1 0150 = 0150

RISC 16-Bit CPU 3-63

Instruction Set

*SETN
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set negative bit

SETN

1-—>N

BIS #4,SR

The negative bit (N) is set.

N: Set

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

*SETZ
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set zero bit
SETZ

1—>Z

BIS #2,SR

The zero bit (Z) is set.

N:
Z:
C:
V.

OSCOFF, CPUOFF, and GIE are not affected.

Not affected
Set

Not affected
Not affected

Instruction Set

RISC 16-Bit CPU

3-65

Instruction Set

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst — src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBC[.W]SBB[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SuUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst—src—1 + C —>dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z. Setif result is zero, reset otherwise.

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V. Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counterin R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <—>bits 7to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #0FFO0h,R5 ;Correct the result

BIC #00FFh,R4 ;Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit7—>Bit8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3—19.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

* TST[.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst+ OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C:. Set

V. Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG,; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

Jz R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG,; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The resultis placed
into the destination. The source operand is not affected.

N: Setif result MSB is set, reset if not set

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits in word TONI on bits
; set in low byte of R6,

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7Y ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14.Interrupt and Reset Cycles

No. of Length of
Action Cycles Instruction
Return from interrupt (RETI) 5 1

Interrupt accepted 6
WDT reset 4 -
Reset (RST/NMI) 4

Format-1l (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-1l instructions.

Table 3-15.Format-Il Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB, SXT PUSH CALL nstruction Example
Rn 1 3 4 1 SWPB R5
@RnN 3 4 4 1 RRC @r9
@Rn+ 3 4 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #81H
X(Rn) 4 5 5 2 CALL 2(R7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format [l Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-1ll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I

instructions.

Table 3—16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MoV R5, R8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5, 3(R6)
EDE 4 2 XOR R8, EDE
&EDE 4 2 MoV R5, &EDE
@Rn Rm 2 1 AND @4, RS
PC 3 1 BR @r8
x(Rm) 5 2 XOR @5, 8(R6)
EDE 5 2 MoV @Rr5, EDE
&EDE 5 2 XOR @Rr5, &EDE
@Rn+ Rm 2 1 ADD @5+, R6
PC 3 1 BR @R9+
x(Rm) 5 2 XOR @85, 8(R6)
EDE 5 2 MoV @9+, EDE
&EDE 5 2 MoV @9+, &EDE
#N Rm 2 2 MoV #20, R9
PC 3 2 BR #2AEh
x(Rm) 5 3 MOV #0300h, O(SP)
EDE 5 3 ADD #33, EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MV 2(R5),R7
PC 3 2 BR 2(R6)
TONI 6 3 MOV 4(R7), TONI
x(Rm) 6 3 ADD 3(R4), 6(R9)
&TONI 6 3 MOV 3(R4), &TONI
EDE Rm 3 2 AND EDE, R6
PC 3 2 BR EDE
TONI 6 3 awe EDE, TONI
x(Rm) 6 3 MOV EDE, 0(SP)
&TONI 6 3 MoV EDE, &TONI
&EDE Rm 3 2 MoV &EDE, R8
PC 3 2 BRA &EDE
TONI 6 3 MoV &EDE, TONI
x(Rm) 6 3 MOV &EDE, O(SP)
&TONI 6 3 MOV &EDE, &TONI

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3—20 and the complete instruction set
is summarized in Table 3-17.

Figure 3—20. Core Instruction Map

000 040 080 O0CO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

Oxxx

4XXX

8XXX

CXxxX

1xxx | RRC |RRC.B | swPrB RRA | RRAB| sxT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx INE/INZ

24xx JEQNJZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

AXXX MOV, MOV.B
5xxx ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8Xxx SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3—17.MSP430 Instruction Set

Instruction Set

Mnemonic Description Y N z C
ADC(. B) * dst Add C to destination dst+ C - dst * * * *
ADD(. B) src, dst Add source to destination src + dst - dst * * * *
ADDC(. B) src,dst Add source and C to destination src +dst+ C — dst * * * *
AND(. B) src,dst AND source and destination src .and. dst - dst 0 * * *
Bl C(. B) src, dst Clear bits in destination .not.src .and. dst - dst - - - -
Bl S(. B) src, dst Set bits in destination src .or. dst — dst - - - -
Bl T(. B) src, dst Testbits in destination src .and. dst 0 * * *
BR* dst Branch to destination dst -~ PC - - - -
CALL dst Call destination PC+2 - stack, dst -~ PC - - - -
CLR(.B)* dst Clear destination 0 - dst - - - -
CLRC* Clear C 0-C - - - 0
CLRN* Clear N 0-N - 0 - -
CLRZ* ClearZ 0-2 - - 0 -
CMP(. B) src, dst Compare source and destination dst — src * * * *
DADC(. B)* dst Add C decimally to destination dst + C - dst (decimally) * * * *
DADDX . B) src,dst Add source and C decimally to dst. src + dst + C - dst (decimally) * * * *
DEC(. B) * dst Decrement destination dst—1 - dst * * * *
DECD(. B)* dst Double-decrement destination dst—2 - dst * * * *
DI NT* Disable interrupts 0 - GIE - - - -
EI NT* Enable interrupts 1- GIE - - - -
I NC(. B) * dst Increment destination dst +1 - dst * * * *
I NCD(.B)* dst Double-increment destination dst+2 - dst * * * *
INV(.B)* dst Invert destination .not.dst - dst * * * *
JC/ JHS | abel Jump if C set/Jump if higher or same - - - -
JEQ JZ | abel Jump if equal/Jump if Z set - - - -
JCE | abel Jump if greater or equal - - - -
JL | abel Jump if less - - - -
JMP | abel Jump PC + 2 x offset . PC - - - -
JN | abel Jump if N set - - - -
JNC/ JLO | abel Jump if C not set/Jump if lower - - - -
JNE/ INZ | abel Jump if not equal/Jump if Z not set - - - -
MOV(. B) src,dst Move source to destination src — dst - - - -
NOP* No operation - - - -
POP(. B) * dst Pop item from stack to destination @SP - dst, SP+2 - SP - - - -
PUSH(. B) src Push source onto stack SP -2 - SP, src - @SP - - - -
RET* Return from subroutine @SP - PC,SP+2 - SP - - - -
RETI Return from interrupt * * * *
RLA(. B) * dst Rotate left arithmetically * * * *
RLC(. B) * dst Rotate left through C * * * *
RRA(. B) dst Rotate right arithmetically 0 * * *
RRC(. B) dst Rotate right through C * * * *
SBC(. B) * dst Subtract not(C) from destination dst + OFFFFh + C - dst * * * *
SETC* SetC 1-C - - - 1
SETN* SetN 1-N - 1 - -
SETZ* SetZ 1-.C - - 1 -
SUB(. B) src, dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC(. B) src,dst Subtract source and not(C) from dst. dst + .not.src + C - dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TST(.B)* dst Test destination dst + OFFFFh + 1 0 * * 1
XOR(. B) src,dst Exclusive OR source and destination src .xor. dst - dst * * * *

* Emulated Instruction

RISC 16-Bit CPU 3-75

3-76

Chapter 4

Basic Clock Module

The basic clock module provides the clocks for MSP430x1xx devices. This
chapter describes the operation of the basic clock module. The basic clock
module is implemented in all MSP430x1xx devices.

Topic

Page
4.1 Basic Clock Module Introduction 4-2
4.2 Basic Clock Module Operationc.ccoiiiiiiiiiininnann. 4-4
4.3 Basic Clock Module Registersciiiiiiiiinnn. 4-14

4-1

Basic Clock Module Introduction

4.1 Basic Clock Module Introduction

4-2

The basic clock module supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock module
can be configured to operate without any external components, with one
external resistor, with one or two external crystals, or with resonators, under
full software control.

The basic clock module includes two or three clock sources:

1 LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
either with low-frequency 32,768-Hz watch crystals, or standard crystals,
resonators, or external clock sources in the 450-kHz to 8-MHz range.

[XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450-kHz to
8-MHz range.

[DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics.

Three clock signals are available from the basic clock module:

[0 ACLK: Auxiliary clock. The ACLK is the buffered LFXT1CLK clock source
divided by 1, 2, 4, or 8. ACLK is software selectable for individual
peripheral modules.

[MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
XT2CLK (if available), or DCOCLK. MCLK is divided by 1, 2, 4, or 8. MCLK
is used by the CPU and system.

[SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
XT2CLK (if available), or DCOCLK. SMCLK is divided by 1, 2, 4, or 8.
SMCLK is software selectable for individual peripheral modules.

The block diagram of the basic clock module is shown in Figure 4-1.

Basic Clock Module

Figure 4-2. Basic Clock Block Diagram

[\ LFXTCLK

Basic Clock Module Introduction

OSCOFF XTS

LV

XIN

—
T

!
"

12pF

ov

XT
LFOff XT10ff

XOUT
SELMx
LFXT1 Oscillator

00
___________ 1 E 01
! [\ | XT2CLK
| P o 10
| XT20FF : 1
: XT2IN T I
| |
| | — |
| ‘_—< F— |
| XT20UT XT2 Oscillator |
——————————— | MODx

vee Modulator
DCOR SCGO RSELx DCOx
TTIT 1Tt "
0 off e] DCOCLK

>—11 Generator | | DCOn+1 ||
P2.5/Rosc

DIVAX
Divider)
11/2/4/8
ACLK
Auxillary Clock
DIVMXx
T T CPUOFF
Divider
11121418
MCLK

Main System Clock

DIVSx

1T

Divider
11121418

SCG1

SMCLK

Sub System Clock

Note: XT2 Oscillator

The XT2 Oscillator is not present on MSP430x11xx or MSP430x12xx
devices. The LFXT1CLK is used in place of XT2CLK.

Basic Clock Module

4-3

Basic Clock Module Operation

4.2 Basic Clock Module Operation

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~800 kHz (see
device-specific datasheet for parameters) and ACLK is sourced from LFXT1
in LF mode.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable portions of the basic clock
module. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, and BCSCTL2 registers configure the basic clock
module

The basic clock can be configured or reconfigured by software at any time
during program execution, for example:

Bl S. B #RSEL2+RSEL1+RSELO, &BCSCTL1 ;
Bl S. B #DCO2+DCO1+DCC0, &DCOCTL ; Set max DCO frequency

4.2.1 Basic Clock Module Features for Low-Power Applications

4-4

Conflicting requirements typically exist in battery-powered MSP430x1xx
applications:

(1 Low clock frequency for energy conservation and time keeping

(1 High clock frequency for fast reaction to events and fast burst processing
capability

The basic clock module addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, the ACLK can be
configured to oscillate with a low-power 32,786-Hz watch crystal, providing a
stable time base for the system and low power stand-by operation. The MCLK
can be configured to operate from the on-chip DCO that can be only activated
when requested by interrupt-driven events. The SMCLK can be configured to
operate from either the watch crystal or the DCO, depending on peripheral
requirements. A flexible clock distribution and divider system is provided to
fine tune the individual clock requirements.

Basic Clock Module

Basic Clock Module Operation

4.2.2 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS =0). A watch crystal connects to XIN
and XOUT without any other external components. Internal 12-pF load
capacitors are provided for LFXT1 in LF mode. The capacitors add serially,
providing a match for standard 32,768-Hz crystals requiring a 6-pF load.
Additional capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1). The high-speed crystal or resonator connects to XIN and
XOUT and requires external capacitors on both terminals. These capacitors
should be sized according to the crystal or resonator specifications.

Software can disable LFXT1 by setting OSCOFF, if this signal does not source
SMCLK or MCLK, as shown in Figure 4-3.

Figure 4-3. Off Signals for the LFXT1 Oscillator

XTS =

OSCOFF =

l_ ._DQ—P LFoff

CPUOFF »—9————— (Y
SELMO B—-#)O)—0
SELM1 ®
I) o xnn
XT2
XT2 is an Internal Signal
sce1 #— XT2 = 0: MSP430x11xx, MSP430x12xx devices
SELS b—[XT2 = 1: MSP430x13x, MSP430x14x

MSP430x15x, and MSP430x16x devices

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal. It is recommended to leave the LFXT1 oscillator
on when in LF mode.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

The LFXT1 oscillator in LF mode requires a 5.1-MQ resistor from XOUT to
VSS when VCC <25V.

Basic Clock Module 4-5

Basic Clock Module Operation

4.2.3 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2OFF bit
disables the XT2 oscillator if XT2CLK is not used for MCLK or SMCLK as
shown in Figure 4-4.

Figure 4—4. Off Signals for Oscillator XT2

SELM1 m——
SELMO B—(O

SCG1 B—0

SELS =—

4.2.4 Digitally-Controlled Oscillator (DCO)

XT20FF .—L
CPUOFF -—o:>Q

)—> XT20ff (Internal signal)

The DCO is an integrated ring oscillator with RC-type characteristics. As with
any RC-type oscillator, frequency varies with temperature, voltage, and from
device to device. The DCO frequency can be adjusted by software using the
DCOx, MODx, and RSELx bits. The digital control of the oscillator allows
frequency stabilization despite its RC-type characteristics.

Disabling the DCO

Software can disable DCOCLK when not used to source SMCLK or MCLK, as
shown in Figure 4-5.

Figure 4-5. On/Off Control of DCO

CPUOFF B
) DCOCLK_on
XSELM1 >

D Q lion
SCGlm 0: off
T>
SELS®——D Q
DCOCLK
T> CL
\

POR
SMCLK DCO_Gen_on
SCGOm 1:0n

0: off

4-6 Basic Clock Module

Basic Clock Module Operation

Adjusting the DCO frequency

After a PUC, the internal resistor is selected for the DC generator, RSELx =
4, and DCOx = 3, allowing the DCO to start at a mid-range frequency. MCLK
and SMCLK are sourced from DCOCLK. Because the CPU executes code
from MCLK, which is sourced from the fast-starting DCO, code execution
begins from PUC in less than 6 ps.

The frequency of DCOCLK is set by the following functions:

[d The currentinjected into the DC generator by either the internal or external
resistor defines the fundamental frequency. The DCOR bit selects the
internal or external resistor.

(1 Thethree RSELX bits select one of eight nominal frequency ranges for the
DCO. These ranges are defined for an individual device in the
device-specific data sheet.

(1 Thethree DCOx bits divide the DCO range selected by the RSELX bits into
8 frequency steps, separated by approximately 10%.

1 The five MODXx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCO+1.

The DCOx and RSELx ranges and steps are shown in Figure 4-6.

Figure 4—-6. DCOx Range and RSELXx Steps

foco

10000 kHz ——

RSEL=7

4,_1—’_’_’_’_’7 RSEL=6
4,_1—’_’_'_’_'7 RSEL=5
4,_,—'_'_’_’_'7 RSEL=4

1000 kHz —f— ‘_I_’_’_’_’_'i RSEL=3

4,_1—’_’_’_’_'7 RSEL=2
4,_1—’_’_’_’_’7 RSEL=1
4,_:—’_'_’_’_'7 RSEL=0

100 kHz —;’_’_I_’_’_’_'i

DCO=0 DCO=1 DCO=2 DCO=3 DCO=4 DCO=5 DCO=6 DCO=7

Basic Clock Module 4-7

Basic Clock Module Operation

Using an External Resistor (Rogc) for the DCO

The DCO temperature coefficient can be reduced by using an external resistor
Ropsc to source the current for the DC generator. Figure 4—7 shows the typical
relationship of fpco vs. temperature for both the internal and external resistor
options. Using an external Rggc reduces the DCO temperature coefficient to
approximately —0.05%/C. See the device-specific data sheet for parameters.

Rosc also allows the DCO to operate at higher frequencies. For example, the
internal resistor nominal value is approximately 200 kQ, allowing the DCO to
operate up to approximately 5 MHz. When using an external Rogc of
approximately 100 kQ the DCO can operate up to approximately 10 MHz. The
user should take care to not exceed the maximum MCLK frequency specified
in the datasheet, even though the DCO is capable of exceeding it.

Figure 4-7. DCO Frequency vs. Temperature

4-8

fbco

25%]

External

Internal
-25% —

Celsius

-50 0 50 100

Basic Clock Module

Basic Clock Module Operation

42,5 DCO Modulator

The modulator mixes two DCO frequencies, fpco and fpco+1 to produce an
intermediate effective frequency between fpco and fpco+1 and spread the
clock energy, reducing electromagnetic interference (EMI) The modulator
mixes fpco and fpco+1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

t =(32— MODx) x tpco + MODX X tpco+1
Because fpco is lower than the effective frequency and fpco+1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.

It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 4-8 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLK can be compared to a stable frequency of known value and adjusted
with the DCOx, RSELx, and MODx bits. See http://www.ti.com/sc/msp430 for
application notes and example code on configuring the DCO.

Figure 4-8. Modulator Patterns

MODx

31T—| L

e e 1 1 s e e e W I

24
AUy
LUyt

] [] M It Il []

, [] [] [] []

, [] [] [

, [] [

Lower DCO Tap Frequency fpco ~ Upper DCO Tap Frequency fpco+1
1
0

v

Basic Clock Module 4-9

Basic Clock Module Operation

4.2.6 Basic Clock Module Fail-Safe Operation

The basic clock module incorporates an oscillator-fault detection fail-safe
feature. The oscillator fault detector is an analog circuit that monitors the
LFXT1CLK (in HF mode) and the XT2CLK. An oscillator fault is detected when
either clock signal is not present for approximately 50 ps. When an oscillator
fault is detected, and when MCLK is sourced from either LFXT1 in HF mode
or XT2, MCLK is automatically switched to the DCO for its clock source. This
allows code execution to continue, even though the crystal oscillator has
stopped.

When OFIFG is set and OFIE is set, an NMI interrupt is requested. The NMI
interrupt service routine can test the OFIFG flag to determine if an oscillator
fault occurred. The OFIFG flag must be cleared by software.

Note: No Oscillator Fault Detection for LFXT1 in LF Mode

Oscillator fault detection is only applicable for LFXT1 in HF mode and XT2.
There is no oscillator fault detection for LFXT1 in LF mode.

OFIFG is set by the oscillator fault signal, XT_OscFault. XT_OscFault is set
at POR, when LFXT1 has an oscillator fault in HF mode, or when XT2 has an
oscillator fault. When XT2 or LFXT1 in HF mode is stopped with software the
XT_OscFault signal becomes active immediately, remains active until the
oscillator is re-started, and becomes inactive approximately 50 ps after the
oscillator re-starts as shown in Figure 4-9.

Figure 4-10. Oscillator-Fault Signal

XT10FF/
XT20FF

LFXTlCLK/
XT2CLK

XT_OscFault

Sy
L .

software enables OSC software disables OSC

O:SCfauIts:
e TR -
¢ 4= 50us —p> 4—50us—>‘

4}3_,—% 4—50us—>|

4-10 Basic Clock Module

Basic Clock Module Operation

Oscillator Fault Detection

Signal XT_OscFault triggers the OFIFG flag as shown in Figure 4-11. The
LFXT1_OscFault signal is low when LFXT1 is in LF mode.

On devices without XT2, the OFIFG flag cannot be cleared when LFXT1 is in
LF mode. MCLK may be sourced by LFXT1CLK in LF mode by setting the
SELMx bits, even though OFIFG remains set.

On devices with XT2, the OFIFG flag can be cleared by software when LFXT1
is in LF mode and it remains cleared. MCLK may be sourced by LFXT1CLK
in LF mode regardless of the state of the OFIFG flag.

Figure 4-11. Oscillator-Fault-Interrupt

re T Oscillator Fault Interrupt Request 1
| XT1off P q I
! B |
: LFXT1 OscFault ——— e+ XT_OscFault |
POR |

! v
: XT2_OscFault 3 S |9 —RQ_ |
) ' |
l XT2 41 IFG1.1 |
I I
| OFIE I
: IEL1 | Clear |
| T |
I PUC IRQA |
_________ I]
r———————" -t ——————— |
| Oscillator Fault Fail-Safe Logic *— |
: XTS m ® ODDL :

SELM1 m g XSELM1
| |
‘_

| 1 N
| SELMO ® PR :
| Fault_from |
| XT2 I
| |
| Fault_from L |
| XL 3\ 3 |
| DCOR m |
| |
b |

XT2 Is an internal signal. XT2 = 0 on devices without XT2 (MSP430x11xx and MSP430x12xx).
XT2 =1 on devices with XT2 (MSP430F13x, MSP430F14x, MSP430F15x, and(MSP430F16Xx)
IRQA: Interrupt request accepted

LFXT1_OscFault: Only applicable to LFXT1 oscillator in HF mode.

Basic Clock Module 4-11

Basic Clock Module Operation

Sourcing MCLK from a Crystal

After a PUC, the basic clock module uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator
2) Clear the OFIFG flag
3) Wait at least 50 ps

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select LFXT1 (HF node) for MCLK

Bl C #OSCOFF, SR ; Turn on osc.
Bl S. B #XTS, BCSCTL1 ; HF node
L1 BIC B #CFI FG &l FGL ; Clear COFIFG
MoV #0FFh, R15 ; Del ay
L2 DEC R15 ;
INZ L2 ;
BI T. B #COFI FG &l FGL ; Re-test OFIFG
JNZ L1 ; Repeat test if needed

Bl S. B #SELML+SELMD, &BCSCTL2 ; Sel ect LFXT1CLK

4-12 Basic Clock Module

Basic Clock Module Operation

4.2.7 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the
switch is synchronized to avoid critical race conditions as shown in
Figure 4-12:

1) The current clock cycle continues until the next rising edge.
2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 4-12. Switch MCLK from DCOCLK to LFXT1CLK

Select
LFXT1CLK

v

DCOCLK

LFXT1CLK i 5
MCLK J

Wait for
DCOCLK—pf— | om0 LFXT1CLK

\4

Basic Clock Module 4-13

Basic Clock Module Registers

4.3 Basic Clock Module Registers

The basic clock module registers are listed in Table 4-1:

Table 4-1.Basic Clock Module Registers

Register Short Form Register Type Address Initial State
DCO control register DCOCTL Read/write 056h 056h with PUC
Basic clock system control 1 BCSCTL1 Read/write 057h 084h with PUC
Basic clock system control 2 BCSCTL2 Read/write 058h Reset with POR
SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUC

4-14 Basic Clock Module

Basic Clock Module Registers

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0
DCOx MODx
rw—0 rw—1 rw—1 rw—0 rw—0 rw—0 rw—0 rw—0
DCOx Bits DCO frequency select. These bits select which of the eight discrete DCO
7-5 frequencies of the RSELXx setting is selected.
MODx Bits Modulator selection. These bits define how often the fpco+1 frequency is
4-0 used within a period of 32 DCOCLK cycles. During the remaining clock

cycles (32—MOD) the fpco frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0
XT20FF XTS DIVAX XT5V RSELx
rw—(1) rw—(0) rw—(0) rw—(0) rw—0 rw—1 rw—0 rw—0
XT20FF Bit 7 XT2 off. This bit turns off the XT2 oscillator
0 XT2is on
1 XT2 is off if it is not used for MCLK or SMCLK.
XTS Bit 6 LFXT1 mode select.
0 Low frequency mode
1 High frequency mode
DIVAX Bits Divider for ACLK
5-4 00 N1
o1 /2
10 /4
11 /8
XT5V Bit 3 Unused. XT5V should always be reset.
RSELXx Bits Resistor Select. The internal resistor is selected in eight different steps.
2-0 The value of the resistor defines the nominal frequency. The lowest

nominal frequency is selected by setting RSELx=0.

Basic Clock Module 4-15

Basic Clock Module Registers

BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0
SELMx DIVMx SELS DIVSx DCOR
rw—(0) rw—(0) rw—(0) rw—(0) rw—0 rw—0 rw—0 rw—0
SELMx Bits Select MCLK. These bits select the MCLK source.
7-6 00 DCOCLK
01 DCOCLK
10 XT2CLK when XT2 present. LFXT1CLK when XT2 not present
11 LFXT1CLK
DIVMx BitS Divider for MCLK
5-4 o0 /1
o1 /2
10 /4
11 /8
SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1 XT2CLK when XT2 present. LFXT1CLK when XT2 not present
DIVSx BitS Divider for SMCLK
2-1 o0 /1
o1 /2
10 /4
11 /8
DCOR Bit 0 DCO resistor select.
0 Internal resistor
1 External resistor
4-16 Basic Clock Module

Basic Clock Module Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
OFIE
rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using Bl S. B or Bl C. Binstructions, rather than MOV. B
or CLR. Binstructions.
0 Interrupt not enabled
1 Interrupt enabled
Bits 0 This bit may be used by other modules. See device-specific datasheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
OFIFG
rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-2
OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using Bl S. B or Bl C. B
instructions, rather than MOV. B or CLR. B instructions.
0 No interrupt pending
1 Interrupt pending
Bits 0 This bit may be used by other modules. See device-specific datasheet.

Basic Clock Module 4-17

4-18 Basic Clock Module

Chapter 5

Flash Memory Controller

This chapter describes the operation of the MSP430 flash memory controller.

Topic Page
5.1 Flash Memory Introduction 5-2
5.2 Flash Memory Segmentation 5-3
5.3 Flash Memory Operationoiiiiiiiiiiiiniinnnn 5-4
5.4 Flash Memory Registers 5-17

5-1

Flash Memory Introduction

5.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three
registers, a timing generator, and a voltage generator to supply program and
erase voltages.

MSP430 flash memory features include:

(1 Internal programming voltage generation
(] Bit, byte or word programmable

[Ultralow-power operation

[Segment erase and mass erase

The block diagram of the flash memory and controller is shown in Figure 5-1.

Note: Minimum V¢ During Flash Write or Erase

The minimum V¢ voltage during a flash write or erase operation is 2.7 V.
If Vcc falls below 2.7 V during a write or erase, the result of the write or erase
will be unpredictable.
L

Figure 5-1. Flash Memory Module Block Diagram

i MAB {T 5
L 1 = 1

FCTL1 Address Latch —» Data Latch
JL JT il 1C
FCTL2 Enable
l L i E Address
Latch
FCTL3 Flash
J\ Memory
|/ Array
Timing
Generator Enable
Data Latch
4
Programming
Voltage
Generator

5-2 Flash Memory Controller

Flash Memory Segmentation

5.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased. Three erase modes provide the ability to
erase a single segment, erase all main segments, or erase all segments (main
and information segments).

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has two 128-byte segments (MSP430x1101 devices
have only one). The main memory has two or more 512-byte segments. See
the device-specific datasheet for the complete memory map of a device.

Figure 5-2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and both information segments.

Figure 5-2. Flash Memory Segments, 4-KB Example

4 KB + 256 byte

FFFFh

FOOOh

10FFh

1000h

Flash Memory

FFFFh Segment0

4-kbyte FEOOh

Flash FDFFh
Main Memory FCOOh Segmentl
Segment2

256-byte
Flash Segment3
information Memoryf

Segment4
Segment5
Segment6
FOOOh Segment7

10FFh
SegmentA
1000h SegmentB

Flash Memory Controller 5-3

Flash Memory Operation

5.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

(1 Byte/word write

[Block write

(1] Segment Erase

(1 Mass Erase (all main memory segments)
[All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

5.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 5-3. The flash timing generator operating frequency, f(,:TG), must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific datasheet).

Figure 5-3. Flash Memory Timing Generator Block Diagram

5-4

ACLK
MCLK
SMCLK
SMCLK

FSSELx
ENG ceeeveevens FNO PUC EMEX
00 T T T T
01 f(FTG) Reset
10 Divider, 1-64
Flash Timing Generator
11

\

BUSY WAIT

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for ferg). If the frg) frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

Flash Memory Controller

Flash Memory Operation

5.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 5-1.

Table 5-1. Erase Modes

MERAS ERASE Erase Mode
0 1 Segment erase
1 0 Mass erase (all main memory segments)
1 1 Erase all flash memory (main and information segments)

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 5-4 shows the erase cycle timing. The BUSY bitis setimmediately after
the dummy write and remains set throughout the erase cycle. BUSY, MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430 devices.

Figure 5-4. Erase Cycle Timing

| \ \ \
\ Erase Operation Active |

Generate Remove
Pro%ramming Voltage Programming Voltage

| Erase Time, V¢ Current Consumption is Increased |

|l »
() !

\
BUSY
—I tall erase) = Y(mass erase) = 5297/f(FTG)f t(segment erase) = 48]-glf(FTG) I—

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Interrupts should be disabled before a flash erase cycle. After the erase cycle
has completed, interrupts may be re-enabled. Any interrupt that occurred
during the erase cycle will have its associated flag set, and will generate an
interrupt request when re-enabled.

Flash Memory Controller 5-5

Flash Memory Operation

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
aflash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution

with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution

will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 5-5.

Figure 5-5. Erase Cycle from Within Flash Memory

5-6

Disable all interrupts and watchdog

v

Setup flash controller and erase

mode

v

Dummy write

v

Set LOCK=1, re-enable Interrupts
and watchdog

; Segnent
; Assunes ACCVIE = NMIE = OFIE = 0.
#WDTPWWDTHOLD, &NDTCTL

MoV
DI NT
MoV
MoV
MoV
CLR
MoV

El NT

Flash Memory Controller

Erase from fl ash.

#FWKEY+FSSEL1+FNO, &FCTL2 ;

#FVKEY, &FCTL3
#FWKEY+ERASE, &FCTL1
&0FC10h

#FWKEY+LOCK, &FCTL3

514 kHz

< SMCLK < 952 kHz

Di sabl e WDT

Disable interrupts
SMCLK/ 2

Cl ear LOCK

Enabl e segnent erase
Dumy wite, erase Sl
Done, set LOCK

Re- enabl e WDT?

Enabl e interrupts

Flash Memory Operation

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If aflash access occurs while BUSY=1, itis an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 5-6.

Figure 5-6. Erase Cycle from Within RAM

Disable all interrupts and watchdog

Setup flash controller and
erase mode

Dummy write

R

Set LOCK =1, re-enable
interrupts and watchdog

; Segnent Erase fromRAM 514 kHz < SMCLK < 952 kHz
: Assunmes ACCVIE = NMIE = OFIE = 0.

MoV #WDTPW-WDTHOLD, &WDTCTL . Di sabl e WDT

DI NT ; Disable interrupts
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MoV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/ 2

MoV #FVWKEY, &FCTL3 ; Cear LOCK

MoV #FWKEY+ERASE, &FCTL1
CLR &0FC10h

; Enabl e erase
; Dummy wite, erase Sl

L2 BIT #BUSY, &FCTL3 ; Test BUSY
JNZ L2 ; Loop while busy
MoV #FWKEY+LOCK, &FCTL3 : Done, set LOCK

: Re-enabl e WDT?

El NT ; Enable interrupts

Flash Memory Controller 5-7

Flash Memory Operation

5.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 5-1.

Table 5-2. Write Modes

Byte/Word Write

BLKWRT WRT Write Mode
0 1 Byte/word write
1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word write mode or block write mode.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 5-7.

Figure 5-7. Byte/Word Write Timing

%

\ >le

e : —— e

Generate Programming Operation Active Remove
Prog%ramming Voltage Programming Voltage

| i o |

‘ Programming Time, Vcc Current Consumption is Increased |

o »

N i

BUSY | |

_ toword write) = 33/f(FTG) L

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

5-8 Flash Memory Controller

Initiating a Byte/Word Write from Within Flash Memory

Flash Memory Operation

The flow to initiate a byte/word write from flash is shown in Figure 5-8.

Figure 5-8. Initiating a Byte/Word Write from Flash

Disable all interrupts and watchdog

v

Setup flash controller

and set WRT=1

v

Write byte or word

v

Set WRT=0, LOCK=1,
re-enable interrupts and watchdog

; Byte/word wite fromflash. 514 kHz < SMCLK < 952 kHz
; Assumes OFF1Eh is already erased

;. Assunes ACCVIE =

MoV
DI NT

NMIE =

OFIE = 0.

#WDTPWWDTHOLD, &WDTCTL ;

#FWKEY+FSSEL1+FNO,

#FVWKEY, &FCTL3
#FWKEY+WRT, &FCTL1

#0123h, &0FF1Eh
#FVWKEY, &FCTL1

&FCTL2 ;

#FWKEY+LOCK, &FCTL3 ;

Di sabl e VDT

Di sable interrupts
SMCLK/ 2

Cl ear LOCK

Enable wite

0123h —> OFF1Eh
Done. C ear WRT
Set LOCK

Re- enabl e WDT?
Enabl e interrupts

Flash Memory Controller

Flash Memory Operation

Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 5-9.

Figure 5-9. Initiating a Byte/Word Write from RAM

Disable all interrupts and watchdog

Setup flash controller
and set WRT=1

Write byte or word

R

Set WRT=0, LOCK =1
re-enable interrupts and watchdog

; Byte/word wite fromRAM 514 kHz < SMCLK < 952 kHz
; Assunes OFF1Eh is already erased
; Assumes ACCVIE = NMIE = OFIE = 0.

MOV #VWDTPWWDTHCOLD, &ADTCTL ; Disable WOT

DI NT ; Disable interrupts
L1 BIT #BUSY, &FCTL3 ; Test BUSY

JNz L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FNO, &FCTL2 ; SMCLK/ 2

MOV #FWKEY, &-CTL3 ; Cear LOCK

MOV #FWKEY+WRT, &FCTL1 ; Enable wite

MOV #0123h, &0FF1Eh ; 0123h —> OFF1Eh
L2 BIT #BUSY, &FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY, &FCTL1 ;. Clear WRT

MOV #FVWKEY+LOCK, &FCTL3 ; Set LOCK

- ;. Re-enabl e WDT?

El NT ; Enable interrupts

5-10 Flash Memory Controller

Flash Memory Operation
Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. A block is 64 bytes, starting
at 0xx00h, 0xx40h, 0xx80h, or OxxCOh, and ending at Oxx3Fh, Oxx7Fh,
0xxBFh, or OxxFFh as shown in Figure 5-10. The flash programming voltage
remains on for the duration of writing the 64-byte block.

Figure 5-10. Flash Memory Blocks

xxFFh
Block
xXCOh
XxFFh xxBFh
80h Block
Flash M XX
ash Memory XX7Fh
Block
xx00h xx40h
xx3Fh
Block
xx00h

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM or ROM only. The BUSY bitremains set throughout
the duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by t(end).
BUSY is cleared following each block write completion indicating the next
block can be written. Figure 5-11 shows the block write timing.

Figure 5-11. Block-Write Cycle Timing

BLKWRT bit

_

Write to Flash e.g., MOV #123h, &Fl ash

v

/L /L ‘
- - |

b e [] \
‘ Generate ‘Programming Operation Actiye | Remove
Programming Voltage ‘ | Pr(%gr%lmmlng Voltage
\ \
|
i
it
\
\
\

a
a

P

\
\ \
\ | | \
Cumulative Programming Tque t(cpT) B=< 3ms, Vcc Current Consumption is Incre seg
/]
\
\
\

vy

BUSY | ; g
\
\

L /.1
7

Yblockwrite, byte0) =30/f(FTG) | | Y(bytes 1-63)= 20/f(FTG)_, | Ybytes1-63)=20/f(FTG)| | Lend)=0/f(FTG)

d
> l

WAIT

A

Flash Memory Controller 5-11

Flash Memory Operation

Block Write Flow and Example

A block write flow is shown in Figure 5-8 and the following example.

Figure 5-12. Block Write Flow

Disable all interrupts and watchdog

Setup flash controller

>
A

Set BLKWRT=WRT=1

>

A

Write byte or word

Block Border?

Set BLKWRT=0

Set WRT=0, LOCK=1
re-enable interrupts and WDT

5-12 Flash Memory Controller

L1

L2
L3

L4

Wite one block starting at OFO0Oh.

Flash Memory Operation

Must be executed from RAM Assunmes Flash is already erased.
514 kHz < SMCLK < 952 kHz

Assunes ACCVI E =

MoV
MoV
MoV
DI NT
BIT

BIT
JINZ

El NT

NMIE =
#32, RS

#0FOOOh, R6
#WDTPWWDTHOLD, &WDTCTL

#BUSY, &FCTL3
L1

#FWKEY+FSSEL1+FNO, &FCTL2

#FWKEY, &FCTL3
#FWKEY+BLKWRT+WRT, &FCTL1
Wite_Val ue, O(R6)
#WAI T, &FCTL3

L3

R6

R5

L2

#FWKEY, &FCTL1
#BUSY, &FCTL3

L4

#FWKEY+LOCK, &FCTL3

OFIE = 0.

1

Flash Memory Controller

Use as wite counter
Wite pointer

Di sabl e WDOT

Di sable interrupts
Test BUSY

Loop whil e busy
SMCLK/ 2

G ear LOCK

Enabl e bl ock wite
Wite location

Test WAI'T

Loop while WAl T=0
Point to next word
Decrenent wite counter
End of bl ock?

Cl ear WRT, BLKWRT

Test BUSY

Loop whil e busy

Set LOCK

Re-enabl e WDOT i f needed
Enabl e interrupts

5-13

Flash Memory Operation

5.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG

interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PCinstruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code

and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 5-3.

Table 5-3. Flash Access While BUSY =1

5-14

Flash Flash WAIT Result
Operation Access
Read 0 ACCVIFG = 1. 03FFFh is the value read
Any erase, or Write 0 ACCVIFG = 1. Write is ignored
Byte/word write Instruction 0 ACCVIFG = 0. CPU fetches 03FFFh. This
fetch is the JIMP PC instruction.
Any 0 ACCVIFG=1,LOCK =1
Read 1 ACCVIFG = 0, 03FFFh is the value read
Block write Write 1 ACCVIFG = 0, Write is ignored
Instruction 1 ACCVIFG=1,LOCK=1
fetch

All interrupt sources should be disabled before initiating any flash operation.
If an enabled interrupt were to occur during a flash operation, the CPU would
fetch 03FFFh as the address of the interrupt service routine. The CPU would
then execute the JMP PCinstruction while BUSY=1. When the flash operation
finished, the CPU would begin executing code at address 03FFFh, not the

correct address for interrupt service routine.

Flash Memory Controller

Flash Memory Operation

5.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

5.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLXx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag and triggers a PUC system reset. Any read of any
FCTLXx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTLL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode when WAIT=0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY=1 is an access violation.

Any FCTLx register may be read when BUSY=1. A read will not cause an
access violation.

5.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

5.3.8 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

(] Program via JTAG
(1 Program via the Bootstrap Loader

(4 Program via a custom solution

Flash Memory Controller 5-15

Flash Memory Operation

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally Vcc and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.ti.com/sc/msp430

Programming Flash Memory via the Bootstrap loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the Application report
Features of the MSP430 Bootstrap Loader at www.ti.com/sc/msp430.

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 5-13. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 5-13. User-Developed Programming Solution

Flash Memory
Commands, data, etc.
UART,
Host 77— MSP430 -1 Px.x, —p] CPU executes |—Pp

<4{ SPl, |« user software |€——

etc.

Read/write flash memory

5-16 Flash Memory Controller

Flash Memory Registers

5.4 Flash Memory Registers

The flash memory registers are listed in Table 5-4.

Table 5-4. Flash Memory Registers

Register Short Form Register Type Address Initial State
Flash memory control register 1 FCTL1 Read/write 0128h 09600h with PUC
Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC
Flash memory control register 3 FCTL3 Read/write 012Ch 09618h with PUC
Interrupt Enable 1 IE1 Read/write 000h Reset with PUC

Flash Memory Controller 5-17

Flash Memory Registers

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0
BLKWRT WRT Reserved Reserved Reserved MERAS ERASE Reserved
rw—0 rw—0 r0 ro r0 rw—0 rw—0 r0
FRKEY/ Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC

FWKEY 15-8 will be generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bits Reserved. Always read as 0.
5-3
MERAS Bit 2 Mass erase and erase. These bits are used together to select the erase mode.
ERASE Bit 1 MERAS and ERASE are automatically reset when EMEX is set.
MERAS ERASE Erase Cycle

0 0 No erase

0 1 Erase individual segment only

1 0 Erase all main memory segments

1 1 Erase all main and information memory segments

Reserved Bit 0 Reserved. Always read as 0.

5-18 Flash Memory Controller

Flash Memory Registers

FCTL2, Flash Memory Control Register

15 14 13 12 1 10 9 8
FWKEYX, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
FSSELx FNx
rw-0 rw—1 rw-0 rw-0 rw-0 rw—0 rw-1 rw-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.
FSSELx Bits Flash controller clock source select
7—6 00 ACLK
01 MCLK
10 SMCLK
11 SMCLK
FNx Bits Flash controller clock divider. These six bits select the divider for the flash
5-0 controller clock. The divisor value is FNx + 1. For example, when FNx=00h,

the divisor is 1. When FNx=02Fh the divisor is 64.

Flash Memory Controller 5-19

Flash Memory Registers

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 1 10 9 8
FWKEYx, Read as 096h
Must be written as 0A5h
7 6 5 4 3 2 1 0
Reserved Reserved EMEX LOCK WAIT ACCVIFG KEYV BUSY
r0 r0 rw-0 rw-1 r-1 rw—0 rw-(0) r(w)-0
FWKEYx Bits FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
15-8 will be generated.
Reserved Bits Reserved. Always read as O.
7-6
EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit
LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block write mode if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.
0 Unlocked
1 Locked
WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write
ACCVIFG Bit 2 Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending
KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly
BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.

5-20

0 Not Busy
1 Busy

Flash Memory Controller

Flash Memory Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
ACCVIE
rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6,
4-0
ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the

ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using Bl S. B or Bl C. Binstructions,
rather than MOV. B or CLR. B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Flash Memory Controller 5-21

5-22 Flash Memory Controller

Chapter 6

Supply Voltage Supervisor

This chapter describes the operation of the SVS. The SVS is implemented in
MSP430x15x and MSP430x16x devices.

Topic Page
6.1 SVSINtroduCtion i 6-2
6.2 SVS Operationt 6-4
6.3 SVS REQISIEIS ...t 6—7

6-1

SVS Introduction

6.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AV supply
voltage or an external voltage. The SVS can be configured to set a flag or
generate a POR reset when the supply voltage or external voltage drops below
a user-selected threshold.

The SVS features include:

AV monitoring

Selectable generation of POR

Output of SVS comparator accessible by software
Low-voltage condition latched and accessible by software

14 selectable threshold levels

I Iy Iy N N

External channel to monitor external voltage

The SVS block diagram is shown in Figure 6-1.

Supply Voltage Supervisor

Figure 6-1. SVS Block Diagram

'\ NMI
> Py lﬂ-/ i
D &: L Tau ~ 50ns
J G
S <
o vCe
S G TCK vce |
VCC D Brownout
G,ls Reset o

P6.7/IA7

tReset ~ 50us

SVS Introduction

Set POR

D> Ee o

; svsout
>
0010 105V
0001 @
//
D
G |S
A
N
Set SVSFG
®
! ! ! Reset
VLD PORON | SVSON | SVSOP | SVSFG
| | | SVSCTL Bits

Supply Voltage Supervisor 6-3

SVS Operation

6.2 SVS Operation

The SVS detects if the AV voltage drops below a selectable level. It can be
configured to provide a POR or set a flag, when a low-voltage condition occurs.
The SVS is disabled after a POR to conserve current consumption.

6.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(sys_j1-)) for comparison with AVcc, The SVSis off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSin channel is selected. The voltage on
SVSin is compared to an internal level of approximately 1.2 V.

6.2.2 SVS Comparator Operation

A low-voltage condition exists when AV drops below the selected threshold
or when the external voltage drops below its 1.2-V threshold. Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON = 0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still present when SVSFG is reset,
it will be immediately set again by the SVS.

6-4 Supply Voltage Supervisor

SVS Operation

6.2.3 Changing the VLDx Bits

When the VLDx bits are changed, two settling delays are implemented to
allows the SVS circuitry to settle. During each delay, the SVS will not set
SVSFG. The delays, tg(svson) and tsettle, are shown in Figure 6-2. The
t4(svson) delay takes affect when VLDx is changed from zero to any non-zero
value and is a approximately 50 ps. The tgeiije delay takes affect when the
VLDx bits change from any non-zero value to any other non-zero value and
is a maximum of ~12 ps. See the device-specific datasheet for the delay
parameters.

During the delays, the SVS will not flag a low-voltage condition or reset the
device, and the SVSON bit is cleared. Software can test the SVSON bit to
determine when the delay has elapsed and the SVS is monitoring the voltage

properly.

Figure 6-2. SVSON state When Changing VLDx

VLDx

SVSON

15
14

((

o P N W b

0

t

|
|
d(SVSon)

o>

\
\
\
\
15 | 3 |
| \ VLD vs Time
\ \
\ \

tsettle tsettle tsettle

>
|
|

[

a

Supply Voltage Supervisor 6-5

SVS Operation

6.2.4 SVS Operating Range

Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AV is close to the threshold. The SVS operation and
SVS/Brownout interoperation are shown in Figure 6-3.

Figure 6-3. Operating Levels for SVS and Brownout/Reset Circuit

A Software Sets VLD>0
AVCC —————————————
_ Whyssvs T /7 N _ N N _
Vsvs IT-) | = s WSEVSITA — 2 - - - oo oS g ooo-ooo S S ——— =
svsstart) _{Vhys(B 7 B O e O e @
V(B_IT—) $::: A A A S SR S DY o<
\CC(start) "" VO AR
Brown- >
< Bt g]
Brownout Region
1 T
0 +— —1
t t
SVSout d(BOR) <«—— SVSCircuit Actve — —» d(BOR)
1 T M|
0 I I -
[>y "
d(SVSon !
Set POR () | Lid(svsR)
1 — — — —
0 >
|
undefined

6-6 Supply Voltage Supervisor

SVS Registers

6.3 SVS Registers

The SVS registers are listed in Table 6-1.

Table 6-1. SVS Registers

Register Short Form Register Type Address Initial State
SVS Control Register SVSCTL Read/write 050h Reset with POR
SVSCTL, SVS Control Register
7 6 5 4 3 2 1 0
VLDx PORON SVSON SVSOP SVSFG
rw—0 rw—0 rw—0 rw—0 rw—0 r r rw—0
VLDx Bits Voltage level detect. These bits turn on the SVS and select the nominal SVS
7-4 threshold voltage level. See the device—specific datasheet for parameters.
0000 SVSiis off
0001 19V
0010 2.1V
0011 2.2V
0100 2.3V
0101 24V
0110 25V
0111 265V
1000 2.8V
1001 29V
1010 3.05
1011 3.2V
1100 3.35V
1101 35V
1110 3.7V
1111 Compares external input voltage SVSinto 1.2 V.
PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR
SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVSis On
SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.
0 SVS comparator output is high
1 SVS comparator output is low
SVSFG Bit 0 SVSflag. This bit indicates a low voltage condition. SVSFG remains set after

a low voltage condition until reset by software.
0 No low voltage condition occurred
1 A low condition is preset or has occurred

Supply Voltage Supervisor 6-7

Supply Voltage Supervisor

Chapter 7

Hardware Multiplier

This chapter describes the hardware multiplier. The hardware multiplier is
implemented in MSP430x14x and MSP430x16x devices.

Topic Page
7.1 Hardware Multiplier Introduction 7-2
7.2 Hardware Multiplier Operationot 7-3
7.3 Hardware Multiplier Registers 7-7

7-1

Hardware Multiplier Introduction

7.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
This means, its activities do not interfere with the CPU activities. The multiplier
registers are peripheral registers that are loaded and read with CPU

instructions.

The hardware multiplier supports:

J
-
a
-
-

Unsigned multiply

Signed multiply

Unsigned multiply accumulate

Signed multiply accumulate

16 x16 bits, 16 x8 bits, 8 x16 bits, 8x8 bits

The hardware multiplier block diagram is shown in Figure 7-1.

Figure 7—1. Hardware Multiplier Block Diagram

7-2

15

'w

MPY 130h

MPYS 132h

15

'w

MAC 134h

> OP1

OP2 138h

MACS 136h

~~

~~

Accessible
Register

MPY = 0000

16 x 16 Multipiler

MACS MPYS

MAC

\ Multiplexer /

iﬁ

N

32-bit Adder

/

MPY, MPYS

N~

32-bit Multiplexer

SUMEXT 13Eh

N~

<| |7MAC, MACS

15

r

S RESHI 13Ch

RESLO 13Ah

Hardware Multiplier

w

w

Hardware Multiplier Operation

7.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2. and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result can be read with the next
instruction after writing to OP2, except when using an indirect addressing
mode.

7.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 7-1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 7-1.OP1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate
0136h MACS Signed multiply accumulate.

Hardware Multiplier 7-3

Hardware Multiplier Operation

7.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on the multiply operation and
are listed in Table 7-2.

Table 7-2. RESHI Contents

Mode

RESHI Contents

MPY

MPYS

MAC

MACS

Upper 16-bits of the result

The MSB is the sign of the result. The remaining bits are the
upper 15-bits of the result. Two’s complement notation is used
for the result.

Upper 16-bits of the result

Upper 16-bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 7-3.

Table 7-3. SUMEXT Contents

MACS Underflow and Overflow

7-4

Mode

SUMEXT

MPY
MPYS

MAC

MACS

SUMEXT is always 0000h

SUMEXT contains the extended sign of the result
00000h Result was positive
OFFFFh Result was negative

SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

SUMEXT contains the extended sign of the result
00000h Result was positive
OFFFFh Result was negative

The multiplier does not automatically detect underflow or overflow in the
MACS mode. The accumulator range for positive numbersis 0 to 7FFF FFFFh
and for negative numbers is OFFFF FFFFh to 8000 0000h. An overflow occurs
when the sum of two negative numbers yields a result that is in the range for
a positive number. An underflow occurs when the sum of two positive numbers
yields aresultthatis in the range for a negative number. In both of these cases,
the SUMEXT register contains the correct sign of the result, OFFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.

Hardware Multiplier

Hardware Multiplier Operation

7.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

16x16 Unsigned Miultiply
MoV #01234h, &WPY ; Load first operand
MOV #05678h, &0OP2 ; Load second operand
: Process results

8x8 Unsigned Multiply. Absolute addressing.
MOV. B #012h, &0130h ; Load first operand
MOV. B #034h, &0138h ; Load 2nd operand
; Process results

16x16 Signed Multiply
MoV #01234h, &WPYS ; Load first operand
MoV #05678h, &OP2 ; Load 2nd oper and
: Process results

8x8 Signed Multiply. Absolute addressing.
MOV. B #012h, &0132h ; Load first operand

SXT &VPYS ; Sign extend first operand
MOV. B #034h, &0138h ; Load 2nd operand
SXT &0OP2 ; Sign extend 2nd operand

; (triggers 2nd multiplication)
; Process results

16x16 Unsigned Multiply Accunul ate
MoV #01234h, &VAC; Load first operand
MOV #05678h, &OP2 ; Load 2nd oper and
; Process results

8x8 Unsigned Multiply Accunul ate. Absol ute addressing
MOV. B #012h, &0134h ; Load first operand
MOV. B #034h, &0138h ; Load 2nd operand
; Process results

16x16 Signed Multiply Accumul ate
MoV #01234h, &VACS ; Load first operand
MoV #05678h, &OP2 ; Load 2nd operand
: Process results

8x8 Signed Multiply Accunul ate. Absol ute addressing
MOV. B #012h, &0136h ; Load first operand

SXT &VACS ; Sign extend first operand

MOV. B #034h, R5 ; Tenp. location for 2nd operand
SXT R5 ; Sign extend 2nd operand

MoV R5, &0OP2 ; Load 2nd operand

; Process results

Hardware Multiplier 7-5

Hardware Multiplier Operation

7.2.4

Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the
result registers, Atleast one instruction is needed between loading the second
operand and accessing one of the result registers:

; Access multiplier results with indirect addressing
RESLO address in R5 for indirect

MoV #RESLO, R5 ;
MOV &OPER1, &VPY ;
MOV &OPER2, &OP2
MOV @R5+, XXX ;
MOV @r5, &xxx ;

7.2.5 Using Interrupts

7-6

Load
Load
Need
Move
Move

1st operand
2nd oper and
one cycle
RESLO

RESHI

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in

interrupt service routines.

; Disable interrupts before using the hardware nultiplier
DI NT ; Disable interrupts
NOP ; Required for DINT
MoV #xxh, &WPY; Load 1st operand
MoV #xxh, &OP2 ; Load 2nd operand

El NT

; Interrupts may be enabl e before

: Process results

Hardware Multiplier

7.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 7—4.

Table 7—4.Hardware Multiplier Registers

Hardware Multiplier Registers

Register Short Form Register Type Address Initial State
Operand one — multiply MPY Read/write 0130h Unchanged
Operand one - signed multiply MPYS Read/write 0132h Unchanged
Operand one - multiply accumulate MAC Read/write 0134h Unchanged
Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged
Operand two OP2 Read/write 0138h Unchanged
Result low word RESLO Read/write 013Ah Undefined
Result high word RESHI Read/write 013Ch Undefined
Sum Extension register SUMEXT Read 013Eh Undefined

Hardware Multiplier

7-8 Hardware Multiplier

Chapter 8

DMA Controller

The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller. The DMA controller is implemented in MSP430x15x and
MSP430x16x devices.

Topic Page
8.1 DMA INtroducCtiont 8-2
8.2 DMA Operationiiit 8-4
8.3 DMA REQISIEIS . oottt 8-12

8-1

DMA Introduction

8.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

Three independent transfer channels

Configurable DMA channel priorities

Requires only two MCLK clock cycles

Byte or word and mixed byte/word transfer capability
Block sizes up to 65535 bytes or words
Configurable transfer trigger selections

Selectable edge or level-triggered transfer

Four transfer-addressing modes

Iy Iy Iy Ny I

Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 8-1.

DMA Controller

Figure 8—-1. DMA Controller Block Diagram

DMAOTSELX
4

DMAREQ —]0000
TACCR2_CCIFG —|0001
TBCCR2_CCIFG —|0010

12C Receive Ready —] 0011
12C Transmit Ready —]0100
DAC12_0OIFG — 0101
ADC12_IFGx — 0110

DMA2IFG —]1110
DMAEO —1111

L~

DMAILTSELXx

4

DMAREQ —]0000
TACCR2_CCIFG —|0001
TBCCR2_CCIFG —|0010

12C Receive Ready —] 0011
12C Transmit Ready —]0100
DAC12_0OIFG — 0101
ADC12_IFGx — 0110

DMAOIFG —]1110
DMAEO —{1111

DMA2TSELX
4

DMAREQ —{0000
TACCR2_CCIFG —]0001
TBCCR2_CCIFG —|0010

12C Receive Ready —] 0011
I12C Transmit Ready —]0100
DAC12_OIFG — 0101
ADC12_IFGx —] 0110

DMALIFG —]1110
DMAEO —{1111

Halt

|onuod puy Alold YING

—& ROUNDROBIN

DMADSTINCRx DMADTX
2 r- DMADSTBYTE 13

DMA Channel 0

DMAOSA

DMAODA]

DMAOSZ

2 Ll DMASRSBYTE L
DMASRCINCRx DMAEN

DMADSTINCRx DMADTXx
2 T. DMADSTBYTE 13

DMA Channel 1

DMALSA

DMA1DA

DMA1SZ

2 Ll DMASRSBYTE L
DMASRCINCRx DMAEN

DMADSTINCRx DMADTX
5 l—l DMADSTBYTE 13

DMA Channel 2

DMA2SA

.>
—»
.>

DMA2DA -

DMA2SZ

2 t La DMASRSBYTE 4
DMASRCINCRx DMAEN

—& DMAONFETCH

1, Halt CPU

DMA Introduction

JTAG Active

—¢— NMI Interrupt Request
—& ENNMI

Address
Space

DMA Controller

8-3

DMA Operation

8.2 DMA Operation

The DMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

8.2.1 DMA Addressing Modes

The DMA controller has four transfer addressing modes shown in Figure 8-2:

[Fixed address to fixed address
(] Fixed address to block of addresses
(] Block of addresses to fixed address

[Block of addresses to block of addresses

The transfer-addressing mode for each DMA channel is independently
configurable. For example, channel 0 may transfer between two fixed
addresses, while channel 1 transfers between two blocks of addresses.

The DMA addressing modes are configured with the DMASRCINCR and
DMADSTINCR control bits. The DMASRCINCR bit selects if the DMA source
address (DMAXSA) is incremented, decremented, or unchanged after each
DMA transfer. The DMADSTINCR bit selects if the DMA destination address
(DMAXDA) is incremented, decremented, or unchanged after each DMA
transfer.

DMA transfers may be byte-to-byte, word-to-word, byte-to-word, or
word-to-byte. When transferring word-to-byte, only the lower byte of the
source-word transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

8-4 DMA Controller

Figure 8-2. DMA Addressing Modes

—

DMA
Controller

Address Space

DMA Operation

—

DMA
Controller

R

Fixed Address to Fixed Address

—

DMA
Controller

Address Space

Address Space

.

Fixed address to block addresses

—

DMA
Controller

I

Block Addresses to Fixed Address

Address Space

L

Block Addresses to Block Addresses

DMA Controller

8-5

DMA Operation

8.2.2 DMA Transfer Modes

Single Transfer

The DMA controller has six transfer modes:

Single transfer

Block transfer
Burst-block transfer
Repeated single transfers

Repeated block transfers

U UoUudod

Repeated burst-block transfers

Each DMA channel can be individually configurable for its transfer mode with
the corresponding DMADTX bits. For example, channel 0 may be configured
in single transfer mode, while channel 1 is configured for burst-block transfer
mode, and channel 2 operates in repeated block mode. The DMA transfer
mode is configured independently from the DMA addressing mode. Any DMA
addressing mode can be used with any DMA transfer mode.

The DMA state diagram is shown in Figure 8-3.

When a DMA channel is configured in single transfer mode, each byte/word
transfer requires a separate trigger. Setting DMADTx = 0 configures single
transfer mode. When DMADTx = 0, the DMAEN bit is cleared after each
transfer and must be set again for another transfer to occur. Setting DMADTXx
= 4 configures repeated single transfer mode. When DMADTX = 4, the DMA
controller remains enabled with DMAEN = 1, and a DMA transfer occurs every
time a trigger occurs.

The DMAXSZ register contains the number of transfers to be made. If DMAXSZ
= 0, not transfers occur. The DMAXSZ register is copied into a temporary
register and decrements with every transfer. When the DMAXSZ register
decrements to zero it is reloaded from its temporary register and the
corresponding DMAIFG flag is set.

8-6 DMA Controller

Block Transfers

DMA Operation

In block mode, a transfer of a complete block of data occurs after just one
trigger. Setting DMADTx = 1 configures block transfer mode. When
DMADTx = 1, the DMAEN bit is cleared after the completion of the block
transfer and must be set again before another block transfer can be triggered.
After a DMA block transfer has been triggered, further trigger signals occurring
during the block transfer are ignored.

Setting DMADTx = 5 configures repeated block transfer mode. When
DMADTx =5, the DMAEN bit remains set after completion of the block transfer.
The next trigger after the completion of a repeated block transfer triggers
another block transfer.

The DMAXSZ register is used to define the size of the block and the
DMADSTINCR and DMASRCINCR bits select if the DMA destination address
(DMAXDA) and the DMA source address (DMAXSA) are incremented or
decremented after each transfer of the block.

During a block or repeated block transfer, the DMAxSA, DMAXDA, and
DMAXSZ registers are copied into temporary registers. The temporary values
of DMAXSA and DMAXDA are incremented or decremented after each transfer
in the block. The DMAXSZ register is decremented after each transfer of the
block and shows the number of transfers remaining in the block. When the
DMAXSZ register decrements to zero it is reloaded from its temporary register
and the corresponding DMAIFG flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAXSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

Burst-Block Transfers

Burst-block transfers are block transfers with CPU activity interleaved. In
burst-block mode, the CPU executes 2 MCLK cycles after every four
byte/word transfers of the block. During a burst-block transfer, the CPU
executes at 20% capacity. Setting DMADT = {2,3}, configures the burst-block
mode. After the burst-block, CPU execution resumes at 100% capacity, the
DMAEN bit is cleared. DMAEN must be set again before another burst-block
transfer can be triggered. After a DMA burst-block transfer has been triggered,
further trigger signals occurring during the burst-block transfer are ignored.

Setting DMADT = {6,7} configures repeated burst-block mode. When
DMADTx = {6, 7}, the DMAEN bit remains set after completion of the
burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the DMA transfers must
be stopped by by clearing the DMAEN bit, or by an NMI interrupt when ENNMI
is set. In repeated burst-block mode the CPU executes at 20% capacity
continuously until the repeated burst-block transfer is stopped.

DMA Controller 8-7

DMA Operation

Figure 8-3. DMA State Diagram

DMAEN =0

DMAEN =0
DMAREQ = 0 bt
DMAXSZ — T_Size &
DMAXSA - T_SourceAdd <§f
DMAXDA — T_DestAdd 3
DMAABORT =1
© — Idle
1 o
zZ 1
¢ g DMAREQ =0
s 3 ~ T _Size — DMAXSZ
o = DMAABORT=0 DMAXSA . T_SourceAdd [€
o g DMAXDA - T_DestAdd X ~
el < O = —
ol = . . Sl
N I Wait for Trigger A WO 5
- | N Il <
5| & A~
sl > (0Z
i Y _ =<,
= Ty [+Trigger AND DMALEVEL = 0] 5zZ2
2| 2 o g g2
= - rigger=1 AND DMALEVEL=1 5
5 & 2 x MCLK [Trigg] 09
% — nn D‘)
c = =
< g Hold CPU, ’ 20Z
I @ Transfer one word/byte W W S s %
N = o [alya)
%] z) =
4 O A
< 2 =N
= z <N .
0, < o T_Size — DMAXSZ
| < DMAXSA — T_SourceAdd
s < 0 DMAXDA - T_DestAdd
z y Z0
0z
Z =z
= Decrement DMAXSZ)
Modify T_SourceAddt
Modify T_DestAdd
= =
.0 = o
[[DMADT = {2,3} AND DMAXSZ > 0] o A EAN
OR DMADT = {6,7}] T n g
AND a multiple of 4 words/bytes '5 ag = <
<= os
were transferred <§z) <3
y B¢ = [y
2 x MCLK o< <
Burst State Y, J

(release CPU for 2xMCLK)

T The temporary registers are incremented or decremented, depending on the DMASRCINCR and DMADSTINCR bits.
The DMADSTBYTE and DMASRCBYTE bits determine if they are incremented/decremented by one byte or word.
¥ Once started, the burst-block mode operates continuously until the DMAEN bit is reset. No additional trigger events

are required.

8-8 DMA Controller

8.2.3 Initiating DMA Transfers

DMA Operation

DMA transfers are initiated from software or hardware and are described in
Table 8-1. Each DMA channel is independently configured for its trigger
source with the DMAXTSELX bits.

Table 8-1. DMA Trigger Sources

DMAX

TSELx DMA Trigger

Trigger Action

0000

0001

0010

0011

0100

0101

0110

0111
-1101

1110

1111

DMAREQ

TACCR2
CCIFG

TBCCR2
CCIFG

12C data
received

I2C transmit
ready

DAC12 0
DACI2IFG

ADC12IFGx

No Trigger

DMAXIFG

DMAEO

Setting the DMAREQ bit triggers a DMA transfer.
DMAREQ is automatically reset when the DMA transfer
starts.

A DMA transfer is triggered when the TACCR2 CCIFG
flag is set. TACCR2 CCIFG is automatically reset when
the DMA transfer starts.

A DMA transfer is triggered when the TBCCR2 CCIFG
flag is set. The TBCCR2 CCIFG is automatically reset
when the DMA transfer starts.

A DMA transfer is triggered when the 12C module
receives new data. The DMA trigger is the condition, not
the RXRDYIFG flag. RXRDYIFG is not cleared when the
DMA transfer starts, and setting RXRDYIFG with
software will not trigger a DMA transfer.

A DMA transfer is triggered when the 12C module is
ready to transmit new data. The DMA trigger is the
condition, not the TXRDYIFG flag. TXRDYIFG is not
cleared when the DMA transfer starts, and setting
TXRDYIFG with software will not trigger a DMA transfer.

A DMA transfer is triggered when the DAC12_0
DACI12IFG flag is set. The DAC12_0 DAC12IFG flag is
automatically cleared when the DMA transfer starts.

A DMA transfer is triggered when ADC12IFGx is set.
The ADC12IFGx flag is automatically selected by
the ADC12 configuration. When the ADC12
performs a single or repeated conversion on a
single channel, the ADC12IFGx flag for conversion
is the DMA trigger. When the ADC12 performs a
single or repeated sequence of conversions, the
ADC12IFGx for the last conversion in the
sequence is the DMA trigger. ADC12IFGx flags are
not automatically reset when a DMA transfer starts.
All ADC12IFGx flags are automatically reset when
the corresponding ADC12MEMX register is
accessed, either by software or by the DMA
controller.

No DMA transfers triggered

DMAOIFG triggers DMA channel 1. DMALIFG triggers
DMA channel 2. DMAZ2IFG triggers DMA channel 0.
None of the DMAXIFG flags are automatically reset
when the DMA transfer starts.

External trigger DMAEO

DMA Controller 8-9

DMA Operation

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfer mode, each DMA
transfer requires its own trigger. When using block or burst-block modes, only
one trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL =1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can used only be used when external trigger DMAEO
is selected as the DMA trigger.

When DMALEVEL = 1, DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set. DMA transfer modes DMADTX
={0, 1, 2, 3} are recommended when DMALEVEL = 1 because the DMAEN
bit is automatically reset after the configured DMA transfer.

When DMALEVEL = 1, the trigger signal must remain high for a block or
burst-block transfer to complete. If the trigger signal goes low during a block
or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If
the DMA registers are not modified by software, when trigger signal goes high
again, the transfer resumes from where it was when the trigger signal went low.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the DMA
transfer begins when a DMA trigger is received. When DMAONFETCH =1,
the CPU finishes the currently executing instruction before the DMA controller
halts the CPU and the DMA transfer begins.

8-10 DMA Controller

DMA Operation

8.2.4 Stopping DMA Transfers
There are two ways to stop DMA transfers in progress:

(1 Asingle, block, or burst-block DMA transfer may be stopped with an NMI
interrupt, if the ENNMI bit is set in register DMACTL1.

[A burst-block transfer may be stopped by clearing the DMAEN bit.

8.2.5 DMA Channel Priorities

The default DMA channel priorities are DMAO-DMA1-DMAZ2. If two or three
DMA triggers happen simultaneously or are pending, the channel with the
highest priority completes its DMA transfer (single, block or burst-block
transfer) first, then the second priority channel, then the third priority channel.
DMA transfers in progress are not halted if a higher priority DMA channel is
triggered. The higher priority channel waits until the DMA transfer in progress
completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit.
When the ROUNDROBIN bitis set, the channel that completes a DMA transfer
becomes the lowest priority. The order of the priority of the DMA channels
always stays the same, DMAO-DMA1-DMAZ2, for example:

DMA Priority Transfer Occurs New DMA Priority
DMAO — DMA1 — DMA2 DMAl DMA2 — DMAO — DMA1
DMA2 - DMAO — DMA1 DMA2 DMAO — DMA1 — DMA2
DMAO — DMA1 — DMA2 DMAO DMA1 - DMA2 — DMAO

When the ROUNDROBIN bit is cleared the DMA priority returns to the default
priority.

DMA Controller 8-11

DMA Operation

8.2.6 DMA Transfer Cycle Time

The DMA requires one or two MCLK clock cycles to synchronize before each
single transfer or complete block or burst-block transfer. Each byte/word
transfer requires two MCLK cycles after synchronization, and one cycle of wait
time after the transfer. Because the DMA uses MCLK, the DMA cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DMA will use the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DMA will temporarily restart MCLK, sourced with DCOCLK, for the
single transfer or complete block or burst-block transfer. The CPU remains off,
and after the transfer completes, MCLK is turned off. The maximum DMA cycle
time for all operating modes is show in Table 8-2.

Table 8-2. Maximum DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time
Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 6 pst

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM3 ~ MCLK=LFXT1CLK 5 MCLK cycles
Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 6 pst

T The additional 6 ys are needed to startthe DCOCLK. Itis the t(LPMx) Parameterinthe datasheet.

8-12 DMA Controller

DMA Operation

8.2.7 Using DMA with System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts
remain pending until the completion of the DMA transfer. NMI interrupts can
interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA events. If an
interrupt service routine or other routine must execute with no interruptions,
the DMA controller should be disabled prior to executing the routine.

8.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any
mode, when the corresponding DMAXSZ register counts to zero. If the corre-
sponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and the
interrupt vector is shared with the DAC12 module. Software must check the
DMAIFG and DAC12IFG flags to determine the source of the interrupt. The
DMAIFG flags are not reset automatically and must be reset by software.

DMA Controller 8-13

DMA Registers

8.3 DMA Registers

The DMA registers are listed in Table 8-3:

Table 8-3. DMA Registers

Register Short Form Register Type Address Initial State
DMA control 0 DMACTLO Read/write 0122h Reset with POR
DMA control 1 DMACTL1 Read/write 0124h Reset with POR
DMA channel 0 control DMAOCTL Read/write 01EOh Reset with POR
DMA channel 0 source address DMAOSA Read/write 01E2h Unchanged
DMA channel 0 destination address DMAODA Read/write 01E4h Unchanged
DMA channel 0 transfer size DMAO0SZ Read/write 01E6h Unchanged
DMA channel 1 control DMA1CTL Read/write 01E8h Reset with POR
DMA channel 1 source address DMA1SA Read/write 01EAh Unchanged
DMA channel 1 destination address DMA1DA Read/write 01ECh Unchanged
DMA channel 1 transfer size DMA1SZ Read/write 01EEh Unchanged
DMA channel 2 control DMA2CTL Read/write 01FOh Reset with POR
DMA channel 2 source address DMA2SA Read/write 01F2h Unchanged
DMA channel 2 destination address DMA2DA Read/write 01F4h Unchanged
DMA channel 2 transfer size DMA2SZ Read/write 01F6h Unchanged

8-14 DMA Controller

DMA Registers

DMACTLO, DMA Control Register O

15

14

13 12 11 10 9 8

Reserved DMA2TSELX

rw—(0)

rw—(0)

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

DMALTSELXx DMAOTSELXx

rw—(0)

Reserved

DMA2
TSELX

DMA1
TSELX

DMAO
TSELX

rw—(0)

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

Bits Reserved

15-12

Bits DMA
11-8 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

trigger select. These bits select the DMA transfer trigger.
DMAREQ bit (software trigger)
Timer_A CCR2 output
Timer_B CCR2 output
I2C receive ready
I2C transmit ready
DAC12_0CTL DAC12IFG bit
ADC12 ADC12IFGx
No action
No action
No action
No action
No action
No action
No action
DMAOIFG bit triggers DMA channel 1
DMALIFG bit triggers DMA channel 2
DMAZ2IFG bit trigger DMA channel O
External trigger DMAEO

Bits Same as DMA2TSELX

7-4

Bits Same as DMA2TSELXx

DMA Controller 8-15

DMA Registers

DMACTL1, DMA Control Register 1

15 14 13 12 1 10 9 8
0 0 0 0 0 0 0 0
ro r0 r0 ro ro r0 ro ro
7 6 5 4 3 2 1 0
DMA ROUND
0 0 0 0 0 ONFETCH | ROBIN v NMI
r0 r0 r0 r0 r0 rw—(0) rw—(0) rw—(0)
Reserved Bits Reserved. Read only. Always read as O.
15-3
DMA Bit 2 DMA on fetch
ONFETCH 0 The DMA transfer occurs immediately
1 The DMA transfer occurs on next instruction fetch after the trigger
ROUND Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
ROBIN 0 DMA channel priority is DMAO — DMA1 — DMA2
1 DMA channel priority changes with each transfer
ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI

8-16

interrupt. When NMI interrupts a DMA transfer, the current transfer is
completed normally further transfers are stopped and DMAABORT is set.

0 NMI interrupt does not interrupt DMA transfer.

1 NMI interrupt interrupts a DMA transfer.

DMA Controller

DMA Registers

DMAXCTL, DMA Channel x Control Register

15 14 13 12 1 10 9 8
Reserved DMADTX DMADSTINCRx DMASRCINCRXx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
DMA DMA DMA
DSTBYTE | srceyTE | DMALEVEL | DMAEN DMAIFG DMAIE ABORT DMAREQ
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
Reserved Bit15 Reserved
DMADTXx Bits DMA Transfer mode.
14-12 000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer
DMA Bits DMA destination increment. This bit selects automatic incrementing or
DSTINCRx 11-10 decrementing of the destination address after each byte or word transfer.
When DMADSTBYTE=1, the destination address increments by one. When
DMADSTBYTE=0, the destination address increments by two. The DMAXDA
is copied into a temporary register and the temporary register is incremented
or decremented. DMAXDA is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented
DMA Bits DMA source increment. This bit selects automatic incrementing or
SRCINCRx 9-8 decrementing of the source address for each byte or word transfer. When
DMASRCBYTE=1, the source address increments by one. When
DMASRCBYTE=0, the source address increments by two. The DMAXSA is
copied into a temporary register and the temporary register is incremented or
decremented. DMAXSA is not incremented or decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented
DMA Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
DSTBYTE 0 Word

1 Byte

DMA Controller 8-17

DMA Registers

DMA Bit 6 DMA source byte. This bit selects the source as a byte or word.
SRCBYTE 0 Word
1 Byte
DMA Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive
LEVEL triggers.
0 Edge sensitive
1 Level sensitive
DMAEN Bit 4 DMA enable
0 Disabled
1 Enabled
DMAIFG Bit 3 DMA interrupt flag
0 No interrupt pending
1 Interrupt pending
DMAIE Bit 2 DMA interrupt enable.
0 Disabled
1 Enabled.
DMA Bit 1 DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.
ABORT 0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI
DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is Reset
automatically.
0 No DMA start
1 Start DMA
DMAXSA, DMA Source Address Register
15 14 13 12 1 10 9 8
DMAXSAX
rw rw w rw rw w rw rw
7 6 5 4 3 2 1 0
DMAXSAX
rw rw w rw rw w rw rw
DMAXSAXx Bits DMA source address. The source address register points to the DMA source
15-0 address for single transfers or the first source address for block transfers. The

8-18

source address register remains unchanged during block and burst-block
transfers.

DMA Controller

DMAXDA, DMA Destination Address Register

DMA Registers

15 14 13 12 11 10 9 8
DMAXDAX

rw rw rw rw w rw rw rw

7 6 5 4 3 2 1 0
DMAXDAX

rw rw rw rw rw rw rw rw

DMAxDAX Bits
15-0

DMA destination address. The destination address register points to the
destination address for single transfers or the first address for block transfers.
The DMAXDA register remains unchanged during block and burst-block

transfers.

DMAXSZ, DMA Size Address Register

15 14 13 12 11 10 9 8
DMAXSZx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0
DMAXSZx

rw rw rw rw w rw rw rw

DMAXSZx Bits
15-0

DMA size. The DMA size register defines the number of data per block
transfer. DMAXSZ register decrements with each word or byte transfer. When
DMAXSZ decrements to 0, it is immediately and automatically reloaded with

its previously initialized value.
00000h Transfer is disabled

00001h One byte or word is transferred

00002h Two bytes or words are transferred

OFFFFh 65535 bytes or words are transferred

DMA Controller

8-19

8-20 DMA Controller

Chapter 9

Digital /O

This chapter describes the operation of the digital 1/0 ports. Ports P1-P2 are
implemented in MSP430x11xx devices. Ports P1-P3 are implemented in
MSP430x12xx devices. Ports P1-P6 are implemented in MSP430x13x,
MSP430x14x, MSP430x15x, and MSP430x16x devices.

Topic Page
9.1 Digital /O Introduction i 9-2
9.2 Digital /O Operation ...ttt 9-3
9.3 Digital O RegQISterst 9-7

9-1

Digital I/0O Introduction

9.1 Digital I/O Introduction

Digital /0

MSP430 devices have up to 6 digital I/O ports implemented, P1 - P6. Each port
has eight I/0 pins. Every I/O pin is individually configurable for input or output
direction, and each /O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 1/0
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 1/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

(1 Independently programmable individual 1/0s
[0 Any combination of input or output

1 Individually configurable P1 and P2 interrupts
U

Independent input and output data registers

Digital 1/0O Operation

9.2 Digital I/0O Operation

The digital I/O is configured with user software. The setup and operation of the
digital 1/0 is discussed in the following sections.

9.2.1 Input Register PnIN

Each bit in each PnIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

9.2.2 Output Registers PnOUT

Each bitin each PnOUT register is the value to be output on the corresponding
1/0 pin when the pin is configured as I/O function and output direction.

Bit = 0: The output is low
Bit = 1: The output is high

9.2.3 Direction Registers PnDIR

Each bit in each PnDIR register selects the direction of the corresponding 1/10
pin, regardless of the selected function for the pin. PnDIR bits for I/O pins that
are selected for other module functions must be set as required by the other
function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

Digital 1/0 9-3

Digital /0O Operation

9.2.4 Function Select Registers PNnSEL

Digital /0

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PnSEL bitis used
to select the pin function — I/O port or peripheral module function.

Bit = 0: I/0 Function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

Setting PNnSELx = 1 does not automatically set the pin direction. Other
peripheral module functions require the PnDIRx bits to be configured
according to the direction needed for the module function.

; Qut put ACLK on P2.0 on MSP430F11x1
Bl S. B #01h, &P2SEL ; Sel ect ACLK function for pin
Bl S.B #01h, &P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PnSEL =1

When any P1SELx or P2SELXx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PnSELx=1, the internal input signal follows the signal at the pin. However, if
the PnSELx=0, the input to the peripheral maintains the value of the input
signal at the device pin before the PNSELX bit was reset.

Digital 1/0O Operation

9.2.5 P1and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PnIFG, PnlIE, and PnIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PnIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PnIFGx bit is the interrupt flag for its corresponding 1/O pin and is set
when the selected input signal edge occurs at the pin. All PnIFGx interrupt
flags request an interrupt when their corresponding PnlE bit and the GIE bit
are set. Each PnIFG flag must be reset with software. Software can also set
each PnlFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending
Only transitions, not static levels, cause interrupts. If any PnIFGx flag
becomes set during a Px interrupt service routine, or is set after the RETI
instruction of a Px interrupt service routine is executed, the set PnIFGx flag

generates another interrupt. This ensures that each transition is
acknowledged.

Note: PnIFG Flags When Changing PnOUT or PnDIR

Writing to P10OUT, P1DIR, P20UT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Digital /O 9-5

Digital /0O Operation

Interrupt Edge Select Registers P1IES, P2IES
Each PnIES bit selects the interrupt edge for the corresponding 1/O pin.
Bit = 0: The PnIFGx flag is set with a low-to-high transition
Bit = 1: The PnIFGx flag is set with a high-to-low transition

Note: Writing to PnIESx
Writing to PLIES, or P2IES can result in setting the corresponding interrupt

flags.
PnIESx PnINx PnIFGXx
0-1 0 Unchanged
0-1 1 May be set
1-0 0 May be set
1-0 1 Unchanged

Interrupt Enable P1IE, P2IE
Each PnIE bit enables the associated PnIFG interrupt flag.
Bit = 0: The interrupt is disabled
Bit = 1: The interrupt is enabled

9.2.6 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left
unconnected on the PC board, to reduce power consumption. The value of the
PxOUT bhit is don't care, since the pin is unconnected. See chapter System
Resets, Interrupts, and Operating Modes for termination unused pins.

9-6 Digital /0

Digital /0 Registers

9.3 Digital I/0O Registers

Seven registers are used to configure P1 and P2. Four registers are used to
configure ports P3 - P6. The digital I/O registers are listed in Table 9-1.

Table 9-1. Digital I/O Registers

Port Register Short Form Address Register Type Initial State
P1 Input P1IN 020h Read only -
Output P1OUT 021h Read/write Unchanged
Direction P1DIR 022h Read/write Reset with PUC
Interrupt Flag P1IFG 023h Read/write Reset with PUC
Interrupt Edge Select P1IES 024h Read/write Unchanged
Interrupt Enable P1lIE 025h Read/write Reset with PUC
Port Select P1SEL 026h Read/write Reset with PUC
P2 Input P2IN 028h Read only -
Output P20UT 029h Read/write Unchanged
Direction P2DIR 02Ah Read/write Reset with PUC
Interrupt Flag P2IFG 02Bh Read/write Reset with PUC
Interrupt Edge Select P2IES 02Ch Read/write Unchanged
Interrupt Enable P2IE 02Dh Read/write Reset with PUC
Port Select P2SEL 02Eh Read/write Reset with PUC
P3 Input P3IN 018h Read only -
Output P30UT 019h Read/write Unchanged
Direction P3DIR 01Ah Read/write Reset with PUC
Port Select P3SEL 01Bh Read/write Reset with PUC
P4 Input P4IN 01Ch Read only -
Output P4OUT 01Dh Read/write Unchanged
Direction P4DIR 01lEh Read/write Reset with PUC
Port Select PASEL 01Fh Read/write Reset with PUC
P5 Input P5IN 030h Read only -
Output P50UT 031h Read/write Unchanged
Direction P5DIR 032h Read/write Reset with PUC
Port Select P5SEL 033h Read/write Reset with PUC
P6 Input P6IN 034h Read only -
Output P6OUT 035h Read/write Unchanged
Direction P6DIR 036h Read/write Reset with PUC
Port Select P6SEL 037h Read/write Reset with PUC

Digital /0

9-7

Digital /10

Chapter 10

Watchdog Timer

The watchdog timer is a 16-bit timer that can be used as a watchdog or as an
interval timer. This chapter describes the watchdog timer. The watchdog timer
is implemented in all MSP430x1xx devices.

Topic

Page
10.1 Watchdog Timer Introduction 10-2
10.2 Watchdog Timer Operationccoiiiiieiininnennnann. 10-4
10.2 Watchdog Timer Registersiiiiiiinnieninennnn.. 10-7

10-1

Watchdog Timer Introduction

10.1 Watchdog Timer Introduction

The primary function of the watchdog timer (WDT) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

Eight software-selectable time intervals

Watchdog mode

Interval mode

Access to WDT control register is password protected
Control of RST/NMI pin function

Selectable clock source

U U U o odd oo

Can be stopped to conserve power

The WDT block diagram is shown in Figure 9-1.

Note: Watchdog Timer Powers Up Active

After a PUC, the WDT module is automatically configured in the watchdog
mode with an initial ~32-ms reset interval using the DCOCLK. The user must
setup or halt the WDT prior to the expiration of the initial reset interval.

10-2 Watchdog Timer

Watchdog Timer Introduction

Figure 10-1. Watchdog Timer Block Diagram

WDTCTL
N\
06 | MSE MDB
4 0—p <«
ot WDTQn 3 Q9
<) Y 1 —Pp <4—
Flag) Q13
P] ool e
1j¢— > <
T | C 16-bit 1 Password
Pulse Counter > Compare ¢
Generator A 1
L 0—p <«
i: Clear 1 —Pp < 16-bit
PUC
(Asyn) | CLK 0 —p eou [<:>
Write Enable

EQU Low Byte —
<Q_(C d R/W

WDTHOLD

SMCLK P

e e

ACLK g

WDTNMIES

— L WDTNMI
A EN

WDTTMSEL

WDTCNTCL

WDTSSEL

WDTIS1

WDTISO LSB

I \Y%

Watchdog Timer 10-3

Watchdog Timer Operation

10.2 Watchdog Timer Operation

The WDT module can be configured as either a watchdog or interval timer with
the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte.

10.2.1 Watchdog Timer Counter

10.2.2 Watchdog Mo

The watchdog timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

de

After a PUC condition, the WDT module is configured in the watchdog mode
with an initial ~32-ms reset interval using the DCOCLK. The user must setup,
halt, or clear the WDT prior to the expiration of the initial reset interval or
another PUC will be generated. When the WDT is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT
to its default condition and configures the RST/NMI pin to reset mode.

10.2.3 Interval Timer Mode

Setting the WDTTMSEL bitto 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog Timer

The WDT interval should be changed together with WDTCNTCL =1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT should be halted before changing the clock source to avoid a
possible incorrect interval.

10-4 Watchdog Timer

Watchdog Timer Operation

10.2.4 Watchdog Timer Interrupts
The WDT uses two bits in the SFRs for interrupt control.
(1 The WDT interrupt flag, WDTIFG, located in IFG1.0
[The WDT interrupt enable, WDTIE, located in IE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset
vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT interval timer interrupt if the WDTIE
and the GIE bits are set. The interval timer interrupt vector is different from the
reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced, or can be reset with
software.

Watchdog Timer 10-5

Watchdog Timer Operation

10.2.5 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT should be
configured. For example, the WDT should not be configured in watchdog
mode with SMCLK asiits clock source if the user wants to use low-power mode
3 because SMCLK is not active in LPM3 and the WDT would not function.
When the watchdog timer is not required, the WDTHOLD bit can be used to
hold the WDTCNT, reducing power consumption.

10.2.6 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog
MOV #WDTPWHWDTCNTCL, &ADTCTL

; Change watchdog tinmer interval
MOV #WDTPWWDTCNTL+SSEL, &WDTCTL

; Stop the watchdog
MOV #WDTPWHWDTHOLD, &WDTCTL

; Change WDT to interval tiner node, clock/8192 interval
MOV #VDTPWHWDTCNTCL+WDTTMSEL+WDTI SO, &WDTCTL

10-6 Watchdog Timer

Watchdog Timer Registers

10.3 Watchdog Timer Registers

The watchdog timer module registers are listed in Table 10-1.

Table 10-1.Watchdog Timer Registers

Register Short Form Register Type Address Initial State
Watchdog timer control register WDTCTL Read/write 0120h 06900h with PUC
SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC
SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUCL

1) WDTIFG is reset with POR

Watchdog Timer 10-7

Watchdog Timer Registers

WDTCTL, Watchdog Timer Register

15 14 13 12 1 10 9 8
Read as 069h
WDTPWXx, must be written as 05Ah
7 6 5 4 3 2 1 0
WDTHOLD | WDTNMIES | WDTNMI | WDTTMSEL | WDTCNTCL | WDTSSEL WDTISxX
rw—0 rw—0 rw—0 rw—0 ro(w) rw—0 rw—0 rw—0
WDTPWx Bits Watchdog timer password. Always read as 069h. Must be written as 05Ah, or
15-8 a PUC will be generated.
WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD
=1 when the WDT is not in use conserves power.
0 Watchdog timer is not stopped
1 Watchdog timer is stopped
WDTNMIES Bit 6 Watchdog timer NMI edge select. This bit selects the interrupt edge for the
NMIl interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge
WDTNMI Bit 5 Watchdog timer NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function
WDTTMSEL Bit4 Watchdog timer mode select
0 Watchdog mode
1 Interval timer mode
WDTCNTCL Bit3 Watchdog timer counter clear. Setting WDTCNTCL =1 clears the count value
to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h
WDTSSEL Bit 2 Watchdog timer clock source select
0 SMCLK
1 ACLK
WDTISx Bits Watchdog timer interval select. These bits select the watchdog timer interval
1-0 to set the WDTIFG flag and/or generate a PUC.

00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512
11 Watchdog clock source /64

10-8 Watchdog Timer

Watchdog Timer Registers

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
WDTIE
rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-1
WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for

interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using Bl S. B or Bl C. Binstructions, rather than MOV. B
or CLR. Binstructions.

0 Interrupt not enabled

1 Interrupt enabled

IFGL1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
WDTIFG
rw—(0)
Bits These bits may be used by other modules. See device-specific datasheet.
7-1

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until
reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or can be reset by software. Because other bits in IFG1
may be used for other modules, it is recommended to clear WDTIFG by using
Bl S. B or Bl C. B instructions, rather than MOV. B or CLR. B instructions.

0 No interrupt pending
1 Interrupt pending

Watchdog Timer 10-9

10-10 Watchdog Timer

Chapter 11

Timer A

Timer_A is a 16-bit timer/counter with three capture/compare registers This

chapter describes Timer_A. Timer_A is implemented in all MSP430x1xx
devices.

Topic Page
11.1 Timer A Introduction i 11-2
11.2 Timer_A Operationuiiiie i 11-4
11.3 Timer_A RegiSterst 11-19

11-1

Timer_A Introduction

11.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

Asynchronous 16-bit timer/counter with four operating modes
Selectable and configurable clock source

Three configurable capture/compare registers

Configurable outputs with PWM capability

Asynchronous input and output latching

U U o o o od

Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 11-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.

11-2 Timer_A

Timer_A Introduction

Figure 11-1. Timer_A Block Diagram

) Timer Block
TASSELX IDx Timer Clock MCx
ik 15 0 1T
TACLK —] 00 Divider 1o-pn Timer P Sount g Equo
actk — o1 1121418 4| _Mode
Clear RC
SMCLK 10
INCLK 1 Set TAIFG
TACLR
CCRO
CCR1
CCR2
CCISx CMx
CCI2A Capture
cclzB Mode -
CCR2
GND Timer Clock
VCC {}
Compararator 2
EQUZ 1 cap
sccim—{v 4
Set TACCR2
1 CCIFG
Output Set
Unit2 D Set Q OUT2 Signal
EQUO —P» Timer Clock —]
Reset

OUTMODx

Timer_A 11-3

Timer_A Operation

11.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

11.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable and interrupt flag) to avoid errant operating
conditions.

When the TACLK is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Any write to TAR will take effect immediately.

Clock Source Select and Divider

11-4

Timer_A

The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via
TACLK or INCLK. The clock source is selected with the TASSELX bits. The
selected clock source may be passed directly to the timer or divided by 2, 4,
or 8, using the IDx bits.

Timer_A Operation

11.2.2 Starting the Timer
The timer may be started, or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCRO. The timer may then be restarted by writing a
nonzero value to TACCRO. In this scenario, the timer starts incrementing
in the up direction from zero.

11.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 11-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 11-1. Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of
TACCRO

10 Continuous The timer repeatedly counts from zero to OFFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCRO and back down to zero.

Timer_A 11-5

Timer_A Operation

Up Mode

The up mode is used if the timer period must be different from OFFFFh counts.
The timer repeatedly counts up to the value of compare register TACCRO,
which defines the period, as shown in Figure 11-2. The number of timer counts
in the period is TACCRO+1. When the timer value equals TACCRO the timer
restarts counting from zero. If up mode is selected when the timer value is
greater than TACCRO, the timer immediately restarts counting from zero.

Figure 11-2. Up Mode

OFFFFh
TACCRO

Oh

The TACCRO CCIFG interrupt flag is set when the timer equals the TACCRO
value. The TAIFG interrupt flag is set when the timer counts from TACCRO to
zero. Figure 11-3 shows the flag set cycle.

Figure 11-3. Up Mode Flag Setting

Timer Clock _/__/__/__/__/_S(r_/__/__/__

i (
Timer X CCRo-1 CCROX oh X 1h)d" X CCrRo-1)X CCRoO oh

Set TAIFG l

Set TACCRO CCIFG

Changing the Period Register TACCRO

When changing TACCRO while the timer is running, if the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

11-6 Timer_A

Timer_A Operation

Continuous Mode

Inthe continuous mode, the timer repeatedly counts up to OFFFFh and restarts
from zero as shown in Figure 11-4. The capture/compare register TACCRO
works the same way as the other capture/compare registers.

Figure 11-4. Continuous Mode

OFFFFh

Oh

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero.
Figure 11-5 shows the flag set cycle.

Figure 11-5. Continuous Mode Flag Setting

({ H

Timer X FFFEh X FFFFh X Oh X 1h Xj(’ X FFFEh X FFFFh X oh

)

I I

))

Set TAIFG I

Timer_A 11-7

Timer_A Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRX register in the
interrupt service routine. Figure 11-6 shows two separate time intervals tg and
t1 being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 11-6. Continuous Mode Time Intervals

11-8

OFFFF

Timer_A

TACCROa / /

TACCR1b TACCR1c

TACCROb TACCROc TACCROd

TACCR1la < TACCR1d

to to to

Time intervals can be produced with other modes as well, where TACCRO is
used as the period register. Their handling is more complex since the sum of
the old TACCRXx data and the new period can be higher than the TACCRO
value. When the previous TACCRX value plus ty is greater than the TACCRO
data, the TACCRO value must be subtracted to obtain the correct time interval.

Up/Down Mode

Timer_A Operation

The up/down mode is used if the timer period must be different from OFFFFh
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCRO and back down to zero,
as shown in Figure 11-7. The period is twice the value in TACCRO.

Figure 11-7. Up/Down Mode

OFFFFh

TACCRO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the TACLK divider.

In up/down mode, the TACCRO CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCRO CCIFG interrupt flag is set when the timer counts from TACCRO-1
to TACCRO, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 11-8 shows the flag set cycle.

Figure 11-8. Up/Down Mode Flag Setting

(
Timer ><CCRO—1 CCRO XCCRO—lX CCRo-z)Q’(’ X 1h oh

Up/Down
Set TAIFG

Set TACCRO CCIFG

)

({4
)

({¢
R4

Timer_A 11-9

Timer_A Operation

Changing the Period Register TACCRO

Use of the Up/Down

When changing TACCRO while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The new period
takes affect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 11-9 the tyeaq is:

tgead = tiimer X (TACCR1 — TACCR2)

With: tgead Time during which both outputs need to be inactive
ttimer Cycle time of the timer clock
TACCRx Content of capture/compare register x

The TACCRXx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 11-9. Output Unit in Up/Down Mode

11-10

OFFFFh
TACCRO
TACCR1
TACCR2 /.
Oh
» (&4 | P |4 DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQuU1 EQU1 EQU1 Interrupt Events
TAIFG EQUO TAIFG EQUO p
EQU2 EQU2 EQU2 EQU2
Timer_A

Timer_A Operation

11.2.4 Capture/Compare Blocks

Capture Mode

Three identical capture/compare blocks, TACCRX, are present in Timer_A.
Any of the blocks may be used to capture the timer data, or to generate time
intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

[The timer value is copied into the TACCRX register
[The interrupt flag CCIFG is set

The input signal level can be read at any time by via the CCl bit. MSP430x1xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 11-10.

Figure 11-10.Capture Signal (SCS=1)

Timer Clock

Timer

CCl

Capture

Set TACCRx CCIFG

:Xn—ZXn—lx n X nit X ne2 X ne3 X nea X
/1]

[\

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 11-11. COV must
be reset with software.

Timer_A 11-11

Timer_A Operation

Figure 11-11. Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV
in Register TACCTLXx

Second
Capture
Taken
cov=1

Idle

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCI = 1 and toggles bit CCISO0 to switch the
capture signal between V¢ and GND, initiating a capture each time CCISO
changes state:

MoV #CAP+SCS+CCl S1+CM_3, &TACCTLx ; Setup TACCTLXx
XOR #CCl SO, &TACCTLX ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRXx:

O Interrupt flag CCIFG is set

[Internal signal EQUx =1

(1 EQUx affects the output according to the output mode
U

The input signal CCl is latched into SCCI

11-12 Timer_A

11.2.5 Output Unit

Timer_A Operation

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.

Output Modes

The output modes are defined by the OUTMODX bits and are described in
Table 11-2. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQUO.

Table 11-2. Output Modes

OUTMODx

Mode

Description

000

001

010

011

100

101

110

111

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reset

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTXx is updated.

The output is set when the timer counts
to the TACCRXx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

The output is toggled when the timer
counts to the TACCRX value. It is reset
when the timer counts to the TACCRO
value.

The output is set when the timer counts
to the TACCRXx value. It is reset when the
timer counts to the TACCRO value.

The output is toggled when the timer
counts to the TACCRXx value. The output
period is double the timer period.

The output is reset when the timer counts
to the TACCRXx value. It remains reset
until another output mode is selected and
affects the output.

The output is toggled when the timer
counts to the TACCRX value. It is set
when the timer counts to the TACCRO
value.

The output is reset when the timer counts
to the TACCRXx value. It is set when the
timer counts to the TACCRO value.

Timer_A 11-13

Timer_A Operation

Output Example—Timer in Up Mode

The OUTXx signal is changed when the timer counts up to the TACCRXx value,
and rolls from TACCRO to zero, depending on the output mode. An example
is shown in Figure 11-12 using TACCRO and TACCRL1.

Figure 11-12.Output Example—Timer in Up Mode

OFFFFh Example: EQU1 Used
TACCRO

TACCRL

Oh

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

‘ Output Mode 6: Toggle/Set

‘ Output Mode 7: Reset/Set

EQUO EQUL EQUO EQUL EQUO

TAIFG TAIFG TAIFG Interrupt Events

11-14 Timer_A

Timer_A Operation

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCRO values, depending on the output mode. An example is shown in

Figure 11-13 using TACCRO and TACCRL1.

Figure 11-13.Output Example—Timer in Continuous Mode

OFFFFh
TACCRO
TACCR1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TAIFG EQU1 EQUO TAIFG EQU1l EQUO Interrupt Events

Timer_A

11-15

Timer_A Operation

Output Example—Timer in Up/Down Mode

The OUTX signal changes when the timer equals TACCRX in either count
direction and when the timer equals TACCRO, depending on the output mode.
An example is shown in Figure 11-14 using TACCRO and TACCR2.

Figure 11-14.Output Example—Timer in Up/Down Mode

OFFFFh
TACCRO
TACCR2
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU2 | EQU2 EQU2 | EQU2
TAIFG EQUO TAIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

Bl S #OUTMOD_7, &TACCTLXx ; Set output npde=7
BI C #OUTMODx, &TACCTLXx ; Cl ear unwanted bits

11-16 Timer_A

Timer_A Operation

11.2.6 Timer_A Interrupts

TACCRO Interrupt

Two interrupt vectors are associated with the 16-bit Timer_A module:
(1 TACCRO interrupt vector for TACCRO CCIFG
(1 TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRX register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRXx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

The TACCRO CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 11-15. The TACCRO CCIFG
flag is automatically reset when the TACCRO interrupt request is serviced.

Figure 11-15.Capture/Compare TACCRO Interrupt Flag

Capture

EQUO
CAP

:)_ D Set 0 CCIE.—:)—} IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TAIV, Interrupt Vector Generator

The TACCRL1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.

Timer_A 11-17

Timer_A Operation

TAIV Software Example

11-18

Timer_A

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

(] Capture/compare block TACCRO

[Capture/compare blocks TACCR1, TACCR2

[Timer overflow TAIFG

; Interrupt handler for TACCRO CCl FG

CCl FG_0_HND

RETI

; Start of handler Interrupt

11 cycles
16 cycles
14 cycles
Cycl es
|l atency 6
5

; Interrupt handler for TAIFG TACCRL and TACCR2 CCl FG

TA_HND
ADD
RETI
IMVP
IMVP
RETI
RETI

TAI FG_HND
RETI

CCl FG_2_HND
RETI

CCl FG_1_HND

RETI

&TAlV, PC

CCl FG_1_HN\D
CCl FG_2_HN\D

Interrupt |atency

Add of fset to Junp table
Vector 0: No interrupt
Vector 2: TACCR1

Vector 4. TACCR2

Vector 6: Reserved
Vector 8: Reserved
Vector 10: TAIFG Fl ag

Task starts here

Vect or

4:

TACCR2

Task starts here
Back to main program

Vect or

2.

TACCR1L

Task starts here
Back to main program

g o1 NN 01w O

11.3 Timer_A Registers

The Timer_A registers are listed in Table 11-3:

Table 11-3. Timer_A Registers

Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR
Timer_A counter TAR Read/write 0170h Reset with POR
Timer_A capture/compare control O TACCTLO Read/write 0162h Reset with POR
Timer_A capture/compare 0 TACCRO Read/write 0172h Reset with POR
Timer_A capture/compare control 1 TACCTL1 Read/write 0164h Reset with POR
Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR
Timer_A capture/compare control 2 TACCTL2 Read/write 0166h Reset with POR
Timer_A capture/compare 2 TACCR2 Read/write 0176h Reset with POR
Timer_A Interrupt Vector TAIV Read only 012Eh Reset with POR

Timer_A 11-19

Timer_A Registers

TACTL, Timer_A Control Register

15 14 13 12 1 10 9 8
Unused TASSELX
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0)
Unused Bits Unused
15-10
TASSELX Bits Timer_A clock source select
9-8 00 TACLK
01 ACLK
10 SMCLK
11 INCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 /1
01 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_A is not in use conserves
5-4 power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCRO
10 Continuous mode: the timer counts up to OFFFFh
11 Up/down mode: the timer counts up to TACCRO then down to 0000h
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, IDx, and count direction. The
TACLR bit is automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending
11-20 Timer_A

Timer_A Registers

TAR, Timer_A Register

15 14 13 12 11 10 9 8
TARX
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TARX
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TARX Bits Timer_A register. The TAR register is the count of Timer_A.
15-0

Timer_A 11-21

Timer_A Registers

TACCTLX, Capture/Compare Control Register

15

14

13 12 11 10 9 8

CMx

CCISx SCS SCCI Unused CAP

rw—(0)

rw—(0)

6

rw—(0) rw—(0) rw—(0) r—(0) r—(0) rw—(0)

OUTMODx CCIE CCl ouT cov CCIFG

rw—(0)

CMXx

CCISx

SCS

SCCI

Unused

CAP

OUTMODx

11-22

rw—(0)

Bit
15-14

Bit
13-12

Bit 11

Bit 10

Bit 9
Bit 8

Bits
7-5

Timer_A

rw—(0) rw—(0) r rw—(0) rw—(0) rw—(0)

Capture mode

00 No capture

01 Capture on rising edge

10 Capture on falling edge

11 Capture on both rising and falling edges

Capture/compare input select. These bits select the TACCRX input signal.
See the device-specific datasheet for specific signal connections.

00 CCIxA

01 CCIxB

10 GND

11 Ve

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.

0 Asynchronous capture

1 Synchronous capture

Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit

Unused. Read only. Always read as 0.

Capture mode
0 Compare mode
1 Capture mode

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO because EQUx
= EQUO.

000 OUT bit value

001 Set

010 Toggle/reset

011 Set/reset

100 Toggle

101 Reset

110 Toggle/set

111 Reset/set

CCIE Bit 4
CCl Bit 3
ouT Bit 2
cov Bit 1
CCIFG Bit 0

Timer_A Registers

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. This bit indicates the state of the output. For output mode 0, this bit
directly controls the state of the output.

0 Output low
1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred
1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 1 10 9 8
0 0 0 0 0 0 0 0 ‘
r0 ro ro r0 r0 r0 r0 r0
7 6 5 4 3 2 1 0
0 0 0 0 TAIVX 0 ‘
r0 ro r0 r0 r—(0) r—(0) r—(0) r0
TAIVX Bits Timer_A Interrupt Vector value
15-0
Interrupt
TAIV Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TACCRL1 CCIFG Highest
04h Capture/compare 2 TACCR2 CCIFG
06h Reserved -
08h Reserved -
0Ah Timer overflow TAIFG
0Ch Reserved -
OEh Reserved — Lowest

Timer_A

11-23

11-24 Timer_A

Chapter 12

Timer B

Timer_B s a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_B. Timer_B3 (three capture/compare registers) is
implemented in MSP430x13x, and MSP430x15x devices. Timer_B7 (seven
capture/compare registers) is implemented in MSP430x14x and
MSP430x16x devices.

Topic Page
12.1 Timer_B Introduction it 12-2
12.2 Timer_B Operationooiiiiii i 12-4
12.3 Timer_B RegiSters 12-20

12-1

Timer_B Introduction

12.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

a

(I R Ny I

Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

Selectable and configurable clock source

Three or seven configurable capture/compare registers
Configurable outputs with PWM capability

Double-buffered compare latches with synchronized loading

Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 12-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

12.1.1 Similarities and Differences From Timer_A

12-2

Timer_B

Timer_B is identical to Timer_A with the following exceptions:

EI
a

The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

Timer_B TBCCRX registers are double-buffered and can be grouped.

(1 All Timer_B outputs can be put into a high-impedance state.

4

The SCCI bit function is not implemented in Timer_B.

Figure 12-1. Timer_B Block Diagram

Timer_B Introduction

. Timer Block
TBSSELX IDx Timer Clock o
't 1° 0 'y
TBCLK 00 ivi 16-bit Timer
Actk —] o1 olals TBR RC le— Mode [¢ EQUO
Clear 8 10 12 16
SMCLK 10 o
INCLK 11
TBCLR
TBCLGRPx 00
01
T T Set TBIFG
10
Group
Load Logic 11
CCRO
CCR1
CCR2
CCR3
CCR4
CCR5
CCISx CMx oCRE
CCI6A 00 Capture
CcclieB 01 Mode 0
TBCCR6
GND 10 Timer Clock
VCC 11 {}
CLLDx Load
ccl Group p| Capture Latch TBCL6
Load Logic
vceC {}
TBR=0 :> Compararator 6
EQUO —
UP/DO?NN — CCR4 —- EQU6 CAP
f CCR1
0 Set TBCCR6
1 CCIFG
ouT I—T
> Output)
EQuo —p| UMe D Set Q|- OUTG Signal
Timer Clock —
Reset
POR
OUTMODx

Timer_B 12-3

Timer_B Operation

12.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

12.2.1 16-Bit Timer Counter

TBR Length

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable and interrupt flag) to avoid errant operating
conditions.

When TBCLK is asynchronous to the CPU clock, any read from TBR should
occur while the timer is not operating or the results may be unpredictable.
Any write to TBR will take effect immediately.

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBR(max), for the selectable lengths
is OFFh, 03FFh, OFFFh, and OFFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

12-4

Timer_B

The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via
TBCLK or INCLK. The clock source is selected with the TBSSELX bits. The
selected clock source may be passed directly to the timer or divided by 2,4,
or 8, using the IDx bits.

Timer_B Operation

12.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
[The timer counts when MCx > 0 and the clock source is active.

[When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCLO. The timer may then be restarted by loading a
nonzero value to TBCLO. In this scenario, the timer starts incrementing in
the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12-1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 12—1.Timer Modes

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero to the value of

compare register TBCLO.

10 Continuous The timer repeatedly counts from zero to the value se-
lected by the TBCNTLXx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCLO and then back down to zero.

Timer_B 12-5

Timer_B Operation

Up Mode

The up mode s used ifthe timer period must be different from TBR(ax) counts.
The timer repeatedly counts up to the value of compare latch TBCLO, which
defines the period, as shown in Figure 12—2. The number of timer counts in
the period is TBCLO+1. When the timer value equals TBCLO the timer restarts
counting from zero. If up mode is selected when the timer value is greater than
TBCLDO, the timer immediately restarts counting from zero.

Figure 12-2. Up Mode

TBR(max)
TBCLO

Oh

Figure 12-3. Up Mod

The TBCCRO CCIFG interrupt flag is set when the timer equals the TBCLO
value. The TBIFG interrupt flag is set when the timer counts from TBCLO to
zero. Figure 11-3 shows the flag set cycle.

e Flag Setting

mercos__\ T\ /M
C

Timer XTBCLO—l TBCLO oh X 1h Xi: XTBCLO—l TBCLO oOh
)

Set TBIFG

Set TBCCRO CCIFG

Changing the Period R

12-6 Timer_B

egister TBCLO

When changing TBCLO while the timer is running and when the TBCLO load
mode is immediate, if the new period is greater than or equal to the old period,
or greater than the current count value, the timer counts up to the new period.
If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

Timer_B Operation

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
from zero as shown in Figure 12—4. The compare latch TBCLO works the same
way as the other capture/compare registers.

Figure 12—4. Continuous Mode

TBR(max)

Oh

The TBIFG interrupt flag is set when the timer counts from TBR(nax) to zero.
Figure 12-5 shows the flag set cycle.

Figure 12-5. Continuous Mode Flag Setting

Timer xTBR (mﬂfx TBR (mﬂ)j(oh X 1h X—s‘) XTBR (mﬂﬂx TBR (mﬂl>§< oh
LC I

)

Set TBIFG |

Timer_B 12-7

Timer_B Operation

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 12—6 shows two separate time intervals tg and t1 being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 12—6. Continuous Mode Time Intervals

12-8

TBR(max)

Oh

EQUO Interrupt

EQUL Interrupt

Timer_B

TBCLOa / /

TBCL1b TBCL1c

TBCLOb TBCLOC TBCLOd

TBCL1la ’ TBCL1d

to to)

Time intervals can be produced with other modes as well, where TBCLO is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCLO value.
When the sum of the previous TBCLx value plus ty is greater than the TBCLO
data, the old TBCLO value must be subtracted to obtain the correct time
interval.

Up/Down Mode

Timer_B Operation

The up/down mode is used if the timer period must be different from TBR(max)
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCLO, and back down to zero, as
shown in Figure 12—7. The period is twice the value in TBCLO.

Note: TBCLO > TBR(max)

If TBCLO > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR(max) to zero.

Figure 12—7. Up/Down Mode

TBCLO

Oh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the TBCLK divider.

In up/down mode, the TBCCRO CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCRO CCIFG interrupt flag is set when the timer counts from TBCLO-1 to
TBCLO, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 12—-8 shows the flag set cycle.

Figure 12-8. Up/Down Mode Flag Setting

Timer Clock

Timer

Up/Down

Set TBIFG

Set TBCCRO CCIFG

A N A N AR N AN An NV AR UV An

({

XTBCLO—l TBCLO XTBCLO-lXTBCLo—z)C:(’ X 1h oh 1h

)

({4
4

({4
))

({4
)

Timer_B 12-9

Timer_B Operation

Changing the Value of Period Register TBCLO

Use of the Up/Down

When changing TBCLO while the timer is running, and counting in the down
direction, and when the TBCLO load mode is immediate, the timer continues
its descent until it reaches zero. The new period takes effect after the counter
counts down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCLO, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCLO is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 12-9 the tygaq is:

tdead = ttimer X (TBCL1 — TBCL3)

With: tgeag Time during which both outputs need to be inactive
timer Cycle time of the timer clock
TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 12-9. Output Unit in Up/Down Mode

12-10

TBR(max)
TBCLO
TBCL1
TBCL3 /.
Oh
» &4 | P [& DeadTime
Output Mode 6: Toggle/Set
Output Mode 2: Toggle/Reset
EQU1 EQU1 EQU1 EQU1 Interrupt Events
TBIFG EQUO TBIFG EQUO p
EQU3 EQU3 EQU3 EQU3
Timer_B

Timer_B Operation

12.2.4 Capture/Compare Blocks

Capture Mode

Three or seven identical capture/compare blocks, TBCCRX, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

[The timer value is copied into the TBCCRX register
[The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x1xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 12—10.

Figure 12-10. Capture Signal (SCS=1)

Timer X n-2 X n-1 X n X n+l X n+2 X n+3 X n+4 X

CCl

Capture

Set TBCCRx CCIFG

[1]

"\

Overflow logic is provided in each capture/compare register to indicate if a

second capture was performed before the value from the first capture was

read. Bit COV is set when this occurs as shown in Figure 12—11. COV must
be reset with software.

Timer_B 12-11

Timer_B Operation

Figure 12—-11.Capture Cycle

Idle

Capture Capture Read

No
Capture
Taken

Read
Taken
Capture

Capture
Taken

Capture Read and No Capture

Capture
Clear Bit COV
in Register TBCCTLXx

Second
Capture
Taken
cov=1

Idle

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCISO0 to switch
the capture signal between Vcc and GND, initiating a capture each time
CCISO0 changes state:

MoV #CAP+SCS+CCl S1+CM 3, &TBCCTLx ; Setup TBCCTLx
XOR #CCl SO, &TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

1 Interrupt flag CCIFG is set
[Internal signal EQUx =1

1 EQUx affects the output according to the output mode

12-12 Timer_B

Timer_B Operation

Compare Latch TBCLx

The TBCCRx compare latch, TBCLX, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRXx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 12-2.

Table 12—-2. TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRX is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCLO value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLXx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPXx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRXx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 12-3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediately when their corresponding TBCCRx is written - no
compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRXx registers of the group must be updated, even when new
TBCCRXx data = old TBCCRx data. Second, the load event must occur.

Table 12—3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2 TBCCR1
TBCL3+TBCL4 TBCCR3

TBCL5+TBCL6 TBCCR5

10 TBCL1+TBCL2+TBCL3 TBCCR1
TBCL4+TBCL5+TBCL6 TBCCR4

11 TBCLO+TBCL1+TBCL2+ TBCCR1

TBCL3+TBCL4+TBCL5+TBCL6

Timer_B 12-13

Timer_B Operation

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQUO and EQUXx signals.
The TBoutH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBoutH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance

state.

Output Modes

The output modes are defined by the OUTMODX bits and are described in
Table 12—-4. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQUO.

Table 12—-4.Output Modes

OUTMODx

Mode

Description

000

001

010

011

100

101

110

111

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reset

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTXx bit. The OUTx signal updates
immediately when OUTXx is updated.

The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCLO

value.

The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCLO value.

The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCLO value.

The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCLO value.

12-14 Timer_B

Output Example—Timer in Up Mode

Timer_B Operation

The OUTx signalis changed when the timer counts up to the TBCLx value, and
rolls from TBCLO to zero, depending on the output mode. An example is shown

in Figure 12—12 using TBCLO and TBCL1.

Figure 12-12. Output Example—Timer in Up Mode

TBR(max)
TBCLO

Example: EQU1 Used

TBCL1

Oh

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

EQUO
TBIFG

EQU1

EQUO
TBIFG

EQU1

EQUO
TBIFG

‘ Output Mode 6: Toggle/Set

‘ Output Mode 7: Reset/Set

Interrupt Events

Timer_B 12-15

Timer_B Operation

Output Example—Timer in Continuous Mode

The OUTXx signal is changed when the timer reaches the TBCLx and TBCLO
values, depending on the output mode, An example is shown in Figure 12—-13
using TBCLO and TBCL1.

Figure 12-13. Output Example—Timer in Continuous Mode

TBR(max)
TBCLO
TBCL1
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
TBIFG EQU1 EQUO TBIFG EQUl1 EQUO Interrupt Events

12-16 Timer_B

Timer_B Operation

Output Example — Timer in Up/Down Mode

The OUTX signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCLO, depending on the output mode.
An example is shown in Figure 12-14 using TBCLO and TBCL3.

Figure 12-14. Output Example—Timer in Up/Down Mode

TBR(max)
TBCLO
TBCL3
Oh
Output Mode 1: Set
Output Mode 2: Toggle/Reset
Output Mode 3: Set/Reset
Output Mode 4: Toggle
Output Mode 5: Reset
Output Mode 6: Toggle/Set
Output Mode 7: Reset/Set
EQU3 EQU3 EQUS3 EQU3
TBIFG EQUO TBIFG EQUO Interrupt Events

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODX bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

Bl S #OUTMOD_7, &TBCCTLXx ; Set out put node=7
BI C #OUTMODx, &TBCCTLXx ; O ear unwanted bhits

Timer_B 12-17

Timer_B Operation

12.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:
(O TBCCRO interrupt vector for TBCCRO CCIFG
[TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRXx register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCRO Interrupt Vector

The TBCCRO CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 12—-15. The TBCCRO CCIFG
flag is automatically reset when the TBCCRO interrupt request is serviced.

Figure 12-15. Capture/Compare TBCCRO Interrupt Flag

Capture

EQUO
CAP

:)_ D Set 0 CCIE.—:)—} IRQ, Interrupt Service Requested

Timer Clock —

Reset

IRACC, Interrupt Request Accepted
POR

TBIV, Interrupt Vector Generator

12-18

Timer_B

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCRO CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCRO CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RET! instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.

TBIV, Interrupt Handler Examples

Timer_B Operation

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump

to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task

handling itself. The latencies are:

(g Capture/compare block CCRO

[J Capture/compare blocks CCR1 to CCR6

[Timer overflow TBIFG

11 cycles
16 cycles
14 cycles

The following software example shows the recommended use of TBIV for

Timer_B3.
; Interrupt handler for TBCCRO CCl FG Cycl es
CCl FG_0_HND
C ; Start of handler Interrupt |latency 6
RETI 5
; Interrupt handler for TBIFG TBCCRL and TBCCR2 CCl FG
TB_HND $; Interrupt I|atency 6
ADD &TBI V, PC ; Add offset to Junp table 3
RETI ; Vector 0: No interrupt 5
JWP CCFG 1 HND ; Vector 2: Mdule 1 2
JWP CCFG 2 HND ; Vector 4: Mdule 2 2
RETI ; Vector 6
RETI ; Vector 8
RETI ; Vector 10
RETI ;. Vector 12
TBI FG_HND ; Vector 14: TIMW Fl ag
; Task starts here
RETI 5
CCl FG_2_HND ; Vector 4: Mdule 2
: Task starts here
RETI ; Back to main program 5
; The Module 1 handl er shows a way to |ook if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCl FG_1_HND ; Vector 6: Mdule 3
; Task starts here
JMP TB_HND ; Look for pending ints 2

Timer_B 12-19

Timer_B Registers

12.3 Timer_B Registers

The Timer_B registers are listed in Table 12-5:

Table 12-5.Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR
Timer_B counter TBR Read/write 0190h Reset with POR
Timer_B capture/compare control 0 TBCCTLO Read/write 0182h Reset with POR
Timer_B capture/compare 0 TBCCRO Read/write 0192h Reset with POR
Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR
Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR
Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR
Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR
Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR
Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR
Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR
Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR
Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR
Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR
Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR
Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR
Timer_B Interrupt Vector TBIV Read only 011Eh Reset with POR

12-20 Timer_B

Timer_B Registers

Timer_B Control Register TBCTL

15 14 13 12 1 10 9 8
Unused TBCLGRPx CNTLx Unused TBSSELXx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TBCLR TBIE TBIFG
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0)
Unused Bit15 Unused
TBCLGRP Bit TBCLx group
14-13 00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)
TBCL3+TBCL4 (TBCCRS3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCRS5 CLLDx bits control the update)
TBCLO independent
10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bhits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCLO independent
11 TBCLO+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)
CNTLx Bits Counter Length
12-11 00 16-bit, TBR(max) = OFFFFh
01 12-bit, TBR(max) = OFFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = OFFh
Unused Bit10 Unused
TBSSELxX Bits Timer_B clock source select.
9-8 00 TBCLK
01 ACLK
10 SMCLK
11 INCLK
IDx Bits Input divider. These bits select the divider for the input clock.
7-6 00 N1
o1 /2
10 /4
11 /8
MCx Bits Mode control. Setting MCx = 00h when Timer_B is not in use conserves
5-4 power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TBCLO

10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCLO and down to 0000h

Timer_B 12-21

Timer_B Registers

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, IDx, and count direction. The
TBCLR bit is automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.

0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 11 10 9 8
TBRXx ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
TBRx ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
TBRx Bits Timer_B register. The TBR register is the count of Timer_B.
15-0

12-22 Timer_B

Timer_B Registers

TBCCTLXx, Capture/Compare Control Register

15 14 13 12 1 10 9 8
CMx CCISx scs CLLDx CAP
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r—(0) rw—(0)
7 6 5 4 3 2 1 0
OUTMODx CCIE ccl ouT cov CCIFG
rw—(0) rw—(0) rw—(0) rw—(0) r rw—(0) rw—(0) rw—(0)
CMx Bit Capture mode
15-14 00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges
CCISx Bit Capture/compare input select. These bits select the TBCCRX input signal.
13-12 See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 Ve
SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture
CLLDx Bit Compare latch load. These bits select the compare latch load event.
10-9 00 TBCLx loads on write to TBCCRX
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to O (up or continuous mode)
TBCLx loads when TBR counts to TBCLO or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx
CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode
OUTMODx Bits Output mode. Modes 2, 3, 6, and 7 are not useful for TBCLO because EQUXx
7-5 = EQUO.
000 OUT bit value
001 Set

010 Toggle/reset
011 Set/reset
100 Toggle

101 Reset

110 Toggle/set
111 Reset/set

Timer_B 12-23

Timer_B Registers

CCIE

CCl

ouT

cov

CCIFG

12-24

Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Timer_B

Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.

0 Interrupt disabled

1 Interrupt enabled

Capture/compare input. The selected input signal can be read by this bit.

Output. This bit indicates the state of the output. For output mode 0, this bit
directly controls the state of the output.

0 Output low

1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.

0 No capture overflow occurred

1 Capture overflow occurred

Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TBIV, Timer_B Interrupt Vector Register

Timer_B Registers

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 ro ro r0 r0 ro r0 r0
7 6 5 4 3 2 1 0
0 0 0 0 TBIVX 0
r0 r0 r0 r0 r—(0) r—(0) r—(0) r0
TBIVX Bits Timer_B interrupt vector value
15-0
Interrupt
TBIV Contents Interrupt Source Interrupt Flag Priority

00h
02h
04h
06h
08h
0Ah
0Ch
OEh

No interrupt pending
Capture/compare 1

Capture/compare 2

Capture/compare 3T
Capture/compare 4T
Capture/compare 5T
Capture/compare 6T

Timer overflow

TBCCR1 CCIFG Highest

TBCCR2 CCIFG
TBCCR3 CCIFG
TBCCR4 CCIFG
TBCCRS5 CCIFG
TBCCRG6 CCIFG

TBIFG Lowest

T MSP430x14x, MSP430X16X devices only

Timer_B

12-25

12-26 Timer_B

Chapter 13

USART Peripheral Interface, UART Mode

The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the asynchronous UART mode.
USARTO is implemented on the MSP430x12xx, MSP430x13xx, and
MSP430x15x devices. In addition to USARTO, the MSP430x14x and
MSP430x16x devices implement a second identical USART module,

USART1.

Topic Page
13.1 USART Introduction: UARTModeccovviiiiiiii... 13-2
13.2 USART Operation: UARTMode ..., 13-4
13.3 USART Registers: UARTMode 13-21

13-1

USART Introduction: UART Mode

13.1 USART Introduction: UART Mode

13-2

In asynchronous mode, the USART connects the MSP430 to an external
system via two external pins, URXD and UTXD. UART mode is selected when
the SYNC bit is cleared.

UART mode features include:

4

(I I T A

U U o U

7- or 8-bit data with odd, even, or non-parity
Independent transmit and receive shift registers
Separate transmit and receive buffer registers
LSB-first data transmit and receive

Built-in idle-line and address-bit communication protocols for
multiprocessor systems

Receiver start-edge detection for auto-wake up from LPMx modes
Programmable baud rate with modulation for fractional baud rate support
Status flags for error detection and suppression and address detection

Independent interrupt capability for receive and transmit

Figure 13-1 shows the USART when configured for UART mode.

USART Peripheral Interface, UART Mode

USART Introduction: UART Mode

Figure 13-1. USART Block Diagram: UART Mode

SWRST URXEXx*

URXEIE URXWIE

T T T T SYNC=0
URXIFGx*
FE PE OE BRK Receive Control —a
Receive Status Receiver Buffer UXRXBUF LISTEN MM SYNC
I . T A 0 1 T
1
RXERR RXWAKE Receiver Shift Register <— f ; SoMI
O——1O |
1 0
I 0
SSEL1 SSELO sp CHAR PEV PENA } 1 URXD
|
UCLKI 00 Baud-Rate Generator | 0
\ STE
ACLK —+]01 }
Prescaler/Divider UXBR
SMCLK —{ 10 S Viaer ExERx |
|
SMCLK —+ 11
Modulator UXMCTL } UTXD
® | L >
SP CHAR PEV PENA |
|
P TvT 1T i
1!
\
WUT P Transmit Shift Register > o1 1 SIMO
2 Lo
i 0 |
TXWAKE Transmit Buffer UXTXBUF 0
\
\
UTXIFGx* }
] Transmit Control }
|
L L L SYNC CKPH CKPL |
|
SWRST UTXEx* TXEPT T !
sTe ‘ UCLK
U%Kl Clock Phase and Polarity «—_ >
* Refer to the device-specific datasheet for SFR locations
USART Peripheral Interface, UART Mode 13-3

USART Operation: UART Mode

13.2 USART Operation: UART Mode

In UART mode, the USART transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USART. The transmit and receive functions use the
same baud rate frequency.

13.2.1 USART Initialization and Reset

The USART is reset by a PUC or by setting the SWRST bit. After a PUC, the
SWRST bitis automatically set, keeping the USART in a reset condition. When
set, the SWRST bit resets the URXIEx, UTXIEX, URXIFGx, RXWAKE,
TXWAKE, RXERR, BRK, PE, OE, and FE bits and sets the UTXIFGx and
TXEPT bits. The receive and transmit enable flags, URXEx and UTXEX, are
not altered by SWRST. Clearing SWRST releases the USART for operation.
See also chapter USART Module, I12C mode for USARTO when reconfiguring
from 12C mode to UART mode.

Note: Initializing or Re-Configuring the USART Module

The required USART initialization/re-configuration process is:

1) Set SWRST (BI S. B #SWRST, &UXCTL)

2) Initialize all USART registers with SWRST = 1 (including UXCTL)

3) Enable USART module via the MEx SFRs (URXEx and/or UTXEX)

4) Clear SWRST via software (Bl C. B #SWRST, &UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEX)

Failure to follow this process may result in unpredictable USART behavior.

13.2.2 Character Format

The UART character format, shown in Figure 13-2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The bit period is defined by the selected clock
source and setup of the baud rate registers.

Figure 13-2. Character Format

_| ST| DO Y D6 ‘ D7 ‘AD ‘PA |SP : SP_L_:: Z;;:e

\— [2nd Stop Bit, SP = 1]
[Parity Bit, PENA = 1]

[Address Bit, MM = 1]
[Optional Bit, Condition] [8th Data Bit, CHAR = 1]

13-4 USART Peripheral Interface, UART Mode

USART Operation: UART Mode

13.2.3 Asynchronous Communication Formats

When two devices communicate asynchronously, the idle-line format is used
for the protocol. When three or more devices communicate, the USART
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When MM = 0, the idle-line multiprocessor format is selected. Blocks of data
are separated by an idle time on the transmit or receive lines as shown in
Figure 13-3. Anidle receive line is detected when 10 or more continuous ones
(marks) are received after the first stop bit of a character. When two stop bits
are used for the idle line the second stop bit is counted as the first mark bit of
the idle period.

The first character received after an idle period is an address character. The
RXWAKE bit is used as an address tag for each frame. In the idle-line
multiprocessor format, this bit is set when a received character is an address
and is transferred to UXRXBUF.

Figure 13-3. Idle-Line Format

Blocks of
/ Characters
\

——

UTXDX/URXDx % T | T | [| |)A
} Idle Periods of 10 Bits or More
| UTXDx/URXDx Expanded
\
\
\
\
\
\
UTXDx/URXDx
sT| Address [sp|sT| Data sp [s7| Data sp
First Frame Within Block Frame Within Block Frame Within Block
Is Address. It Follows Idle
Period of 10 Bits or More Idle Period Less Than 10 Bits

USART Peripheral Interface, UART Mode 13-5

USART Operation: UART Mode

13-6

The URXWIE bit is used to control data reception in the idle-line
multiprocessor format. When the URXWIE bit is set, all non-address
characters are assembled but not transferred into the UXxRXBUF, and
interrupts are not generated. When an address character is received, the
receiver is temporarily activated to transfer the character to UXRXBUF and
sets the URXIFGx interrupt flag. Any applicable error flag is also set. The user
can then validate the received address.

If an address is received, user software can validate the address and must
reset URXWIE to continue receiving data. If URXWIE remains set, only
address characters will be received. The URXWIE bit is not modified by the
USART hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USART to generate address character
identifiers on UTXDx. The wake-up temporary (WUT) flag is an internal flag
double-buffered with the user-accessible TXWAKE bit. When the transmitter
is loaded from UXTXBUF, WUT is also loaded from TXWAKE resetting the
TXWAKE bit.

The following procedure sends out an idle frame to indicate an address
character will follow:

1) Set TXWAKE, then write any character to UXTXBUF. UXTXBUF must be
ready for new data (UTXIFGx = 1).

The TXWAKE value is shifted to WUT and the contents of UXTXBUF are
shifted to the transmit shift register when the shift register is ready for new
data. This sets WUT, which suppresses the start, data, and parity bits of a
normal transmission, then transmits an idle period of exactly 11 bits. When
two stop bits are used for the idle line, the second stop bitis counted as the
first mark bit of the idle period. TXWAKE is reset automatically.

2) Write desired address character to UXTXBUF. UXTXBUF must be ready
for new data (UTXIFGx = 1).

The new character representing the specified address is shifted out
following the address-identifying idle period on UTXDx. Writing the first
“don’t care” character to UXTXBUF is necessary in order to shift the
TXWAKE bit to WUT and generate an idle-line condition. This data is
discarded and does not appear on UTXDXx.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Address-Bit Multiprocessor Format

When MM = 1, the address-bit multiprocessor format is selected. Each
processed character contains an extra bit used as an address indicator shown
in Figure 13—4. The first character in a block of frames carries a set address
bit which indicates that the character is an address. The USART RXWAKE bit
is set when a received character is a valid address frame and is transferred
to UXRXBUF.

The URXWIE bit is used to control data reception in the address-bit
multiprocessor format. If URXWIE is set, data characters (address bit = 0) are
assembled by the receiver but are not transferred to UxRXBUF and no
interrupts are generated. When a character containing a set address bit is
received, the receiver is temporarily activated to transfer the character to
UxRXBUF and set URXIFGx. All applicable error status flags are also set.

If an address is received, user software must reset URXWIE to continue
receiving data. If URXWIE remains set, only address characters (address bit
= 1) will be received. The URXWIE bit is not modified by the USART hardware
automatically.

Figure 13—4. Address-Bit Multiprocessor Format

/ Blocks of Frames \’

UTXDx/URXDx
LI | IQI |T| [II)A
} Idle Periods of No Significance
| UTXDx/URXDx
| Expanded
\
\
\
\
\
UTXDx/URXDx
—iSTl Address 1 [sP|sT]| Data [o] sp|sT] paa [of sp
First Frame Within Block AD Frame BitIs 0

Is an Address. AD Frame Bitls1 for Data Within Block.

Idle Time Is of No Significance

For address transmission in address-bit multiprocessor mode, the address bit
of a character can be controlled by writing to the TXWAKE bit. The value of the
TXWAKE bit is loaded into the address bit of the character transferred from
UxTXBUF to the transmit shift register, automatically clearing the TXWAKE bit.
TXWAKE must not be cleared by software. It is cleared by USART hardware
after it is transferred to WUT or by setting SWRST.

USART Peripheral Interface, UART Mode 13-7

USART Operation: UART Mode

Automatic Error Detection

Glitch suppression prevents the USART from being accidentally started. Any
low-level on URXDx shorter than the deglitch time t; (approximately 300 ns)
will be ignored. See the device-specific datasheet for parameters.

When a low period on URXDx exceeds t; a majority vote is taken for the start
bit. If the majority vote fails to detect a valid start bit the USART halts character
reception and waits for the next low period on URXDx. The majority vote is also
used for each bit in a character to prevent bit errors.

The USART module automatically detects framing errors, parity errors,
overrun errors, and break conditions when receiving characters. The bits FE,
PE, OE, and BRK are set when their respective condition is detected. When
any of these error flags are set, RXERR is also set. The error conditions are
described in Table 13-1.

Table 13—-1.Receive Error Conditions

13-8

Error Condition Description

A framing error occurs when a low stop bit is
detected. When two stop bits are used, only the first
stop bit is checked for framing error. When a
framing error is detected, the FE bit is set.

A parity error is a mismatch between the number of
1s in a frame and the value of the parity bit. When

Parity error an address bit is included in the frame, it is included
in the parity calculation. When a parity error is
detected, the PE bit is set.

An overrun error occurs when a character is loaded
Receive overrun error into UXRXBUF before the prior character has been
read. When an overrun occurs, the OE bit is set.

A break condition is a period of 10 or more low bits
received on URXDx after a missing stop bit. When a

Break condition break condition is detected, the BRK bit is set. A
break condition can also set the interrupt flag
URXIFGx.

Framing error

When URXEIE = 0 and a framing error, parity error, or break condition is
detected, no character is received into UXRXBUF. When URXEIE = 1,
characters are received into UXRXBUF and any applicable error bit is set.

When any of the FE, PE, OE, BRK, or RXERR bits is set, the bit remains set
until user software resets it or UXRXBUF is read.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode
13.2.4 USART Receive Enable

The receive enable bit, URXEX, enables or disables data reception on URXDx
as shown in Figure 13-5. Disabling the USART receiver stops the receive
operation following completion of any character currently being received or
immediately if no receive operation is active. The receive-data buffer,

UxRXBUF, contains the character moved from the RX shift register after the
character is received.

Figure 13-5. State Diagram of Receiver Enable

No Valid Start Bit
URXEx=0

Not Completed

URXEx =1

Receive Idle St_ate Valid Start Bit Receiver Handle Interrupt
Disable (Receiver Collects Conditions
1sa Enabled) Character

URXEx =0

Character
Received

URXEx =0

Note: Re-Enabling the Receiver (Setting URXEX): UART Mode

When the receiver is disabled (URXEXx = 0), re-enabling the receiver (URXEX
= 1) is asynchronous to any data stream that may be present on URXDx at
the time. Synchronization can be performed by testing for an idle line
condition before receiving a valid character (see URXWIE).

USART Peripheral Interface, UART Mode 13-9

USART Operation: UART Mode

13.2.5 USART Transmit Enable

When UTXEXx is set, the UART transmitter is enabled. Transmission is initiated
by writing data to UXTXBUF. The data is then moved to the transmit shift
register on the next BITCLK after the TX shift register is empty, and
transmission begins. This process is shown in Figure 13-6.

When the UTXEX bit is reset the transmitter is stopped. Any data moved to
UxTXBUF and any active transmission of data currently in the transmit shift
register prior to clearing UTXEx will continue until all data transmission is
completed.

Figure 13-6. State Diagram of Transmitter Enable

13-10

No Data Written
to Transmit Buffer

UTXEx =0

Not Completed

UTXEx =1
Data Written to

. Idle State i -
Transmit . Transmit Buffer [o mission Handle Interrupt
Disabl - (Transmitter Acti Conditions
isable Enabled) ctive

Character
Transmitted

UTXEXx = 0 And Last Buffer Entry Is Transmitted

When the transmitter is enabled (UTXEx = 1), data should not be written to
UxTXBUF unless it is ready for new data indicated by UTXIFGx = 1. Violation
can result in an erroneous transmission if data in UXTXBUF is modified as it
is being moved into the TX shift register.

It is recommended that the transmitter be disabled (UTXEXx = 0) only after any
active transmission is complete. This is indicated by a set transmitter empty
bit (TXEPT = 1). Any data written to UXTXBUF while the transmitter is disabled
will be held in the buffer but will not be moved to the transmit shift register or
transmitted. Once UTXEX is set, the data in the transmit buffer is immediately
loaded into the transmit shift register and character transmission resumes.

USART Peripheral Interface, UART Mode

13.2.6 UART Baud Rate Generation

USART Operation: UART Mode

The USART baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. The baud rate generator uses one
prescaler/divider and a modulator as shown in Figure 13—7. This combination
supports fractional divisors for baud rate generation. The maximum USART

baud rate is one-third the UART source clock frequency BRCLK.

Figure 13—7. MSP430 Baud Rate Generator

28 27 501
UxBR1 UxBRO
UCLKI \4\8 \L\S
ACLK -
16-Bit Counter RF—
SMCLK
SMCLK ¥ Q15 e v oo
+0 or 1 Compare (0 or 1) > Toggle
R

Modulation Data Shift Register R
(LSB first)

]

mX

8

m7

UXMCTL

|

Bit Start

BITCLK

Timing for each bit is shown in Figure 13-8. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2—1,
N/2, and N/2+1 BRCLK periods, where N is the number of BRCLKs per

BITCLK.

Figure 13-8. BITCLK Baud Rate Timing

Majority Vote: (M= 0); ; ;

Bit Start
SS—I

(m= l); ; ;

Q¢

))

{(
)

BRCLK
oS I
1 N/2 ;. N/2-1 N/2-2 1 N/2 N/2-1
Counter N/2 N/2-1 N/2-2
0 N/2 N/2-1 0 N/2
S (¢
BITCLK >
S() ()()
—— INT(N/2) +m(= 0) —P»i NEVEN: INT(N/2) —P»
4 INT(N/2) + m(= 1) —> Nopp: INT(N/2) + R(= 1) —p»
< Bit Period L gl

m: corresponding modulation bit
R: Remainder from N/2 division

USART Peripheral Interface, UART Mode

13-11

USART Operation: UART Mode

Baud Rate Bit Timing

The first stage of the baud rate generator is the 16-bit counter and comparator.
At the beginning of each bit transmitted or received, the counter is loaded with
INT(N/2) where N is the value stored in the combination of UXBR0O and UXBR1.
The counter reloads INT(N/2) for each bit period half-cycle, giving a total bit
period of N BRCLKSs. For a given BRCLK clock source, the baud rate used
determines the required division factor N:

BRCLK

N= baud rate

The division factor N is often a non-integer value of which the integer portion
can be realized by the prescaler/divider. The second stage of the baud rate
generator, the modulator, is used to meet the fractional part as closely as
possible. The factor N is then defined as:

1n—1
N = UxBR + = 2 m;
i=0
Where:
N: Target division factor

UxBR: 16-bit representation of registers UxBRO and UxBR1
i Bit position in the frame

n: Total number of bits in the frame
mj: Data of each corresponding modulation bit (1 or 0)
Baud rate = BRﬁLK _ BRCLK

UXBR + 15 m,
i=0

The BITCLK can be adjusted from bit to bit with the modulator to meet timing
requirements when a non-integer divisor is needed. Timing of each bit is
expanded by one BRCLK clock cycle if the modulator bit m; is set. Each time
a bit is received or transmitted, the next bit in the modulation control register
determines the timing for that bit. A set modulation bit increases the division
factor by one while a cleared modulation bit maintains the division factor given
by UxBR.

The timing for the start bit is determined by UxBR plus mO0, the next bit is
determined by UxBR plus m1, and so on. The modulation sequence begins
with the LSB. When the character is greater than 8 bits, the modulation
sequence restarts with m0 and continues until all bits are processed.

Determining the Modulation Value

13-12

Determining the modulation value is an interactive process. Using the timing
error formula provided, beginning with the start bit , the individual bit errors are
calculated with the corresponding modulator bit set and cleared. The
modulation bit setting with the lower error is selected and the next bit error is
calculated. This process is continued until all bit errors are minimized. When
a frame contains more than 8 bits, the modulation bits repeat. For example,
the 9th bit of a frame uses modulation bit O.

USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Transmit Bit Timing
The timing for each character is the sum of the individual bit timings. By
modulating each bit, the cumulative bit error is reduced. The individual bit error
can be calculated by:

Error [%] = [bglriijﬁie X [(j + 1) X UXxBR + E:mi] -+ 1)] x 100%

With:
baud rate: Desired baud rate
BRCLK: Input frequency — UCLKI, ACLK, or SMCLK
J: Bit position - O for the start bit, 1 for data bit DO, and so on
UxBR: Division factor in registers UxBR1 and UxBRO

For example, the transmit errors for the following conditions are are calculated:

Baud rate = 2400

BRCLK = 32,768 Hz (ACLK)

UXBR = 13, since the ideal division factor is 13.65
UXMCTL = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0,

ml1=1, and mO0=1. The LSB of UXMCTL is used first.

Start bit Error [%] = (M x ((0 + 1) X UXBR + 1)— 1) x 100% = 2.54%

BRCLK
Data bit DO Error [%] = (% % (1 + 1) X UXBR + 2)— 2) x 100% = 5.08%
Data bit D1 Error [%] = (bggdcﬁie x ((2 + 1) X UXBR + 2)— 3) x 100% = 0.29%
Data bit D2 Error [%] = (bglédcﬁie x ((3 + 1) X UXBR + 3)— 4) x 100% = 2.83%
Data bit D3 Error [%] = (bg‘é%ﬁie x (4 + 1) x UXBR + 3)— 5) x 100% = —1.95%
Data bit D4 Error [%] = (bggdcﬁie % ((5 + 1) X UXBR + 4)— 6) x 100% = 0.59%
Data bit D5 Error [%] = (bg‘é%ﬁie x ((6 + 1) X UXBR + 5)— 7) % 100% = 3.13%
Data bit D6 Error [%] = (bg‘édcﬁie x ((7 + 1) x UXBR + 5) 8) x 100% = —1.66%
Data bit D7 Error [%] = (bS‘FJ;’Tﬁe x ((8 + 1) x UXBR + 6)—9) x 100% = 0.88%

Parity bit Error [%] = (%cﬁe x ((9 + 1) x UXBR + 7)- 10) x 100% = 3.42%

Stop bit 1 Error [%] = (% x ((10 + 1) x UXBR + 7)— 11) x 100% = —1.37%

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

USART Peripheral Interface, UART Mode 13-13

USART Operation: UART Mode

Receive Bit Timing

Receive timing consists of two error sources. The first is the bit-to-bit timing
error. The second is the error between a start edge occurring and the start
edge being accepted by the USART. Figure 13-9 shows the asynchronous
timing errors between data on the URXDx pin and the internal baud-rate clock.

Figure 13-9. Receive Error

i | 0 | 1 | 2

tideall to | t1 |
|1]2]3]4|s|e|7 || ololit|1213|14| 1| 2| 3| 4| 5|6 |7 |8 | 9|t0|11|12]13|14 1] 2| 3] 4] 5] 6|7

URXDx_l

URXDS | |

|
tactual |
—® [€— Synchronization Error + 0.5x BRCLK

|

| | |
sample |]]

I I

|

URXDS ! Int(UxBR/2)+m0 = / | \ UxBR +m1 =13+1 =14 /A UxBR +m2 = 13+0 = 13 [T
nt (13/2)+1=6+147 \ /1A R
| Majority Vote Taken Majority Vote Taken Majority Vote Taken

The ideal start bit timing tigea() is half the baud-rate timing thayd rate Pecause
the bitis tested in the middle of its period. The ideal baud rate timing tigeaj(j) for
the remaining character bits is the baud rate timing tp5d rate- The individual bit
errors can be calculated by:

Error [%] = % X [2 X [mO + int (%)] + (i X UxBR + Tgllmi)] -1- j) x 100%
Where:

baud rate is the required baud rate

BRCLK is the input frequency—selected for UCLK, ACLK, or SMCLK

j = 0 for the start bit, 1 for data bit DO, and so on

UxBR is the division factor in registers UxBR1 and UxBRO

13-14 USART Peripheral Interface, UART Mode

USART Operation: UART Mode

For example, the receive errors for the following conditions are are calculated:

Start bit Error [%] = (

Data bit DO Error [%] =

Data bit D1 Error [%] =
Data bit D2 Error [%] =
Data bit D3 Error [%] =
Data bit D4 Error [%] =
Data bit D5 Error [%] =

Data bit D6 Error [%] =

Data bit D7 Error [%] =
Parity bit Error [%] = (

Stop bit 1 Error [%] = (

baud rate
BRCLK

baud rate

baud rate

Baud rate = 2400

BRCLK =
UxBR =

UXMCTL =

baud rate
BRCLK

baud rate
BRCLK

baud rate
BRCLK

baud rate
BRCLK

(
(
(
(M
(
(

BRCLK

baud rate

BRCLK

baud rate

BRCLK

(baud rate

BRCLK

BRCLK

BRCLK

32,768 Hz (ACLK)
13, since the ideal division factor is 13.65

m0=1 The LSB of UXMCTL is used first.

x [2x(1 + 6) + (0 x UXBR + 0)] — 1 — O) X 100% = 2.54%

X [2x(1 + 6) + (1 X UXBR + 1)]-1-1) x 100% = 5.08%

x [2x(1 + 6) + (2 X UXBR + 1)]-1-2| x 100% = 0.29%
x [2x(1 + 6) + (3 X UXBR + 2)]-1-3| x 100% = 2.83%
x [2x(1 + 6) + (5 X UXBR + 3)]-1-5] x 100% = 0.59%
x [2x(1 + 6) + (6 x UXBR + 4)]-1-6 | x 100% = 3.13%
x [2x(1 + 6) + (7 X UXBR + 4)]-1-7

x [2x(1 + 6) + (8 X UXBR + 5)]—1—8) x 100% = 0.88%

x [2x(1 + 6) + (9 x UxBR + 6)]—1—9) X 100% = 3.42%

x [2x(1 + 6) + (10 x UxBR + 6)]—1—10) X 100% = -1.37%

x [2x(1 + 6) + (4 X UXBR + 2)]-1— 4) X 100% = —1.95%
) X 100% = —1.66%

6B:m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and

The results show the maximum per-bit error to be 5.08% of a BITCLK period.

USART Peripheral Interface, UART Mode

13-15

USART Operation: UART Mode

Typical Baud Rates and Errors

Standard baud rate frequency data for UxBRx and UxMCTL are listed in
Table 13-2 for a 32,768-Hz watch crystal (ACLK) and a typical 1,048,576-Hz

SMCLK.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The transmit error is the accumulated timing error versus
the ideal time of the bit period.

Table 13—2.Commonly Used Baud Rates, Baud Rate Data, and Errors

Divide by A: BRCLK = 32,768 Hz B: BRCLK = 1,048,576 Hz
Max. Max. Synchr. Max. Max.
Baud X RX RX X RX
Rate A: B: UxBR1 | UXBRO | UXMCTL | Error % | Error % | Error % | UxBR1 | UXBRO | UXMCTL | Error % | Error %
1200 | 27.31 | 873.81 0 1B 03 —4/3 —4/3 +2 03 69 FF 0/0.3 +2
2400 | 13.65 | 436.91 0 oD 6B -6/3 —6/3 +4 01 B4 FF 0/0.3 +2
4800 6.83 | 218.45 0 06 6F -9/11 -9/11 +7 0 DA 55 0/0.4 +2
9600 3.41 | 109.23 0 03 4A -21/12 | -21/12 +15 0 6D 03 -0.4/1 +2
19,200 54.61 0 36 6B -0.2/2 +2
38,400 27.31 0 1B 03 —4/3 +2
76,800 13.65 0 (0]5] 6B —6/3 +4
115,200 9.1 0 09 08 -5/7 +7
13-16 USART Peripheral Interface, UART Mode

USART Operation: UART Mode

13.2.7 USART Interrupts

The USART has one interrupt vector for transmission and one interrupt vector
for reception.

USART Transmit Interrupt Operation

The UTXIFGXx interrupt flag is set by the transmitter to indicate that UXTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UXTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEXx s reset aftera PUC
or when SWRST = 1. The operation is shown is Figure 13-10.

Figure 13—10. Transmit Interrupt Operation

UTXIEX

Clear

PUC or SWRST %
Interrupt Service Requested

Set —
vee —{p 0 UTXIFGX \ >

Character Moved From = r
Buffer to Shift Register Clear SWRST

Data written to UXTXBUF
IRQA

USART Peripheral Interface, UART Mode 13-17

USART Operation: UART Mode

USART Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UXRXBUF. An interrupt request is generated if URXIEx and GIE are also
set. URXIFGx and URXIEXx are reset by a system reset PUC signal or when
SWRST = 1. URXIFGx is automatically reset if the pending interrupt is served
(when URXSE = 0) or when UXRXBUF is read. The operation is shown in
Figure 13-11.

Figure 13—11.Receive Interrupt Operation

SYNC m
Valid Start Bit %_}_ < URXS
Receiver Collects Character
URXSE I——Q—I_

From URXD T >
r——————————— — — — 1 Clear
| Erroneous Character Rejection |
| PE | URXIEX Interrupt Service
| FE | Requested

BRK
!_ URXEIE L S
'_____________::::::: URXIEGX

| i >

| URXWIE | Clear

:RXWAKE — : SWRST
|

PUC
UXRXBUF Read

Character Received

or

Le————— - Break Detected (E URXSE
] IRQA

URXEIE is used to enable or disable erroneous characters from setting
URXIFGx. When using multiprocessor addressing modes, URXWIE is used
to auto-detect valid address characters and reject unwanted data characters.

Two types of characters do not set URXIFGXx:

[Erroneous characters when URXEIE =0
(1 Non-address characters when URXWIE =1

When URXEIE =1 a break condition will set the BRK bit and the URXIFGx flag.

13-18 USART Peripheral Interface, UART Mode

USART Operation: UART Mode

Receive-Start Edge Detect Operation

The URXSE bit enables the receive start-edge detection feature. The
recommended usage of the receive-start edge feature is when BRCLK is
sourced by the DCO and when the DCO is off because of low-power mode
operation. The ultra-fast turn-on of the DCO allows character reception after
the start edge detection.

When URXSE, URXIEx and GIE are set and a start edge occurs on URXDX,
the internal signal URXS will be set. When URXS is set, a receive interrupt
request is generated but URXIFGXx is not set. User software in the receive
interrupt service routine can test URXIFGx to determine the source of the
interrupt. When URXIFGx = 0 a start edge was detected and when URXIFGx
=1 a valid character (or break) was received.

When the ISR determines the interrupt request was from a start edge, user
software toggles URXSE, and must enable the BRCLK source by returning
fromthe ISR to active mode or to a low-power mode where the source is active.
If the ISR returns to a low-power mode where the BRCLK source is inactive,
the character will not be received. Toggling URXSE clears the URXS signal
and re-enables the start edge detect feature for future characters. See chapter
System Resets, Interrupts, and Operating Modes for information on entering
and exiting low-power modes.

The now active BRCLK allows the USART to receive the balance of the
character. After the full character is received and moved to UxRXBUF,
URXIFGx is set and an interrupt service is again requested. Upon ISR entry,
URXIFGx = 1 indicating a character was received. The URXIFGx flag is
cleared when user software reads UxRXBUF.

; Interrupt handler for frame start condition and
: Character receive. BRCLK = DCO

UWORX_Int BIT.B #URXI FQ), & FG ; Test URXIFGx to determ ne

JNE ST_COND ; If start or character
MOV. B &UxRXBUF, dst ; Read buffer
RETI ;

ST_COND BIC. B #URXSE, &UTCTL ; Cear URXS signal
Bl S. B #URXSE, &U0TCTL ; Re-enabl e edge detect
BIC #SCR0+SCGL, O(SP) ; Enable BRCLK = DCO
RETI ;

Note: Break Detect With Halted UART Clock

When using the receive start-edge detect feature a break condition cannot
be detected when the BRCLK source is off.

USART Peripheral Interface, UART Mode 13-19

USART Operation: UART Mode

Receive-Start Edge Detect Conditions

When URXSE = 1, glitch suppression prevents the USART from being
accidentally started. Any low-level on URXDx shorter than the deglitch time t;
(approximately 300 ns) will be ignored by the USART and no interrupt request
will be generated as shown in Figure 13-12. See the device-specific
datasheet for parameters.

Figure 13-12. Glitch Suppression, USART Receive Not Started

URXDx

URXS

L

When aglitchis longer thant; or avalid start bit occurs on URXDx, the USART
receive operation is started and a majority vote is taken as shown in
Figure 13-13. If the majority vote fails to detect a start bit the USART halts
character reception.

If character reception is halted, an active BRCLK is not necessary. A time-out
period longer than the character receive duration can be used by software to
indicate that a character was not received in the expected time and the
software can disable BRCLK.

Figure 13-13. Glitch Suppression, USART Activated

Majority Vote Taken

URXDx

URXS

13-20 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

13.3 USART Registers: UART Mode

Table 13-3 lists the registers for all devices implementing a USART module.
Table 13-4 applies only to devices with a second USART module, USART1.

Table 13—-3.USARTO Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register UOCTL Read/write 070h 001h after PUC
Transmit control register UOTCTL Read/write 071h 001h after PUC
Receive control register UORCTL Read/write 072h 000h after PUC
Modulation control register UOMCTL Read/write 073h Unchanged
Baud rate control register O UOBRO Read/write 074h Unchanged
Baud rate control register 1 UOBR1 Read/write 075h Unchanged
Receive buffer register UORXBUF Read 076h Unchanged
Transmit buffer register UOTXBUF Read/write 077h Unchanged
SFR module enable register 1t ME1 Read/write 004h 000h after PUC
SFR interrupt enable register 17 IE1 Read/write 000h 000h after PUC
SFR interrupt flag register 1t IFG1 Read/write 002h 082h after PUC

t Does not apply to '12xx devices. Refer to the register definitions for registers and bit positions for these devices.

Table 13—-4.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register UL1CTL Read/write 078h 001h after PUC
Transmit control register U1TCTL Read/write 079h 001h after PUC
Receive control register U1RCTL Read/write 07Ah 000h after PUC
Modulation control register U1IMCTL Read/write 07Bh Unchanged
Baud rate control register 0 U1BRO Read/write 07Ch Unchanged
Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged
Receive buffer register U1RXBUF Read 07Eh Unchanged
Transmit buffer register U1TXBUF Read/write 07Fh Unchanged
SFR module enable register 2 ME2 Read/write 005h 000h after PUC
SFR interrupt enable register 2 IE2 Read/write 001h 000h after PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 000h after PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clearthe IEx and IFGx bits using Bl S. Bor Bl C. Binstructions, rather than
MOV. B or CLR. B instructions.

USART Peripheral Interface, UART Mode 13-21

USART Registers: UART Mode

UXCTL, USART Control Register

7 6 5 4 3 2 1 0
PENA PEV SPB CHAR LISTEN SYNC MM SWRST
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—1
PENA Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UTXDx) and expected
(URXDXx). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.
PEV Bit 6 Parity select. PEV is not used when parity is disabled.
0 Odd parity
1 Even parity
SPB Bit 5 Stop bit select. Number of stop bits transmitted. The receiver always
checks for one stop bit.
0 One stop bit
1 Two stop bits
CHAR Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 7-bit data
1 8-bit data
LISTEN Bit 3 Listen enable. The LISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UTXDx is internally fed back to the receiver.
SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI Mode
MM Bit 1 Multiprocessor mode select
0 Idle-line multiprocessor protocol
1 Address-bit multiprocessor protocol
SWRST Bit 0 Software reset enable
0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state
13-22 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

UXTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0
Unused CKPL SSELX URXSE TXWAKE Unused TXEPT
rw-0 rw-0 rw—0 rw-0 rw-0 rw—0 rw—0 rw—1
Unused Bit 7 Unused
CKPL Bit 6 Clock polarity select

0 UCLKI = UCLK
1 UCLKI = inverted UCLK

SSELX Bits Source select. These bits select the BRCLK source clock.
5-4 00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK
URXSE Bit 3 UART receive start-edge. The bit enables the UART receive start-edge
feature.
0 Disabled
1 Enabled

TXWAKE Bit 2 Transmitter wake
0 Next frame transmitted is data
1 Next frame transmitted is an address

Unused Bit 1 Unused

TXEPT Bit 0 Transmitter empty flag
0 UART is transmitting data and/or data is waiting in UXTXBUF
1 Transmitter shift register and UXTXBUF are empty or SWRST=1

USART Peripheral Interface, UART Mode 13-23

USART Registers: UART Mode

UXRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0
FE PE OE BRK URXEIE URXWIE RXWAKE RXERR
rw—0 rw—0 rw—0 rw—0 rw—0 rw-0 rw-0 rw—0

FE Bit 7 Framing error flag
0 No error
1 Character received with low stop bit

PE Bit 6 Parity error flag. When PENA = 0, PE is read as 0.
0 No error
1 Character received with parity error

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxRXBUF before the previous character was read.
0 No error
1 Overrun error occurred

BRK Bit 4 Break detect flag
0 No break condition
1 Break condition occurred

URXEIE Bit 3 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and URXIFGx is not set
1 Erroneous characters received will set URXIFGx

URXWIE Bit 2 Receive wake-up interrupt-enable. This bit enables URXIFGx to be set
when an address character is received. When URXEIE = 0, an address
character will not set URXIFGx if it is received with errors.
0 All received characters set URXIFGXx
1 Only received address characters set URXIFGx

RXWAKE Bit 1 Receive wake-up flag
0 Received character is data
1 Received character is an address

RXERR Bit 0 Receive error flag. This bit indicates a character was received with error(s).
When RXERR = 1, on or more error flags (FE,PE,OE, BRK) is also set.
RXERR is cleared when UxRXBUF is read.
0 No receive errors detected
1 Receive error detected

13-24 USART Peripheral Interface, UART Mode

USART Registers: UART Mode

UxBRO, USART Baud Rate Control Register O

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
w rw rw w rw rw rw rw

UxBR1, USART Baud Rate Control Register 1

5 4 3 2 1 0

215 214 213 212 211 210 29 28

rw 'w 'w rw 'w 'w w 'w
UXBRX

The valid baud-rate control range is 3 < UxBR < OFFFFh, where UxBR =

{UxBR1+UxBRO0}. Unpredictable receive and transmit timing occurs if
UxBR <3.

UXMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0
m7 m6 m5 m4 m3 m2 ml mO
w rw rw w rw rw rw rw
UXMCTLX Bits Modulation bits. These bit select the modulation for BRCLK.
7-0
USART Peripheral Interface, UART Mode 13-25

USART Registers: UART Mode

UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
r r r r r r r r
UxRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0

character from the receive shift register. Reading UXRXBUF resets the
receive-error bits, the RXWAKE bit, and URXIFGxX. In 7-bit data mode,
UxXRXBUF is LSB justified and the MSB is always reset.

UXTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
r'w rw 'w r'w rw 'w r'w rw
UXTXBUFx Bits The transmit data buffer is user accessible and holds the data waiting to be
7-0

13-26

moved into the transmit shift register and transmitted on UTXDx. Writing to
the transmit data buffer clears UTXIFGx. The MSB of UXTXBUF is not
used for 7-bit data and is reset.

USART Peripheral Interface, UART Mode

USART Registers: UART Mode

ME1, Module Enable Register 1

7 6 5 4 3 2 1 0
uTxeot URXEOT
rw—0 rw-0
UTXEO? Bit 7 USARTO transmit enable. This bit enables the transmitter for USARTO.

0 Module not enabled
1 Module enabled

URXEOT Bit 6 USARTO receive enable. This bit enables the receiver for USARTO.
0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific datasheet.
5-0
1t Does not apply to MSP430x12xx devices. See ME2 for the MSP430x12xx USARTO module enable bits

MEZ2, Module Enable Register 2

7 6 5 4 3 2 1 0
UTXE1 URXE1L uTxeof URXEOF
rw—0 rw—0 rw—0 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6
UTXE1 Bit 5 USART1 transmit enable. This bit enables the transmitter for USART1.

0 Module not enabled
1 Module enabled

URXE1 Bit 4 USART1 receive enable. This bit enables the receiver for USART1.
0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific datasheet.
3-2
UTXEO? Bit 1 USARTO transmit enable. This bit enables the transmitter for USARTO.

0 Module not enabled
1 Module enabled

URXEO* Bit 0 USARTO receive enable. This bit enables the receiver for USARTO.
0 Module not enabled
1 Module enabled

* MSP430x12xx devices only

USART Peripheral Interface, UART Mode 13-27

USART Registers: UART Mode

IEL, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
UTXIEOT URXIEOT
rw—0 rw—0
UTXIEOT Bit 7 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEOT Bit 6 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific datasheet.
5-0

 Does not apply to MSP430x12xx devices. See |IE2 for the MSP430x12xx USARTO interrupt enable bits

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UTXIEL URXIE1 UTXIEOT URXIEOY
rw—0 rw—0 rw—0 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6
UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific datasheet.
3-2
UTXIEOF Bit 1 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEO* Bit 0 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt.

¥ MSP430x12xx devices only

13-28

0 Interrupt not enabled
1 Interrupt enabled

USART Peripheral Interface, UART Mode

USART Registers: UART Mode

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
uTxIFGoT | URxIFGot
rw-1 rw—-0
UTXIFGOT Bit7 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGOT Bit6 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
5-0

T Does not apply to MSP430x12xx devices. See IFG2 for the MSP430x12xx USARTO interrupt flag bits

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UTXIFG1 URXIFG1 UTXIFGOF | URXIFGO*
rw—1 rw—0 rw—-1 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6
UTXIFG1 Bit 5 USARTL1 transmit interrupt flag. UTXIFGL1 is set when U1TXBUF empty.
0 No interrupt pending
1 Interrupt pending
URXIFG1 Bit 4 USARTL1 receive interrupt flag. URXIFG1 is setwhen ULRXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
3-2
UTXIFGO* Bit1 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGO* Bit0 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received

+ MSP430x12xx devices only

a complete character.
0 No interrupt pending
1 Interrupt pending

USART Peripheral Interface, UART Mode 13-29

13-30 USART Peripheral Interface, UART Mode

Chapter 14

USART Peripheral Interface, SPI Mode

The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the synchronous peripheral interface
or SPI mode. USARTO is implemented on the MSP430x12xx, MSP430x13xXx,
and MSP430x15x devices. In addition to USARTO, the MSP430x14x and
MSP430x16x devices implement a second identical USART module,
USARTL1.

Topic Page
14.1 USART Introduction: SPIMode ..., 14-2
14.2 USART Operation: SPIMode ...t 14-4
14.3 USART Registers: SPIMode 14-13

14-1

USART Introduction: SPI Mode

14.1 USART Introduction: SPI Mode

In synchronous mode, the USART connects the MSP430 to an external
system via three or four pins: SIMO, SOMI, UCLK, and STE. SPI mode is
selected when the SYNC bit is set and the 12C bit is cleared.

SPI mode features include:
7- or 8-bit data length
3-pin and 4-pin SPI operation

Master or slave modes

4

U

a

(1 Independent transmit and receive shift registers

[Separate transmit and receive buffer registers

[Selectable UCLK polarity and phase control

(1 Programmable UCLK frequency in master mode

[d Independent interrupt capability for receive and transmit

Figure 14-1 shows the USART when configured for SPI mode.

14-2 USART Peripheral Interface, SPI Mode

Figure 14-1. USART Block Diagram: SPI Mode

SWRST USPIEx*

URXEIE URXWIE

FE PE OE BRK

7T

Receive Status

USART Introduction: SPI Mode

T T SYNC=1
URXIFGx*
Receive Control —&
Receiver Buffer UXRXBUF LISTEN MM SYNC

*

RXERR RXWAKE L

Receiver Shift Register g] ? ‘
|
L ‘
|
SSEL1 SSELO sp CHAR PEV PENA } 1 URXD
|
UCLKS ;
UCLKI 00 Baud—Rate Generator € | 0
I STE
ACLK —] 01 } <_<:
Prescaler/Divider UXBRx
SMCLK — 10 |
|
SMCLK —+ 11
Modulator UXMCTL } UTXD
|
SP CHAR PEV PENA }
|
1 |
7!
[
wuT [Transmit Shift Register > e O 1 SIMO
: x]
0, 0
TXWAKE Transmit Buffer UXTXBUF |
[
[
UTXIFGX* l
| Transmit Control }
|
L L L L SYNC CKPH CKPL |
|
SWRST USPIEX* TXEPT —= T T !
STC Ly ‘ UCLK
U%Kl Clock Phase and Polarity «—<_ >
* Refer to the device-specific datasheet for SFR locations
USART Peripheral Interface, SPI Mode 14-3

USART Operation: SPI Mode

14.2 USART Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, STE, is provided as
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

[SIMO Slave in, master out
Master mode: SIMO is the data output line.
Slave mode: SIMO is the data input line.

[J SOMI Slave out, master in
Master mode: SOMI is the data input line.
Slave mode: SOMI is the data output line.

[UCLK USART SPI clock
Master mode: UCLK is an output.
Slave mode: UCLK is an input.

O STE Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode.
4-Pin master mode:
When STE is high, SIMO and UCLK operate normally.
When STE is low, SIMO and UCLK are set to the input direction.
4-pin slave mode:
When STE is high, RX/TX operation of the slave is disabled and
SOMI is forced to the input direction.
When STE is low, RX/TX operation of the slave is enabled and
SOMI operates normally.

14.2.1 USART Initialization and Reset

14-4

The USART is reset by a PUC or by the SWRST hit. After a PUC, the SWRST
bit is automatically set, keeping the USART in a reset condition. When set, the
SWRST bit resets the URXIEX, UTXIEx, URXIFGx, OE, and FE bits and sets
the UTXIFGx flag. The USPIEX bit is not altered by SWRST. Clearing SWRST
releases the USART for operation. See also chapter USART Module, 12C
mode for USARTO when reconfiguring from 12C mode to SPI mode.

Note: Initializing or Re-Configuring the USART Module

The required USART initialization/re-configuration process is:

1) Set SWRST (Bl S. B #SWRST, &UxCTL)

2) Initialize all USART registers with SWRST=1 (including UXCTL)

3) Enable USART module via the MEx SFRs (USPIEX)

4) Clear SWRST via software (Bl C. B #SWRST, &UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEX)

Failure to follow this process may result in unpredictable USART behavior.

USART Peripheral Interface, SPI Mode

14.2.2 Master Mode

USART Operation: SPI Mode

Figure 14-2. USART Master and External Slave

MASTER SIMO - SIMO SLAVE
Receive Buffer UXRXBUF Transmit Buffer UXTXBUF SPI Receive Buffer

Px.x > STE
ss

STE <
Port.x

))) o) SOMI SOMI))
Receive Shift Register L1 Transmit Shift Register < Data Shift Register (DSR) H
MSB LSB W MSB LSB MSB LSB
UCLK > SCLK
MSP430 USART COMMON SPI

Four-Pin SPI Master

Figure 14-2 shows the USART as a master in both 3-pin and 4-pin
configurations. The USART initiates data transfer when data is moved to the
transmit data buffer UXTXBUF. The UXTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on SIMO
starting with the most-significant bit. Data on SOMI is shifted into the receive
shift register on the opposite clock edge, starting with the most-significant bit.
When the character is received, the receive data is moved from the RX shift
register to the received data buffer UXRXBUF and the receive interrupt flag,
URXIFGY, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UTXIFGX, indicates that data has moved from
UxTXBUF to the TX shift register and UxTXBUF is ready for new data. It does
not indicate RX/TX completion.

To receive data into the USART in master mode, data must be written to
UxTXBUF because receive and transmit operations operate concurrently.
Mode

In 4-pin master mode, STE is used to prevent conflicts with another master.
The master operates normally when STE is high. When STE is low:

(1 SIMO and UCLK are set to inputs and no longer drive the bus

(1 The error bit FE is set indicating a communication integrity violation to be
handled by the user

A low STE signal does not reset the USART module. The STE input signal is
not used in 3-pin master mode.

USART Peripheral Interface, SPI Mode 14-5

USART Operation: SPI Mode

14.2.3 Slave Mode
Figure 14-3. USART Slave and External Master

MASTER simo| _ |simo SLAVE
SPI Receive Buffer Transmit Buffer UXTXBUF Receive Buffer UXRXBUF
Px.x > STE
Ss
TE <
S Port.x
. . SOMI SOMI N) . . .
.1 Data Shift Register DSR < Transmit Shift Register Receive Shift Register |-
MSB LSB MSB LSB MSB LSB
SCLK » UCLK
COMMON SPI MSP430 USART

Figure 14-3 shows the USART as a slave in both 3-pin and 4-pin
configurations. UCLK is used as the input for the SPI clock and must be
supplied by the external master. The data-transfer rate is determined by this
clock and not by the internal baud rate generator. Data written to UXTXBUF
and moved to the TX shift register before the start of UCLK is transmitted on
SOMI. Data on SIMO is shifted into the receive shift register on the opposite
edge of UCLK and moved to UxRXBUF when the set number of bits are
received. When data is moved from the RX shift register to UXRXBUF, the
URXIFGXx interrupt flag is set, indicating that data has been received. The
overrun error bit, OE, is set when the previously received data is not read from
UXRXBUF before new data is moved to UXRXBUF.

Four-Pin SPI Slave Mode

14-6

In 4-pin slave mode, STE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master. When STE is low, the
slave operates normally. When STE is high:

[0 Any receive operation in progress on SIMO is halted
[0 SOMl is set to the input direction

A high STE signal does not reset the USART module. The STE input signal
is not used in 3-pin slave mode.

USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

14.2.4 SPI Enable

The SPI transmit/receive enable bit USPIEx enables or disables the USART
in SPI mode. When USPIEx =0, the USART stops operation after the current
transfer completes, or immediately if no operation is active. A PUC or set
SWRST bit disables the USART immediately and any active transfer is

terminated.

Transmit Enable

When USPIEx = 0, any further write to UXTXBUF does not transmit. Data
written to UxTXBUF will begin to transmit when USPIEx = 1 and the BRCLK
source is active. Figure 14—4 and Figure 14-5 show the transmit enable state

diagrams.

Figure 14-4. Master Mode Transmit Enable

No Data Written
to Transfer Buffer

USPIEx =0 Not Completed

USPIEXx =1,
Data Written to

USPIEx =1

: Idle State Transmit Buffer
Transmit _ (Transmitter Transmission (I-zlang!eT Interrupt
i i onditions
Disable Enabled) Active

USPIEx =0

Character
Transmitted

PUC

USPIEX = 0 And Last Buffer
Entry Is Transmitted

Figure 14-5. Slave Transmit Enable State Diagram

USPIEx =0 No Clock at UCLK Not Completed

USPIEx =1 Idle State

- (Transmitter

Enabled)
USPIEx=0

USPIEx =1

Handle Interrupt
Conditions

Transmission
Active

Transmit
Disable

External Clock
Present

Character

USPIEx =1 Transmitted

PUC
USPIEx=0

USART Peripheral Interface, SPI Mode 14-7

USART Operation: SPI Mode

Receive Enable

The SPI receive enable state diagrams are shown in Figure 14-6 and

Figure 14—7. When USPIEx = 0, UCLK is disabled from shifting data into the
RX shift register.

Figure 14-6. SPI Master Receive-Enable State Diagram

USPIEx=0

No Data Written
to UXTXBUF

Not Completed

USPIEx =1

- Receiver
Receive z(lj?lscsetiszaer USPIEX = 1 CoIIeI(\:/ts Handle Interrupt
i . Conditions
Disable Enabled) Data Written Character "
USPIEx=0

to UXTXBUF

Character
Received
PUC USPIEx=1
USPIEx=0
Figure 14—7. SPI Slave Receive-Enable State Diagram
— No Clock at UCLK
USPIEx=0 o ~locka Not Completed

USPIEx =1

- Receiver
Receive Idle State USPIEx =1 Handle Interrupt
- (Receive Collects Conditi
Disable Enabled) External Clock Character onditions
USPIEx=0

Present

Character

USPIEX = 1 Received
PUC

USPIEx=0

14-8 USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

14.2.5 Serial Clock Control

UCLK is provided by the master on the SPI bus. When MM = 1, BITCLK is
provided by the USART baud rate generator on the UCLK pin as shown in
Figure 14-8. When MM = 0, the USART clock is provided on the UCLK pin by
the master and, the baud rate generator is not used and the SSELX bits are
don’t care. The SPI receiver and transmitter operate in parallel and use the
same clock source for data transfer.

Figure 14-8. SPI Baud Rate Generator

28 27 501
UxBR1 UXBRO
UCLKI \LS \LB
ACLK
16-Bit Counter RF—
SMCLK
SMCLK ¥ Q15 oo v oo
Compare (0 or 1) > Toggle > BiTCLK
R

Modulation Data Shift Register R
(LSB first)

mX m7 8 mo
UXMCTL Bit Start

The 16-bit value of UXBRO+UxBR1 is the division factor of the USART clock
source, BRCLK. The maximum baud rate that can be generated in master
mode is BRCLK/2. The modulator in the USART baud rate generator is not
used for SPI mode and is recommended to be set to 000h. The UCLK
frequency is given by:

BRCLK

Baud rate = UxBR

with UxBR= [UxBR1, UxBRO]

USART Peripheral Interface, SPI Mode 14-9

USART Operation: SPI Mode

Serial Clock Polarity and Phase
The polarity and phase of UCLK are independently configured via the CKPL

and CKPH control bits of the USART. Timing for each case is shown in
Figure 14-9.

Figure 14-9. USART SPI Timing

o o wvek SN /N /S
o 1 e \ /W WSS
10 Utk | _/__/__/__/__/__/__/__/__
ro1roovew - N\
T G- G G G S) G 6
O v (=)) G SR SR SR) G
Move to UxTXBUF |
RX Sample Points | | | | | | | |

14-10 USART Peripheral Interface, SPI Mode

USART Operation: SPI Mode

14.2.6 SPI Interrupts

The USART has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UTXIFGXx interrupt flag is set by the transmitter to indicate that UXTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UXTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEXx s reset aftera PUC
or when SWRST = 1. The operation is shown is Figure 14-10.

Figure 14-10. Transmit Interrupt Operation

UTXIEx -—————
Q L SYNC =1

—— — —)

1
|

Clear

PUC or SWRST %
set |UTXIFGx Interrupt Service Requested
Vcce —|D Q

Character Moved From
—
Buffer to Shift Register Clear SWRST

Data moved to UXTXBUF
IRQA

Note: Writing to UXTXBUF in SPI Mode

Data written to UXTXBUF when UTXIFGx = 0 and USPIEx = 1 may result in
erroneous data transmission.

USART Peripheral Interface, SPI Mode 14-11

USART Operation: SPI Mode

SPI Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UXRXBUF as shown in Figure 14-11 and Figure 14-12. An interrupt
request is generated if URXIEx and GIE are also set. URXIFGx and URXIEx
are reset by a system reset PUC signal or when SWRST = 1. URXIFGx is
automatically reset if the pending interrupt is served or when UxRXBUF is
read. The operation is shown in .

Figure 14-11.Receive Interrupt Operation

SYNC——F» RS |
| SYNC=1
Valid Start Bit URXS LoMNeT
Receiver Collects Character
URXSEm .
From URXD
URXIEX Interrupt Service
EE: Requested
> D
URXEIER (S)
URXIFGXx
URXWIER e >
Clear
RXWAKE®
SWRST
Character Received PUC
UxXRXBUF Read

([e
| IRQA

Figure 14-12. Receive Interrupt State Diagram

SWRST =1

URXIFGx =0
URXIEx =0

Wait For Next
Start

SWRST =1

Receive
Character

USPIEx=0 USPIEx =0

Interrupt

Receive

USPIEX = 1 _ .
Character URXIFGx = 1 USPIEx=1and [Service Started,
Completed URXIEx = 1 and GIE=0
GIE =1 and URXIFGx =0

Priority Valid
GIE=0 4

14-12 USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

14.3 USART Registers: SPI Mode

The USART registers, shown in Table 14-1 and Table 14-2, are byte
structured and should be accessed using byte instructions.

Table 14-1.USARTO Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register UOCTL Read/write 070h 001h after PUC
Transmit control register UOTCTL Read/write 071h 001h after PUC
Receive control register UORCTL Read/write 072h 000h after PUC
Modulation control register UOMCTL Read/write 073h Unchanged
Baud rate control register 0 UOBRO Read/write 074h Unchanged
Baud rate control register 1 UOBR1 Read/write 075h Unchanged
Receive buffer register UORXBUF Read 076h Unchanged
Transmit buffer register UOTXBUF Read/write 077h Unchanged
SFR module enable register 1T ME1 Read/write 004h 000h after PUC
SFR interrupt enable register 1t IE1 Read/write 000h 000h after PUC
SFR interrupt flag register 1% IFG1 Read/write 002h 082h after PUC

t Does not apply to MSP430x12xx devices. Refer to the register definitions for registers and bit positions for these devices.

Table 14-2.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State
USART control register U1CTL Read/write 078h 001h after PUC
Transmit control register U1TCTL Read/write 079h 001h after PUC
Receive control register U1RCTL Read/write 07Ah 000h after PUC
Modulation control register U1MCTL Read/write 07Bh Unchanged
Baud rate control register 0 U1BRO Read/write 07Ch Unchanged
Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged
Receive buffer register U1RXBUF Read 07Eh Unchanged
Transmit buffer register U1TXBUF Read/write 07Fh Unchanged
SFR module enable register 2 ME2 Read/write 005h 000h after PUC
SFR interrupt enable register 2 IE2 Read/write 001h 000h after PUC
SFR interrupt flag register 2 IFG2 Read/write 003h 020h after PUC

Note: Modifying the SFR bits

To avoid modifying control bits for other modules, it is recommended to set
or clearthe IEx and IFGx bits using Bl S. Bor Bl C. Binstructions, rather than
MOV. B or CLR. B instructions.

USART Peripheral Interface, SPI Mode 14-13

USART Registers: SPI Mode

UXCTL, USART Control Register

7 6 5 4 3 2 1 0
Unused Unused l2ct CHAR LISTEN SYNC MM SWRST
rw—0 rw-0 rw-0 rw—0 rw—0 rw-0 rw-0 rw—1
Unused Bits Unused
7-6
12ct Bit 5 I2C mode enable. This bit selects 12C or SPI operation when SYNC = 1.
0 SPI mode
1 I2C mode
CHAR Bit 4 Character length
0 7-bit data
1 8-bit data
LISTEN Bit 3 Listen enable. The LISTEN bit selects the loopback mode
0 Disabled
1 Enabled. The transmit signal is internally fed back to the receiver
SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI mode
MM Bit 1 Master mode
0 USART is slave
1 USART is master
SWRST Bit 0 Software reset enable

0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state

T Applies to USARTO on MSP430x15x and MSP430x16x devices only.

14-14

USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

UXTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0
CKPH CKPL SSELX Unused Unused STC TXEPT
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—1
CKPH Bit 7 Clock phase select. Controls the phase of UCLK.
0 Normal UCLK clocking scheme
1 UCLK is delayed by one half cycle
CKPL Bit 6 Clock polarity select
0 The inactive level is low; data is output with the rising edge of UCLK;
input data is latched with the falling edge of UCLK.
1 The inactive level is high; data is output with the falling edge of
UCLK; input data is latched with the rising edge of UCLK.
SSELx Bits Source select. These bits select the BRCLK source clock.
5-4 00 External UCLK (valid for slave mode only)
01 ACLK (valid for master mode only)
10 SMCLK (valid for master mode only)
11 SMCLK (valid for master mode only)
Unused Bit 3 Unused
Unused Bit 2 Unused
STC Bit 1 Slave transmit control.
0 4-pin SPI mode: STE enabled.
1 3-pin SPI mode: STE disabled.
TXEPT Bit 0 Transmitter empty flag. The TXEPT flag is not used in slave mode.

0 Transmission active and/or data waiting in UXTXBUF
1 UxTXBUF and TX shift register are empty

USART Peripheral Interface, SPI Mode 14-15

USART Registers: SPI Mode

UXRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0
FE Unused OE Unused Unused Unused Unused Unused
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
FE Bit 7 Framing error flag. This bit indicates a bus conflict when MM =1 and STC

= 0. FE is unused in slave mode.
0 No conflict detected
1 A negative edge occurred on STE, indicating bus conflict

Undefined Bit6 Unused

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxRXBUF before the previous character was read. OE is automatically
reset when UXRXBUF is read, when SWRST = 1, or can be reset by
software.

0 No error
1 Overrun error occurred

Unused Bit 4 Unused
Unused Bit 3 Unused
Unused Bit 2 Unused
Unused Bit 1 Unused
Unused Bit 0 Unused

14-16 USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode
UxBRO, USART Baud Rate Control Register O
7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw rw rw rw rw rw rw r'w
UxBR1, USART Baud Rate Control Register 1
7 6 5 4 3 2 1 0
215 214 213 212 211 210 29 28
rw rw rw rw rw rw rw rw
UxBRX

The baud-rate generator uses the content of {UxBR1+UxBRO0} to set the

baud rate. The smallest division factor is two.

UXMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0
m7 m6 m5 m4 m3 m2 ml mO
w rw w w rw w w rw

UxMCTLx Bits The modulation control register is not used for SPI mode and should be set
7-0 to 000h.

USART Peripheral Interface, SPI Mode 14-17

USART Registers: SPI Mode

UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
r r r r r r r r
UxRXBUFx Bits The receive-data buffer is user accessible and contains the last received
7-0 character from the receive shift register. Reading UXRXBUF resets the OE

bit and URXIFGx flag. In 7-bit data mode, UXRXBUF is LSB justified and
the MSB is always reset.

UXTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0
27 26 25 24 23 22 21 20
rw w w rw w w rw w
UXTXBUFx Bits The transmit data buffer is user accessible and contains current data to be
7-0 transmitted. When seven-bit character-length is used, the data should be

14-18

MSB justified before being moved into UxXTXBUF. Data is transmitted MSB
first. Writing to UXTXBUF clears UTXIFGx.

USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

ME1, Module Enable Register 1

7 6 5 4 3 2 1 0

usPIeoT

rw—0

Bit 7 This bit may be used by other modules. See device-specific datasheet.

USPIEOT Bit 6 USARTO SPI enable. This bit enables the SPI mode for USARTO.
0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific datasheet.
5-0

T Does not apply to MSP430x12xx devices. See ME2 for the MSP430x12xx USARTO module enable bit

MEZ2, Module Enable Register 2

7 6 5 4 3 2 1 0
USPIEL usPIEO*
rw-0 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-5
USPIE1 Bit 4 USARTL1 SPI enable. This bit enables the SPI mode for USARTL1.

0 Module not enabled
1 Module enabled

Bits These bits may be used by other modules. See device-specific datasheet.
3-1

USPIEO? Bit O USARTO SPI enable. This bit enables the SPI mode for USARTO.
0 Module not enabled
1 Module enabled

* MSP430x12xx devices only

USART Peripheral Interface, SPI Mode 14-19

USART Registers: SPI Mode

IEL, Interrupt Enable Register 1

7 6 5 4 3 2 1 0
uTxieot URXIEOT
rw—0 rw—0
UTXIEOT Bit 7 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEOT Bit 6 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific datasheet.
5-0

T Does not apply to MSP430x12xx devices. See IE2 for the MSP430x12xx USARTO interrupt enable bits

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0
UTXIEL URXIE1 UTxXIEOT URXIEOF
rw—0 rw—0 rw—0 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6
UTXIEL Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFGL1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFGL interrupt.
0 Interrupt not enabled
1 Interrupt enabled
Bits These bits may be used by other modules. See device-specific datasheet.
3-2
UTXIEOT Bit 1 USARTO transmit interrupt enable. This bit enables the UTXIFGO interrupt.
0 Interrupt not enabled
1 Interrupt enabled
URXIEO?* Bit 0 USARTO receive interrupt enable. This bit enables the URXIFGO interrupt for

¥ MSP430x12xx devices only

14-20

USARTO.
0 Interrupt not enabled
1 Interrupt enabled

USART Peripheral Interface, SPI Mode

USART Registers: SPI Mode

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0
utxiFcot | urxiFGot
rw—1 rw—0
UTXIFGOT Bit7 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGOT Bit6 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received

a complete character.
0 No interrupt pending
1 Interrupt pending

Bits These bits may be used by other modules. See device-specific datasheet.
5-0

T Does not apply to MSP430x12xx devices. See IFG2 for the MSP430x12xx USARTO interrupt flag bits

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0
UTXIFG1 URXIFG1 UTXIFGOF | URXIFGoY
rw—1 rw—0 rw—1 rw—0
Bits These bits may be used by other modules. See device-specific datasheet.
7-6
UTXIFG1 Bit 5 USARTL1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFG1 is setwhen ULRXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending
Bits These bits may be used by other modules. See device-specific datasheet.
3-2
UTXIFGO* Bit1 USARTO transmit interrupt flag. UTXIFGO is set when UOTXBUF is empty.
0 No interrupt pending
1 Interrupt pending
URXIFGO* Bit0 USARTO receive interrupt flag. URXIFGO is set when UORXBUF has received

a complete character.
0 No interrupt pending
1 Interrupt pending

¥ MSP430x12xx devices only

USART Peripheral Interface, SPI Mode 14-21

14-22 USART Peripheral Interface, SPI Mode

Chapter 15

USART Peripheral Interface, 12C Mode

The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports 12C communication in USARTO modules on the
MSP430x15x and MSP430x16x devices. This chapter describes the 12C
mode.

Topic Page
15.1 12C Module Introductionc.coeiuiiriiriieiainaa.n. 15-2
15.2 12C Module OpPerationeeiueinee o, 15-4
15.3 12C Module RegIStersuit it 15-21

15-1

12C Module Introduction

15.1 12C Module Introduction

The inter-IC control (I12C) module provides an interface between the MSP430
and 12C-compatible devices connected by way of the two-wire 12C serial bus.
External components attached to the I2C bus serially transmit and/or receive
serial date to/from the USART through the 2-wire 12C interface.

The 12C module has the following features:

[0 Compliance to the Philips Semiconductor 12C specification v2.1

Bit/Byte format transfer

7-bit and 10-bit device addressing modes

General call

Start/restart/stop

Multi-master transmitter/slave receiver mode

Multi-master receiver/slave transmitter mode

Combined master transmit/receive and receive/transmit mode
Standard mode up to100 kbps and fast mode up to 400 kbps support

Built-in FIFO for buffered read and write
Programmable clock generation

16-bit wide data access to maximize bus throughput
Designed for low power

Two DMA triggers

Extensive interrupt capability

U U dJ o o dd

Implemented on USARTO only

The I12C block diagram is shown in Figure 15-1.

15-2 USART Peripheral Interface, 12C Mode

Figure 15-1. USART Block Diagram: 12C Mode

12CSSELX

No clock

ACLK
SMCLK
SMCLK

12C Module Introduction

I12C Data Register
I2CDR(077h)

USART Peripheral Interface, 12C Mode

MST LISTEN
n
— Receive Shift Register ¢
SCL
12CCLK
12C Clock Generator > 1 O
I2CPSC
I2CSCLL —a [2CEN
I2CSCLH & Hold
0 SDA
Transmit Shift Register .TO
ﬁ T Receive/Transmit
12C Data Register
I2CDR(076h)

15-3

12C Module Operation

15.2 12C Module Operation

The 12C module supports any slave or master 12C-compatible device.
Figure 15-2 shows an example of an 12C bus. Each 12C device is recognized
by a unique address and can operate as either a transmitter or a receiver. A
device connected to the 12C bus can be considered as the master or the slave
when performing data transfers. A master initiates a data transfer and gener-
ates the clock signal SCL. Any device addressed by a master is considered
a slave.

Figure 15-2. 12C Bus Connection Diagram

Vee
Pull-Up MSP430 12c
Resistors 12c Device A
Serial Data (SDA) © > ®
Serial Clock (SCL) > ®
12C 12C
Device B Device C

I2C data is communicated using the serial data pin (SDA) and the serial clock
pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a
positive supply voltage using a pull-up resistor.

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430
VCC level.

15-4 USART Peripheral Interface, 12C Mode

12C Module Operation

15.2.1 I12C Serial Data

One clock pulse is generated by the master device for each data bit
transferred. The I2C module operates with byte data. Data is transferred most
significant bit first as shown in Figure 15-3.

The first byte after a START condition consists of a 7-bit slave address and the
R/W bit. When R/W = 0, the master transmits data to a slave. When R/IW =1,
the master receives data from a slave. The ACK bit is sent from the receiver
after each byte on the 9th SCL clock.

Figure 15-3. 12C Module Data Transfer

r—1 r—1
soa ~ N\ X XXX/ OO XX /T
‘ ‘ MSB Acknowledgement Acknowledgement ‘ ‘
Signal From Receiver Signal From Receiver
SCL MWW
L L
START 1 2 L 1, c 8 2 STOP
Condition (S) RIW ACK ACK " condition (P)

Data on SDA must be stable during the high period of SCL as shown in
Figure 15-4. The high and low state of SDA can only change when SCL is low,
otherwise start or stop conditions will be generated.

Figure 15-4. Bit Transfer on the 12C Bus

Data Line
: Stable Data : |

| (

)
soa ___ /) S
[[[”
I I I
scL I I I ™\
I I I
I‘—Dl— Change of Data Allowed

USART Peripheral Interface, 12C Mode 15-5

12C Module Operation

15.2.2 12C START and STOP Conditions

START and STOP conditions are generated by the master and are shown in
Figure 15-5. A START condition is a high-to-low transition on the SDA line
while SCL is high. A STOP condition is a low-to-high transition on the SDA line
while SCL is high. The busy bit, I2CBB, is set after a START and cleared after

a STOP.

Figure 15-5. 12C Module START and STOP Conditions

L L
START STOP
Condition (S) Condition (P)

15-6 USART Peripheral Interface, 12C Mode

12C Module Operation

15.2.3 12C Addressing Modes
The 12C module supports7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 15-6, the first byte is the 7-bit
slave address and the R/W bit. The ACK bitis sent from the receiver after each
byte.

Figure 15-6. 12C Module 7-Bit Addressing Format

[N

¥ o1
| RW

1 7 1 8 . 8 o1
| | Ack] [Ack]

-

|
Slave Address /W | ACK | Data

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 15-7, the first byte is made
up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte. The next byte is the
remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the
8-bit data.

Figure 15-7. 12C Module 10-Bit Addressing Format

| 1 7 1| 1 8 o1 8 " o1
| S |Slave Address 1st byte | RIW | ACK | Slave Address 2nd byte| ACK | |

111 1 0 X X|

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first
stopping a transfer, by issuing a repeated START condition. This is called a
RESTART. Aftera RESTART isissued, the slave address is again sent out with
the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 15-8

Figure 15-8. 12C Module Addressing Format with Repeated START Condition

17— |t e |l 7 1| 18— 1|1

[s| slave Address | RW |Ack| Data [Ack| S| Slave Address | RW | Ack | Data |ack | P
ke 1 - Any —l ke 1 ~ Any Number—’|
Number

USART Peripheral Interface, 12C Mode 15-7

12C Module Operation

15.2.4 12C Module Operating Modes

The 12C module operates in master transmitter, master receiver, slave
transmitter, or slave receiver mode.

Master Mode

In master mode, transmit and receive operation is controlled with the I2CRM,
[2CSTT, and 12CSTP bits as described in Table 15-1. The master receiver
mode is entered by setting I2CTRX = 0 after a slave address byte and a set
R/W bit has been transmitted. The master transmitter and master receiver
modes are shown in Figure 15-9 and Figure 15-10.

SCL is held low when the intervention of the CPU is required after a byte has

been transmitted.

Table 15-1.Master Operation

15-8

I2CRM 12CSTP 12CSTT

Condition Or Bus Activity

The 12C module is in master mode, but is idle. No start
or stop condition is generated.

Setting 12CSTT initiates activity. I2CNDAT is used to
determine length of transmission. A stop condition is
not automatically generated after the [2CNDAT
number of bytes have been transferred. Software must
set I2CSTP to generate a stop condition at the end of
transmission.

I2CNDAT is used to determine length of transmission.
Setting 12CSTT initiates activity. A stop condition is
automatically generated after I2CNDAT number of
bytes have been transferred.

I2CNDAT is not used to determine length of
transmission. Software must control the length of the
transmission. Setting the I2CSTT bit initiates activity.
Software must set the I2CSTP bit to initiate a stop
condition and stop activity. This mode is useful if > 256
bytes are to be transferred.

Setting the I2CSTP bit generates a stop condition on
the bus after I2CNDAT number of bytes have been
sent, orimmediately if 2CNDAT number of bytes have
already been sent.

Setting the I2CSTP bit generates a stop condition on
the bus after the current transmission completes, or
immediately if no transmission is currently active.

X 0 0
0 0 1
0 1 1
1 0 1
0 1 0
1 1 0
1 1 1

Reserved, no bus activity.

USART Peripheral Interface, 12C Mode

12C Module Operation

I2C State Diagrams

Figure 15-9. Master Transmitter Mode, I2CWORD =1

IDLE

I2CSTT=1

4 x 12CPSC
Generate Start
Condition from
12CSTT=1

4 x 12CPSC

8 x SCL

NACKIFG
is Set

Send Slave
Address bits 6-0,
with R/W

Ack, XA=1
10-bit address_; 8 x SCL
X

Ack, XA=0 Send Slave Address

. bits 9—7, extended
7—bit '
T\ j’@
No Ack

Stop State ?

No Ack

Yes
12CSTP=1

Yes

N 7 X I2CPSC

Generate Stop

y
‘ 12CBB is Cleared ’

4 x 12CPSC

‘IZCSTP is Cleared ;

Y 4 x 12CPSC

New Start ?

USART Peripheral Interface, 12C Mode 15-9

12C Module Operation

Figure 15-10. Master Receiver Mode, I2CWORD =1

IDLE

12CSTT=1

4 x 12CPSC

Generate Start
Condition from
12CSTT=1

4% 12CPSC Yes

12CBB is Set
2CSTT is Cleared

8xS Send Slave
Address bits 6-0,
with R/W

No Ack
/ Ack, XA=1
8 x SCL 10-hit address \
New Start ?

Send Slave Address
bits 9—-7, extended
with R/W

: h

No

Generate 2nd
Start Condition
from Ack

Ack, XA=0
7—-bit address

Send Slave
Address bits 6-0,
with R/W

Receive Data

Low Byte I2CRM=1
from Slave
Stop State ? Stop State ?
Receive Data Yes
High Byte Yes 12CSTP=1
from Slave 12CSTP=1 7 X 12CPSC

4 x 12CPSC

12CBB is Cleared

4 x 12CPSC

I2CSTP is Cleared

No

15-10 USART Peripheral Interface, 12C Mode

12C Module Operation

Arbitration

If two or more master transmitters simultaneously start a transmission on the
bus, an arbitration procedure is invoked. Figure 15-11 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on SDA by the competing transmitters. The first master
transmitter that generates a logic high is overruled by the opposing master
generating a logic low. The arbitration procedure gives priority to the device
that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets
the arbitration lost flag ALIFG. If two or more devices send identical first bytes,
arbitration continues on the subsequent bytes.

Figure 15-11.Arbitration Procedure Between Two Master Transmitters

Bus Line |
scL |
Device #1 Lost Arbitration

/_ and Switches Off

Data From -
Device #1
Data From g 0
Device #2
1 1
Bus Line Y 0
SDA
1 1

If the arbitration procedure is in progress when a repeated START condition
or STOP condition is transmitted on SDA, the master transmitters involved in
arbitration must send the repeated START condition or STOP condition at the
same position in the format frame. Arbitration is not allowed between:

(1 Arepeated START condition and a data bit
[A STOP condition and a data bit
[0 Arepeated START condition and a STOP condition

USART Peripheral Interface, 12C Mode 15-11

12C Module Operation

Slave Mode

In slave mode, transmit and receive operations are controlled automatically by
the 12C module. The slave transmitter and slave receiver modes are shown in
Figure 15-12 and Figure 15-13.

In slave receiver mode, serial data bits received on SDA are shifted in with the
clock pulses that are generated by the master device. The slave device does
not generate the clock, but it can hold SCL low if intervention of the CPU is
required after a byte has been received.

Slave transmitter mode can only be entered from the slave receiver mode. The
slave transmitter mode is entered if the slave address byte transmitted by the
master is the same as its own address and a set R/W bit has been transmitted
indicating a request to send data to the master. The slave transmitter shifts the
serial data out on SDA with the clock pulses that are generated by the master
device. The slave device does not generate the clock, but it can hold SCL low
while intervention of the CPU is required after a byte has been transmitted.

15-12 USART Peripheral Interface, 12C Mode

Figure 15-12. Slave Transmitter, 2CWORD =1

Start detected?

Yes

12C Module Operation

‘ STTIFG is Set ’

4 x 12CPSC

12CBB is Set

No
Match

Receive Slave
Address bits 6-0,
with R/W=0

Matched

1x SCL I2COA

XA=1
10-bit Address
8 x SCL A 4
Receive Slave Address
bits 97, extended
with R/W
T
Matches
12COA

1xSCL

(Generate Ack
OAIFG is set
if not re—start

No 2nd Start

Detected ?

Yes
STTIFG is set

-

XA=0
7-bit

OAIFG is set
if not re—start

Yes

Address

1x SCL
Generate Ack
Matches
12COA
8 x SCL

Receive Slave
Address bits 6-0,
with R/W=1

USART Peripheral Interface, 12C Mode

12CDR
Empty

12CDR
Loaded ?

12CDR
Written 8 x SCL
Send Data Low
Byte to Master
No
Ack
Ack 8 x SCL
Send Data Low
Byte to Master
No
|
Ack Ack

Stop

detected ? No

Re-start
detected ?

Yes

ARDYIFG is set

12CBB is cleared

NACKIFG is set

A
‘ IDLE ’

15-13

12C Module Operation

Figure 15-13. Slave Receiver, I2CWORD =1

Start detected?

Yes

STTIFG is Set
4 x 12CPSC

(I2CBB is Set

Receive Slave
Address bits 6-0,
with R/W=0

Match
Matched

I2COA
1x SCL

Send
Acknowledge

XA=1
8 x SCL10—bit address

Receive Slave
Address bits 9-7
No
Match

Matched
I2COA

Send
Acknowledge
OAIFG set if
not re—start

15-14 USART Peripheral Interface, 12C Mode

XA=0
7-bit address

Yes

Re—start
detected ?

No

Receive Data
Low Byte
from Master

1x SCL

Yes

8 x SCL

Receive Data
High Byte

from Master

1x SCL

Send
Acknowledge

Yes
8 x SCL
Receive Data
High Byte
from Master

Stop State ?

Yes

12CSTP=1 2 Iacpsc

ARDYIFG is Set ’

12C Module Operation

15.2.5 The I12C Data Register I12CDR

The I2CDR register can be accessed as an 8-bit or 16-bit register selected by
the I2CWORD bit. The I2CDR register functions as described in Table 15-2.

Table 15-2.12CDR Register Function

Transmit Underflow

Receive Overrun

I2CWORD 12CTRX I2CDR Function

0 1 Byte mode Transmit: Only the low byte is used. The byte is
double buffered. If a new byte is written before the previous
byte has been transmitted, the new byte is held in a
temporary buffer before being latched into the 12CDR low
byte. TXRDYIFG is setwhen I2CDR is ready to be accessed.

0 0 Byte mode receive: Only the low byte is used. The byte is
double buffered. If a new byte is received before the previous
byte has been read, the new byte is held in atemporary buffer
before being latched into the I2CDR low byte. RXRDYIFG is
set when 12CDR is ready to be read.

1 1 Word mode, transmit: The low byte of the word is sent first,
then the high byte. The register is double buffered. If a new
word is written before the previous word has been
transmitted, the new word is held in a temporary buffer before
being latched into the I2CDR register. If the last data of a
transmission is only one byte, then the high byte must be
zero. TXRDYIFG is setwhen I2CDR is ready to be accessed.

1 0 Word mode receive: The low byte of the word was received
first, then the high byte. The register is double buffered. If a
new word is received before the previous word has been
read, the new word is held in a temporary buffer before being
latched into the I2CDR register. If the last reception was only
one byte, then the high byte is 00h and the I2CSDB bit is set.
RXRDYIFG is set when 12CDR is ready to be accessed.

In master mode, underflow occurs when the transmit shift register and the
transmit buffer are empty and I2CNDAT > 0. In slave mode, underflow occurs
when the transmit shift register and the transmit buffer are empty and the
external I2C master still requests data. When transmit underflow occurs, the
I2CTXUDF bit is set. Writing data to 12CDR register or resetting I2CEN bit
resets I2CTXUDF. I2CTXUDF is used in transmit mode only.

Receive overrun occurs when the receive shift register is full and the receive
buffer is full. The I2CRXOVR bit is set when receive overrun occurs No data
is lost because SCL is held low in this condition, which stops further bus
activity. Reading the I2CDR register or resetting I2CEN bit resets I2CRXOVR
bit. The I2CRXOVR bit is used in receive mode only.

USART Peripheral Interface, 12C Mode 15-15

12C Module Operation

15.2.6 12C Clock Generation and Synchronization

Figure 15-14.

12CIN

I2CCLK |
i
I~

The 12C module is operated with the clock source selected by the I2CSSELXx
bits. The prescaler, 12CPSC, and the I2CSCLH and [2CSCLL registers
determine the frequency and duty cycle of the SCL clock signal for master
mode as shown in Figure 15—-14. The I2C module clock source must be at least
10x the SCL frequency in both master and slave modes.

I2C Module SCL Generation

U L L L L L L
eepsc L LML LA ML L1 rLrL

|

I2CPSC + (12CSCLH + 1) ™ l2cpsc + (I2CSCLL + 1)

y_1

|
Ll |

During the arbitration procedure the clocks from the different masters must be
synchronized. A device that first generates a low period on SCL overrules the
other devices forcing them to start their own low periods. SCL is then held low
by the device with the longest low period. The other devices must wait for SCL
to be released before starting their high periods. Figure 15-15 illustrates the
clock synchronization.

A slow slave may pull SCL low to slow down a fast master. When this occurs,
all other devices must enter the wait state. This allows a slow slave to slow
down a fast master.

Figure 15-15. Synchronization of Two 12C Clock Generators During Arbitration

15-16

SCL From
Device #1

SCL From
Device #2

Bus Line
SCL

Wait
—>b) j¢— Start HIGH
| State \ Period

N ST

USART Peripheral Interface, 12C Mode

12C Module Operation

15.2.7 Using the 12C Module with Low Power Modes

The 12C module can be used with MSP430 low-power modes. When the
internal clock source for the 12C module is present, the module operates
normally regardless of the MSP430 operating mode.

When in slave mode, and when the internal clock source is not present, the
I2C module can provide automatic start bit detection to wake the CPU. To
enable this feature, the STTIE and GIE bits must be set to enable the STTIFG
flag to interrupt the CPU. When the 12C module detects a start condition, the
STTIFG flag is set, and the module holds the SCL line low, halting further bus
activity. The interrupt service routine must then re-enable the 12C internal clock
source for the 12C module to release the SCL line and allow bus activity to
continue normally.

15.2.8 Using the I2C Module with the DMA Controller

The 12C module provides two trigger sources for the DMA controller. The
RXRDYIFG flag can trigger a DMA transfer when new 12C data is received and
the TXRDYIFG flag can trigger a DMA transfer when the 12C module needs
new transmit data.

The TXDMAEN and RXDMAEN bits enable or disable the use of the DMA
controller with the 12C module. When RXDMAEN = 1, the DMA controller can
be used to transfer data from the 12C module after the 12C modules receives
data. When RXDMAEN = 1, RXDYIE is automatically cleared.

When TXDMAEN = 1, the DMA controller can be used to transfer data to the
I12C module for transmission. When TXDMAEN = 1, the TXRDYIE is
automatically cleared.

See the DMA Controller chapter for more details on the DMA controller.

USART Peripheral Interface, 12C Mode 15-17

12C Module Operation

15.2.9 Configuring the USART for 12C Operation

I2C Module Reset

The 12C controller is part of the USART peripheral. Individual bit definitions
when using USARTO in I2C mode are different from thatin SPI or UART mode.
The default value for the UOCTL register is the UART mode and the register
contains the following bits:

To select SPI or 12C operation the SYNC bit must be set. Setting the SYNC bit
with SWRST =1 selects SPI mode. Setting the I12C bitwhen SYNC = 1 selects
the I2C mode. The SYNC and 12C bits can be settogether in a single instruction
to select the 12C mode for USARTO.

After module initialization, the 12C module is ready for transmit or receive
operation. Clearing I2CEN releases the 12C module for operation.

'Note: Re-Configuring the I12C Module for UART or SPI operation
The required USART re-configuration process is:
1) Clear the I2C bit (BI C. B #] 2C, &UOCTL)
2) Clear UOCTL and set SWRST bit (MOV. B #SWRST, &UOCTL)
3) Initialize all USART registers with SWRST = 1 (including UXCTL)
4) Enable USART module via the MEx SFRs (URXEx and/or UTXEX)
5) Clear SWRST via software (Bl C. B #SWRST, &UxCTL)
6) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEX)

Failure to follow this process may result in unpredictable USART behavior.

Note: Re-Configuring the 12C Module for Different 12C Conditions
The required 12C re-configuration process is:

1) Clear the I2CEN bit (Bl C. B #I 2CEN, &UOCTL)

2) Re-configure the 12C module with I2CEN =0

3) Set I2CEN via software (Bl S. B #1 2CEN, &UOCTL)

Failure to follow this process may result in unpredictable USART behavior.

After a PUC, the USART module is configured in the UART mode, with
SWRST = 1. In 12C mode, setting I2CEN = 0 has the following effects:

I2C communication stops

SDA and SCL are high impedance

[2CTCTL, bits 3-0 are cleared and bits 7-4 are unchanged

[2CDCTL and I2CDR register is cleared

Transmit and receive shift registers are cleared

UOCTL, I2CNDAT, I2CPSC, I2CSCLL, I2CSCLH registers are unchanged
[2COA, 12CSA, 12CIE, I2CIFG, and 12CIV registers are unchanged

Uoooooo

15-18 USART Peripheral Interface, 12C Mode

15.2.10 12C Interrupts

12C Module Operation

The I2C module has one interrupt vector for eightinterrupt flags. Each interrupt
flag has its own interrupt enable bit. When an interrupt is enabled, and the GIE
bit is set, the interrupt flag will generate an interrupt request. The 12C interrupt

events are:

Interrupt
Flag

Interrupt Condition

ALIFG

NACKIFG

OAIFG

ARDYIFG

RXRDYIFG

TXRDYIFG

GCIFG

STTIFG

Arbitration-lost. Arbitration can be lost when two or more
transmitters start a transmission simultaneously, or when the
software attempts to initiate an 12C transfer while I2CBB = 1.
The ALIFG flag is set when arbitration has been lost. When
ALIFG is set the MST and I2CSTP bits are cleared and the 12C
controller becomes a slave receiver.

No-acknowledge interrupt. This flag is set when the master
does not receive an acknowledge from the slave. NACKIFG is
used in master mode only.

Own-address interrupt. The OAIFG interrupt flag is set when
another master has addressed the I2C module. OAIFG is used
in slave mode only.

Register-access-ready interrupt. This flag is set when the
previously programmed transfer has completed and the status
bits have been updated. This interrupt is used to notify the
CPU that the I12C registers are ready to be accessed.

Receive ready interrupt/status. this flag is set when the 12C
module has received new data. RXRDYIFG is automatically
cleared when 12CDR is read and the receive buffer is empty.
A receiver overrun is indicated if bit I2CRXOVR = 1.
RXRDYIFG is used in receive mode only.

Transmit ready interrupt/status. the I2CDR register is ready for
new transmit data when I2CNDAT >0 OR I2CRM = 1 (master
transmit mode) or when another master is requesting data
(slave transmit mode). TXRDYIFG is automatically cleared
when 12CDR and the transmit buffer are full. A transmit
underflow is indicated if I2CTXUDF = 1. Unused in receive
mode.

General call interrupt. This flag is set when the 12C module
received the general call address (00h). GCIFG is used in
receive mode only.

Start condition detected interrupt. This flag is set when the 12C
module detects a start condition while in slave mode. This
allows the MSP430 to be in a low power mode with the 12C
clock source inactive untii a master initiates 12C
communication. STTIFG is used in slave mode only.

USART Peripheral Interface, 12C Mode 15-19

12C Module Operation

12CI1V, Interrupt Vector Generator

The I2C interrupt flags are prioritized and combined to source a single interrupt
vector. The interrupt vector register I12CIV is used to determine which flag
requested an interrupt. The highest priority enabled interrupt generates a
number in the I2CIV register. This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled 12C interrupts do not affect the 12CIV value.

Any access, read or write, of the I2CIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt.

I12CIV Software Example

The following software example shows the recommended use of I2CIV. The
I2CIV value is added to the PC to automatically jump to the appropriate routine.

I 2C_I SR
ADD & 2CIV, PC ; Add offset to junp table
RETI ; Vector 0: No interrupt
JMP ALl FG_ I SR ; Vector 2: ALIFG
JMP NACKI FG I SR ; Vector 4: NACKIFG
JMP QAl FG_| SR ; Vector 6: QA FG
JWP ARDYI FG | SR ; Vector 8: ARDYIFG
JMP RXRDYI FG_ | SR; Vector 10: RXRDYIFG
JWP TXRDYI FG | SR; Vector 12: TXRDYI FG
JMP GCl FG_ I SR ; Vector 14: Cl FG

STTI FG_I SR : Vector 16
: Task starts here
RETI ;. Return

ALI FG_I SR : Vector 2
: Task starts here
RETI ; Return

NACKI FG_| SR i Vector 4
; Task starts here
RETI ; Return

QAl FG_ I SR ; Vector 6
; Task starts here
RETI i Return

ARDYI FG_| SR ; Vector 8
; Task starts here
RETI ;. Return

RXRDYI FG_|I SR ; Vector 10
; Task starts here
RETI ; Return

TXRDYI FG_I| SR ; Vector 12
; Task starts here
RETI ; Return

CGCl FG_I SR ; Vector 14
; Task starts here
RETI ; Return

15-20 USART Peripheral Interface, 12C Mode

15.3 12C Module Registers

I2C Module Registers

The 12C module registers and respective addresses are listed in Table 15-3.

Table 15-3.12C Registers

Register Short Form Register Type Address Initial State

I2C interrupt enable 12CIE Read/write 050h Reset with PUC
12C interrupt flag 12CIFG Read/write 051h Reset with PUC
I2C data count I2CNDAT Read/write 052h Reset with PUC
USART control UOCTL Read/write 070h Reset with PUC
I2C transfer control I2CTCTL Read/write 071h Reset with PUC
12C data control I2CDCTL Read only 072h Reset with PUC
I2C prescaler I2CPSC Read/write 073h Reset with PUC
I2C SCL high I2CSCLH Read/write 074h Reset with PUC
12C SCL low [2CSCLL Read/write 075h Reset with PUC
I2C data I2CDR Read/write 076h Reset with PUC
I2C own address 12COA Read/write 0118h Reset with PUC
I2C slave address I2CSA Read/write 011Ah Reset with PUC
I2C interrupt vector 12CIV Read only 011Ch Reset with PUC

USART Peripheral Interface, 12C Mode 15-21

12C Module Registers

UOCTL, USARTO Control Register-12C Mode

7 6 5 4 3 2 1 0
RXDMAEN | TXDMAEN 12C XA LISTEN SYNC MST I2CEN
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—1
RXDMAEN Bit7 Receive DMA enable. This bit enables the DMA controller to be used to
transfer data from the 12C module after the 12C modules receives data. When
RXDMAEN = 1, RXRDYIE is automatically cleared.
0 Disabled
1 Enabled
TXDMAEN Bit6 Transmit DMA enable. This bit enables the DMA controller to be used to
provide data to the 12C module for transmission. When TXDMAEN = 1,
TXRDYIE, is automatically cleared.
0 Disabled.
1 Enabled.
12C Bit 5 I2C mode enable. This bit select 12C or SPI operation when SYNC = 1.
0 SPI mode
1 12C mode
XA Bit 4 Extended Addressing
0 7-bit addressing
1 10-bit addressing
LISTEN Bit 3 Listen. This bit selects loopback mode. LISTEN is only valid when MST =1
and 12CTRX = 1 (master transmitter).
0 Normal mode
1 SDA is internally fed back to the receiver (loopback).
SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPlorl2C mode
MST Bit 1 Master. This bit selects master or slave mode. The MST bit is automatically
cleared when arbitration is lost.
0 Slave mode
1 Master mode
I2CEN Bit 0 I2C enable. The bit enables or disables the 12C module. The initial condition

for this bit is set, and SWRST function for UART or SPI. When the 12C and
SYNC bits are first set after a PUC, this bit becomes I2CEN function and is
automatically cleared.

0 12C operation is disabled

1 12C operation is enabled

15-22 USART Peripheral Interface, 12C Mode

I2C Module Registers

[2CTCTL, I12C Transmit Control Register

7 6 5 4 3 2 1 0
12CWORD I2CRM I12CSSELX I12CTRX 12CSTB 12CSTP I2CSTT
rw-0 rw-0 rw—0 rw-0 rw-0 rw—0 rw-0 rw-0

I2CWORD

I2CRM

I2CSSELX

I2CTRX

12CSTB

12CSTP

12CSTT

Bit 7

Bit 6

Bits

Bit 3

Bit 2

Bit 1

Bit O

\ Modifiable only when I2CEN =0

12C word mode. Selects byte or word mode for the 12C data register.
0 Byte mode
1 Word mode

I2C repeat mode

0 I2CNDAT defines the number of bytes transmitted.

1 Number of byte transmitted is controlled by software. I2CNDAT is
unused.

12C clock source select. When MST = 1 and arbitration is lost, the external SCL
signal is automatically used.
00 No clock — 12C module is inactive

01 ACLK
10 SMCLK
11 SMCLK

I2C transmit. This bit selects the transmit or receive function for the 12C
controller when MST = 1. When MST = 0, the R/W bit of the address byte
defines the data direction and I2CTRX reflects the direction of the SDA pin.
0 Receive mode. Data is received on the SDA pin.

1 Transmit mode. Data transmitted on the SDA pin.

Start byte. Setting the I2CSTB bit when MST = 1 initiates a start byte.
0: No action
1: Send START condition, start byte (03h), but no stop condition.

Stop bit. This bit is used to generate STOP condition. After the stop condition,
the I2CSTP is automatically cleared.

0: No action

1: Send STOP condition

Start bit. This bit is used to generate a START condition. After the start
condition the I2CSTT is automatically cleared.

0: No action

1: Send START condition

USART Peripheral Interface, 12C Mode 15-23

12C Module Registers

I2CDCTL, I2C Data Control Register

7 6 5 4 3 2 1 0
Unused Unused Unused soliow I2XSBD | I2XTXUDF | I2CRXOVR 12CBB
r0 r0 r0 r-0 r-0 -0 r-0 r-0
Unused Bits Unused. Always read as 0.
7-5
12C Bit 4 I2C SCL low. This bit indicates if a slave is holding the SCL line low while the
SCLLOW MSP430 is the master and is unused in slave mode.
0 SCL is not being held low
1 SCL is being held low
12CSBD Bit 3 I2C single byte data. This bit indicates if the receive register holds a word or
a byte. 12CSBD is valid only when 12CWORD = 1.
0 A complete word was received
1 Only the lower byte in I2CDR is valid
[2CTXUDF Bit 2 I2C transmit underflow
0 No underflow occurred
1 Transmit underflow occurred
[2CRXOVR Bit 1 I2C receive overrun
0 No receive overrun occurred
1 Receiver overrun occurred
12CBB Bit 0 I2C busy bit. A start condition sets I2CBB to 1. I2CBB is reset by a stop

15-24

condition or when I2CEN=0.
0 Not busy
1 Busy

USART Peripheral Interface, 12C Mode

I2CDR, 12C Data Register

15

I2C Module Registers

14 13 12 1 10 9 8
I12C Data High Byte (second to be tranceived)
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
7 6 5 4 3 2 1 0
12C Data Low Byte, (first to be tranceived)
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
I2CDRX Bits I2C data.
15-0
I2CNDAT, 12C Transfer Byte Count Register
7 6 5 4 3 2 1 0
I2CNDATX
rw-0 rw-0 rw—0 rw-0 rw-0 rw—0 rw-0 rw-0
I2CNDATx Bits I2C number of bytes. These bits support automatic data byte counting. In word
7-0 mode, I2CNDATx must be an even value.

Write to register Number of bytes

Read from register, I2CBB =1 Number of bytes remaining in transfer
Read from register, 12CBB =0 Number of bytes to be transferred

Note: [2CNDAT Register

Do not change the I2CNDAT register while I2CBB = 1 and I12CRM = 0.

USART Peripheral Interface, 12C Mode

15-25

12C Module Registers

I2CPSC, 12C Clock Prescaler Register

7 6 5 4 3 2 1 0
I2CPSCx
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
\ Modifiable only when 12CEN = 0
[2CPSCx Bits I2C clock prescaler. The 12C clock input is divided by the I2CPSCx value to
7-0 produce the internal I2C clock frequency. The division rate is [2CPSC+1.

000h Divide by 1
001h Divide by 2

OFFh Divide by 256

15-26 USART Peripheral Interface, 12C Mode

I2C Module Registers

I2CSCLH, 12C Shift Clock High Register

12CSCLHx

rw—0

I2CSCLHx

rw—0

Bits
7-0

rw—0 rw-0 rw-0 rw—0 rw-0 rw-0

\ Modifiable only when I2CEN =0

I2C shift clock high. These bits define the high period of SCL when the 12C
controller is in master mode. The SCL high period is (I2CSCLH+2) x [2CPSC.
000h N/A

001h N/A

002h N/A

003h SCL high period =5 x 12CPSC

OFFh SCL high period = 257 x I2CPSC

I2CSCLL, Shift Clock Low Register

I2CSCLLx

rw—0

12CSCLLx

rw—0

Bits
7-0

rw—0 rw-0 rw-0 rw—0 rw—0 rw-0

\ Modifiable only when I2CEN =0

I2C shift clock low. These bits define the low period of SCL when the 12C
controller is in master mode. The SCL low period is (I2CSCLL+2) x 2CPSC
000h N/A

001h N/A

002h N/A

003h SCL low period =5 x 12CPSC

OFFh SCL low period = 257 x I2CPSC

USART Peripheral Interface, 12C Mode 15-27

12C Module Registers

I2COA, 12C Own Address Register, 7-Bit Addressing Mode

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
ro r0 r0 ro ro r0 ro ro
7 6 5 4 3 2 1 0
0 12COAX
ro rw-0 rw-0 rw—0 rw—0 rw—0 rw-0 rw—0

I2COAX

\ Modifiable only when 12CEN = 0

Bits I2C own address. The I2COA register contains the local address of the
15-0 MSP430 I12C controller. The I2COA register is right-justified. Bit 6 is the MSB.
Bits 15-7 are always O.

I2COA, 12C Own Address Register, 10-Bit Addressing Mode

15 14 13 12 1 10 9 8
0 0 0 0 0 0 I2COAX
(0] r0 r0 ro r0 r0 rw—0 rw—0
7 6 5 4 3 2 1 0
[2COAX
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
Modifiable only when I2CEN = 0
[2COAX Bits I2C own address. The I2COA register contains the local address of the
15-0 MSP430 I12C controller. The I2COA register is right-justified. Bit 9 is the MSB.
Bits 15-10 are always O.
15-28 USART Peripheral Interface, 12C Mode

I2CSA, I12C Slave Address Register, 7-Bit Addressing Mode

I2C Module Registers

15 14 13 12 1 10 9 8

0 0 0 0 0 0 0 0

r0 ro ro r0 r0 ro ro r0

7 6 5 4 3 2 1 0

0 I2CSAX

r0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
I2CSAX Bits I2C slave address. The 12CSA register contains the slave address of the

15-0 external device to be addressed by the MSP430. It is only used in master

I2CSA, I12C Slave Address Register, 10-Bit Addressing Mode

mode. The 12CSA register is right-justified. Bit 6 is the MSB. Bits 15-7 are

always 0.

15 14 13 12 1 10 9 8
0 0 0 0 0 0 I2CSAX ‘
r0 ro ro r0 r0 ro rw—0 rw—0
7 6 5 4 3 2 1 0
I2CSAX ‘
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
I2CSAx Bits I2C slave address. The 2CSA register contains the slave address of the
15-0 external device to be addressed by the MSP430. It is only used in master

mode. The 12CSA register is right-justified. Bit 9 is the MSB. Bits 15-10 are

always 0.

USART Peripheral Interface, 12C Mode

15-29

12C Module Registers

I2CIE, 12C Interrupt Enable Register

7 6 5 4 3 2 1 0
STTIE GCIE TXRDYIE RXRDYIE ARDYIE OAIE NACKIE ALIE
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
STTIE Bit 7 Start detect interrupt enable

0 Interrupt enabled
1 Interrupt disabled

GCIE Bit 6 General call interrupt enable
0 Interrupt enabled
1 Interrupt disabled

TXRDYIE Bit 5 Transmit ready interrupt enable. TXRDYIE is automatically cleared when
TXDMAEN = 1.
0 Interrupt enabled
1 Interrupt disabled

RXRDYIE Bit 4 Receive ready interrupt enable RXRDYIE is automatically cleared when
RXDMAEN = 1.
0 Interrupt enabled
1 Interrupt disabled

ARDYIE Bit 3 Access ready interrupt enable
0 Interrupt enabled
1 Interrupt disabled

OAIE Bit 2 Own address interrupt enable
0 Interrupt enabled
1 Interrupt disabled

NACKIE Bit 1 No acknowledge interrupt enable
0 Interrupt enabled
1 Interrupt disabled

ALIE Bit 0 Arbitration lost interrupt enable
0 Interrupt enabled
1 Interrupt disabled

15-30 USART Peripheral Interface, 12C Mode

I2C Module Registers

I2CIFG, 12C Interrupt Flag Register

7 6 5 4 3 2 1 0
STTIFG GCIFG TXRDYIFG | RXRDYIFG | ARDYIFG OAIFG NACKIFG ALIFG
rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0 rw—0
STTIFG Bit 7 Start detect interrupt flag
0 No interrupt pending
1 Interrupt pending
GCIFG Bit 6 General call interrupt flag
0 No interrupt pending
1 Interrupt pending
TXRDYIFG Bit5 Transmit ready interrupt flag
0 No interrupt pending
1 Interrupt pending
RXRDYIFG Bit4 Receive ready interrupt flag
0 No interrupt pending
1 Interrupt pending
ARDYIFG Bit 3 Access ready interrupt flag. The ARDYIFG set conditions are:
Mode Applicable Bits ARDYIFG Set Conditions
Master transmit [12CSTP =1 I2CNDAT = 0 and all data transmitted.

I2CRM =0

I2CRM =1 Last byte of data sent after I2CSTP
has been set.

Master receive [2CSTP =1 I2CNDAT = 0 and receive buffer

I2CRM =0 empty.

I2CRM =1 Last byte of data received and receive
buffer empty after I2CSTP has been
set.

Slave transmit - Stop condition received.
Slave receive - Stop condition received and receive
buffer empty.
OAIFG Bit 2 Own address interrupt flag
0 No interrupt pending
1 Interrupt pending
NACKIFG Bit 1 No acknowledge interrupt flag
0 No interrupt pending
1 Interrupt pending
ALIFG Bit 0 Arbitration lost interrupt flag

0 No interrupt pending
1 Interrupt pending

USART Peripheral Interface, 12C Mode

15-31

12C Module Registers

12CIV, 12C Interrupt Vector Register

15 14 13 12 1 10 9 8
0 0 0 0 0 0 0 0
ro r0 r0 ro ro r0 ro ro
7 6 5 4 3 2 1 0
0 0 0 12CIVx 0
ro r0 r0 r—0 r—0 -0 r-0 ro
12CIVx Bits I2C interrupt vector value
15-0
12CIv Interrupt Interrupt
Contents Interrupt Source Flag Priority
000h No interrupt pending -
002h Arbitration lost ALIFG Highest
004h No acknowledgement NACKIFG
006h Own address OAIFG
008h Register access ready ARDYIFG
00Ah Receive data ready RXRDYIFG
00Ch Transmit data ready TXRDYIFG
00Eh General call GCIFG
010h Start condition received STTIFG Lowest
15-32 USART Peripheral Interface, 12C Mode

Chapter 16

Comparator_A

Comparator_A is an analog voltage comparator. This chapter describes
Comparator_A. Comparator_ A is implemented in MSP430x11x1,
MSP430x12x, MSP430x13x, MSP430x14x, MSP430x15x and MSP430x16x
devices.

Topic Page
16.1 Comparator_A Introduction i, 16-2
16.2 Comparator_ A Operationc.couuiiiieiineiiiin . 16-3
16.3 Comparator_A Registers ...t 16-8

16-1

Comparator_A Introduction

16.1 Comparator_A Introduction

The comparator_ A module supports precision slope analog-to-digital
conversions, supply voltage supervision, and monitoring of external analog
signals. The Comparator_A block diagram is shown in Figure 16-1.

Features of Comparator_A include:

U O od o o g

a

Inverting and non-inverting terminal input multiplexer
Software selectable RC-filter for the comparator output
Output provided to Timer_A capture input

Software control of the port input buffer

Interrupt capability

Selectable reference voltage generator

Comparator and reference generator can be powered down

Figure 16—1. Comparator_A Block Diagram

16-2

Comparator_A

CARSEL

Vce ov

CciiB

CAOUT

Set_CAIFG

Tau ~ 2.0us

CAREFx

Comparator_A Operation

16.2 Comparator_A Operation

16.2.1 Comparator

The comparator_A module is configured with user software. The setup and
operation of comparator_A is discussed in the following sections.

The comparator compares the analog voltages at the + and — input terminals.
If the + terminal is more positive than the — terminal, the comparator output
CAOUT is high. The comparator can be switched on or off using control bit
CAON. The comparator should be switched off when not in use to reduce
current consumption. When the comparator is switched off, the CAOUT is
always low.

16.2.2 Input Analog Switches

The analog input switches connect or disconnect the two comparator input
terminals to associated port pins using the P2CAx bits. Both comparator
terminal inputs can be controlled individually. The P2CAX bits allow:

[Application of an external signal to the + and —terminals of the comparator
(O Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path.

Note: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a
signal, power, or ground. Otherwise, floating levels may cause unexpected
interrupts and increased current consumption.

The CAEX bit controls the input multiplexer, exchanging which input signals
are connected to the comparator’s + and — terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.

Comparator_A 16-3

Comparator_A Operation

16.2.3 Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power supply lines, and other parts of the system
are responsible for this behavior as shown in Figure 16—2. The comparator
output oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 16-2. RC-Filter Response at the Output of the Comparator

+ Terminal

— Terminal Comparator Inputs

Comparator Output

” ” ” ” ””””l Il Il Il Il Unfiltered at CAOUT

Comparator Output
|| ” ” ” | Filtered at CAOUT

v

16.2.4 Voltage Reference Generator

The voltage reference generator is used to generate Vcargr Which can be
applied to either comparator input terminal. The CAREFx bits control the
output of the voltage generator. The CARSEL bit selects the comparator
terminal to which Vcargp is applied. If external signals are applied to both
comparator input terminals, the internal reference generator should be turned
off to reduce current consumption. The voltage reference generator can
generate a fraction of the device’s V¢ or a fixed transistor threshold voltage
of ~ 0.55 V. The transistor threshold voltage has a tolerance and temperature
coefficient specified in the device-specific datasheet.

16-4 Comparator_A

Comparator_A Operation

16.2.5 Comparator_A, Port Disable Register CAPD

The comparator input and output functions are multiplexed with the associated
I/0O port pins, which are digital CMOS gates. When analog signals are applied
to digital CMOS gates, parasitic current can flow from Vcc to GND. This
parasitic current occurs if the input voltage is near the transition level of the
gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption.

The CAPDx bits, when set, disable the corresponding P2 input buffer as shown
in Figure 16—3. When current consumption is critical, any P2 pin connected to
analog signals should be disabled with their associated CAPDx bit.

Figure 16-3. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

Vee

‘ I
VI j—T—L— Vo lcc
ee

1+ \

\Y% T
‘ELC [0 Vee
CAPD.x =1 Vss

16.2.6 Comparator_A Interrupts

One interrupt flag and one interrupt vector are associated with the
Comparator_A as shown in Figure 16—4. The interrupt flag CAIFG is set on
either the rising or falling edge of the comparator output, selected by the
CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag
generates an interrupt request. The CAIFG flag is automatically reset when
the interrupt request is serviced or may be reset with software.

Figure 16—4. Comparator_A Interrupt System

SET_CAIFG

Vee CAIE

CAIES 1)
IRQ, Interrupt Service Requested
0 D Q

Reset

1

IRACC, Interrupt Request Accepted
POR

Comparator_A 16-5

Comparator_A Operation

16.2.7 Comparator_A Used to Measure Resistive Elements

The Comparator_A can be optimized to precisely measure resistive elements
using single slope analog-to-digital conversion. For example, temperature can
be converted into digital data using a thermistor, by comparing the thermistor’s
capacitor discharge time to that of a reference resistor as shown in
Figure 16-5. A reference resister Rref is compared to Rmeas.

Figure 16-5. Temperature Measurement System

Rref
Px.x
Rmeas
Px.y
CAO CCI1B
+ Capture

g . g I(r)]fp #itmer_A

0.25xVce

The MSP430 resources used to calculate the temperature sensed by Rmeas
are:

Two digital I/O pins to charge and discharge the capacitor.

I/O set to output high (V) to charge capacitor, reset to discharge.

I/O switched to high-impedance input with CAPDx set when not in use.
One output charges and discharges the capacitor via Rref.

One output discharges capacitor via Rmeas.

The + terminal is connected to the positive terminal of the capacitor.
The —terminal is connected to a reference level, for example 0.25 x V.

The output filter should be used to minimize switching noise.

I Iy Ay Iy AN N

CAOUT used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are
connected to CAO with available 1/0 pins and switched to high impedance
when not being measured.

16-6 Comparator_A

Comparator_A Operation

The thermistor measurement is based on a ratiometric conversion principle.
The ratio of two capacitor discharge times is calculated as shown in
Figure 16-6.

Figure 16—6. Timing for Temperature Measurement Systems

Ve 4 I I [I
VCC - Y\ — — — _I _____ I I
|] | |
] N | |
I I I I [I
I I I I [I
I I I I [I
I I I I [I
I I I I (. I
I I I I I : :
I I I
|| I | | R
0.25xVee —H —————— - NG e
| | | | | | | ref
| I I | || I >
Phase I: I ¢ Phasell: I Phase III: I I' Phase IV: ’I t
Charge | Discharge | Charge | Discharge |
l— tret —» — tmeas ¥

The V¢ voltage and the capacitor value should remain constant during the
conversion, but are not critical since they cancel in the ratio:

Vv
f
—Rmeas X C X In &
Nmeas _ VCC
N Vv
ref —R ¢ X C x In VLGf
cC

Nmeas _ Rmeas
N R

ref ref

Nmeas
Rmeas = Ry X N .

Comparator_A 16-7

Comparator_A Registers

16.3 Comparator_A Registers

The Comparator_A registers are listed in Table 16-1:

Table 16—1.Comparator_A Registers

Register

Short Form

Register Type Address

Initial State

Comparator_A control register 1
Comparator_A control register 2
Comparator_A port disable

CACTL1
CACTL2
CAPD

Read/write 059h
Read/write 05Ah
Read/write 05Bh

Reset with POR
Reset with POR
Reset with POR

16-8

Comparator_A

Comparator_A Registers

CACTL1, Comparator_A Control Register 1

6

CAEX

CARSEL

CAREFx CAON CAIES CAIE CAIFG

rw—(0)

CAEX

CARSEL

CAREF

CAON

CAIES

CAIE

CAIFG

rw—(0)

Bit 7

Bit 6

Bits
5-4

Bit 3

Bit 2

Bit 1

Bit 0

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

Comparator_A exchange. This bit exchanges the comparator inputs and
inverts the comparator output.

Comparator_A reference select. This bit selects which terminal the VcarREE
is applied to.

When CAEX =0:

0 VcAREE is applied to the + terminal

1 VcaREE is applied to the — terminal

When CAEX = 1:

0 VcAREF is applied to the — terminal

1 VcAREE is applied to the + terminal

Comparator_A reference. These bits select the reference voltage VcareE.
00 Internal reference off. An external reference can be applied.

01 0.25*V¢c

10 0.50*Vcc

11 Diode reference is selected

Comparator_A on. This bit turns on the comparator. When the comparator
is off it consumes no current. The reference circuitry is enabled or disabled
independently.

0 Off

1 On

Comparator_A interrupt edge select
0 Rising edge

1 Falling edge

Comparator_A interrupt enable

0 Disabled

1 Enabled

The Comparator_A interrupt flag
0 No interrupt pending
1 Interrupt pending

Comparator_A 16-9

Comparator_A Registers

Comparator_A, Control Register CACTL2

7 6 5 4 3 2 1 0
Unused P2CA1 P2CAO CAF CAOUT
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r—(0)
Unused Bits Unused.
7-4
P2CA1 Bit 3 Pin to CAL. This bit selects the CA1 pin function.

0 The pin is not connected to CA1
1 The pin is connected to CA1

P2CAO Bit 2 Pin to CAO. This bit selects the CAO pin function.
0 The pin is not connected to CAO
1 The pin is connected to CAO

CAF Bit 1 Comparator_A output filter
0 Comparator_A output is not filtered
1 Comparator_A output is filtered

CAOUT Bit 0 Comparator_A output. This bit reflects the value of the comparator output.
Writing this bit has no effect.

Comparator_A, Port Disable Register CAPD

7 6 5 4 3 2 1 0
CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPDO
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

CAPDx Bits Comparator_A port disable. These bits individually disable the input buffer

7-0 for the pins of the port associated with Comparator_A. For example, if

CAOUT is on pin P2.2, the CAPDx bits can be used to individually enable
or disable each P2.x pin buffer. CAPDO disables P2.0, CAPD1 disables
P2.1, etc.

0 The input buffer is enabled.

1 The input buffer is disabled.

16-10 Comparator_A

Chapter 17

ADC12

The ADC12 module is a high-performance 12-bit analog-to-digital converter.
This chapter describes the ADC12. The ADC12 is implemented in the
MSP430x13x, MSP430x14x, MSP430x15x, and MSP430x16x devices.

Topic Page
17.1 ADCI12 IntroducCtiont 17-2
17.2 ADCI12 Operationoouiiiieie it 17-4
17.3 ADCI12 ReQIStErS ...\ttt e e 17-20

17-1

ADC12 Introduction

17.1 ADC12 Introduction

17-2

ADC12

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The
module implements a 12-bit SAR core, sample select control, reference
generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samplesto be
converted and stored without any CPU intervention.

ADC12 features include:
[Greater than 200 ksps maximum conversion rate
[Monotonic 12-bit converter with no missing codes

[0 Sample-and-hold with programmable sampling periods controlled by
software or timers.

Conversion initiation by software, Timer_A, or Timer_B
Software selectable on-chip reference voltage generation (1.5V or 2.5 V)
Software selectable internal or external reference

Eight individually configurable external input channels

(I Ny I

Conversion channels for internal temperature sensor, AV, and external
references

Independent channel-selectable reference sources for both positive and
negative references

L

Selectable conversion clock source

L

[J Single-channel, repeat-single-channel, sequence, and repeat-sequence
conversion modes

[ADC core and reference voltage can be powered down separately
(1 Interrupt vector register for fast decoding of 18 ADC interrupts
[16 conversion-result storage registers

The block diagram of ADC12 is shown in Figure 17-1.

Figure 17-1. ADC12 Block Diagram

ADC12 Introduction

2 5V REFON
e INCHx=0AI
VeREF+ T
VREF+ on
« 15Vor25V }— AVCC
VREF4 VeREp- Reference
a <
Avce Ref x
INCHx 11 10 01 00 SREF1
4 Ayss SREF0 ADC120SC
AO 0000 SREF2 10 ADC120N ADC12SSELX
Al 0001
" 0010 T ADC12DIVx
22 8%(1) Sample VR- VR+ T T T
A5 0101 and . Divider ACLK
A6 o110 [®] Hold 12-bit SAR * n.s MCLK
A7 0111 _ SMCLK
1000 S/H Convert ADC12CLK
L {1001 l * >
1010
1011 BUSY oHS
1100 X
1101 SHP SHTOx ISSH
1110 $ 4 ENC
ﬁ SHI T 00 ADC12S(
Sample Timer
14 .. 11024 m Sync 01— TAl
Avee SAMPCON J-r 1 l 10 T8O
1 TB1
o SHTIX MSC
INCHx=0Bh
Ref_x ADC12MEMO ADC12MCTLO
R CSTARTADDX :: > _ _
H 16 x 12 16x8
H Memory Memory
CONSEQx = Buffer Control
R I—(%I _ _
v ADC12MEM15 ADC12MCTL15
Avss
ADC12 17-3

ADC12 Operation

17.2 ADC12 Operation

The ADC12 module is configured with user software. The setup and operation
of the ADC12 is discussed in the following sections.

17.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and
stores the result in conversion memory. The core uses two
programmable/selectable voltage levels (Vr+and VR_) to define the upperand
lower limits of the conversion. The digital output (Napc) is full scale (OFFFh)
when the input signal is equal to or higher than V., and zero when the input
signal is equal to or lower than Vi_. The input channel and the reference
voltage levels (Vg4 and VR_) are defined in the conversion-control memory.
The conversion formula for the ADC result Nopc is:

Vin — Vi_

Ve+ = Vro

N C=4095><

AD

The ADC12 core is configured by two control registers, ADC12CTLO and
ADC12CTL1. The core is enabled with the ADC120N bit. The ADC12 can be
turned off when not in use to save power. With few exceptions the ADC12
control bits can only be modified when ENC = 0. ENC must be set to 1 before
any conversion can take place.

Conversion Clock Selection

17-4

ADC12

The ADC12CLK is used both as the conversion clock and to generate the
sampling period when the pulse sampling mode is selected. The ADC12
source clock is selected using the ADC12SSELX bits and can be divided from
1-8 using the ADC12DIVx bits. Possible ADC12CLK sources are SMCLK,
MCLK, ACLK, and an internal oscillator ADC120SC.

The ADC120SC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
data sheet for the ADC120SC specification.

The user must ensure that the clock chosen for ADC12CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete and any result will be invalid.

ADC12 Operation

17.2.2 ADC12 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 17-2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (AVgg) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC12 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 17-2. Analog Multiplexer

R ~ 100 Ohm ADC12MCTLx.0-3

| t

L L
ESD Protection

~

Analog Port Selection

The ADC12 inputs are multiplexed with the port P6 pins, which are digital
CMOS gates. When analog signals are applied to digital CMOS gates,
parasitic current can flow from V¢ to GND. This parasitic current occurs if the
inputvoltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The P6SELX bits provide the ability to disable the port pin input
buffer.

; P6.0 and P6.1 configured for anal og input
BIS.B #3h, &P6SEL ; P6.1 and P6.0 ADC12 function
BIC.B #3h,&6DIR ; P6.1 and P6.0 input direction

ADC12 17-5

ADC12 Operation

17.2.3 Voltage Reference Generator

17-6

ADC12

The ADC12 module contains a built-in voltage reference with two selectable
voltage levels, 1.5V and 2.5 V. Either of these reference voltages may be used
internally and externally on pin VReE+-

Setting REFON=1 enables the internal reference. When REF2_5V =1, the
internal reference is 2.5V, the reference is 1.5 V when REF2_5V = 0. The
reference can be turned off to save power when not in use.

For proper operation the internal voltage reference generator must be
suppliedwith storage capacitance across VRgg+and Aygs. Therecommended
storage capacitance is a parallel combination of 10-pF and 0.1-uF capacitors
From turn-on, a maximum of 17 ms must be allowed for the voltage reference
generator to bias the recommended storage capacitors. If the internal
reference generator is not used for the conversion, the storage capacitors are
not required.

Note: Reference Decoupling

Approximately 200 pA is required from any reference used by the ADC12
while the two LSBs are being resolved during a conversion. A parallel
combination of 10-uF and 0.1-pyF capacitors is recommended for any
reference used.

Externalreferences may be supplied for Vg+ and Vr_through pins Vergg+ and
VREp_/VeRgE_ respectively.

ADC12 Operation

17.2.4 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample
input signal SHI. The source for SHI is selected with the SHSx bits and
includes the following:

[The ADC12SC bit

[The Timer_A Output Unit 1
(J The Timer_B Output Unit 0
(1 The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SAMPCON signal controls the sample period and start of conversion. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts the analog-to-digital conversion, which requires 13 ADC12CLK cycles.
Two different sample-timing methods are defined by control bit SHP, extended
sample mode and pulse mode.

Extended Sample Mode

The extended sample mode is selected when SHP = 0. The SHI signhal directly
controls SAMPCON and defines the length of the sample period tsample. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts the conversion after synchronization with ADC12CLK. See Figure 17-3.

Figure 17-3. Extended Sample Mode

Start Stop Start Conversion
Sampling Sampling Conversion Complete

v vV v

SHI

SAMPCON 13 x ADC12CLK

< tsample > < tconvert >
t
sync

ADC12 17-7

ADC12 Operation

Pulse Sample Mode

The pulse sample mode is selected when SHP = 1. The SHI signal is used to
trigger the sampling timer. The SHTOx and SHT1x bits in ADC12CTLO control
the interval of the sampling timer that defines the SAMPCON sample period
tsample. The sampling timer keeps SAMPCON high after synchronization with
AD12CLK fora programmed interval tsample- The total sampling time is tsample
plus tsync. See Figure 17-4.

The SHTX bits select the sampling time in 4x multiples of ADC12CLK. SHTOx
selects the sampling time for ADC12MCTLO to 7 and SHT1x selects the
sampling time for ADC12MCTLS to 15.

Figure 17-4. Pulse Sample Mode

SHI

SAMPCON

Start Stop Start Conversion
Sampling Sampling Conversion Complete

v v v
N

13 x ADC12CLK

4_ tsample —Pr———— teonyert—————P
—p —

tsync!

17-8 ADC12

ADC12 Operation

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsgmple, as shown below in Figure 17-5. An internal MUX-on
input resistance R| (max. 2 kQ) in series with capacitor C; (max. 40 pF) is seen
by the source. The capacitor C voltage V¢ must be charged to within 1/2 LSB
of the source voltage Vg for an accurate 12-bit conversion.

Figure 17-5. Analog Input Equivalent Circuit

Rs
VS —ANVV

} MSP430
V| = Input voltage at pin Ax
| R Vg = External source voltage
V| | Re= E .
g = External source resistance

| Ve R| = Internal MUX-on input resistance
| C| = Input capacitance

| g C V¢ = Capacitance-charging voltage

The resistance of the source Rg and R) affect tsample- The following equation
can be used to calculate the minimum sampling time tsample for a 12-bit
conversion:

t > (Rg + R) x 213 x ¢, 1)

sample

Substituting the values for R and C, given above, the equation becomes:

t > (Rg + 2kQ) x 9.011 x 40pF (2)

sample

For example, if Rg is 10 kQ, tsample must be greater than 4.33 ps.

ADC12 17-9

ADC12 Operation

17.2.5 Conversion Memory

There are 16 ADC12MEMXx conversion memory registers to store conversion
results. Each ADC12MEMX is configured with an associated ADC12MCTLXx
control register. The SREFx bits define the voltage reference and the INCHx
bits select the input channel. The EOS bit defines the end of sequence when
a sequential conversion mode is used. A sequence rolls over from
ADC12MEM15 to ADC12MEMO when the EOS bit in ADC12MCTL15 is not
set.

The CSTARTADDXx bits define the first ADC12MCTLx used for any
conversion. If the conversion mode is single-channel or repeat-single-channel
the CSTARTADDX points to the single ADC12MCTLXx to be used.

If the conversion mode selected is either sequence-of-channels or
repeat-sequence-of-channels, CSTARTADDx points to the first
ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLX in a
sequence when each conversion completes. The sequence continues until an
EOS bitin ADC12MCTLXx is processed - this is the last control byte processed.

When conversion results are written to a selected ADC12MEMX, the
corresponding flag in the ADC12IFGx register is set.

17.2.6 ADC12 Conversion Modes

The ADC12 has four operating modes selected by the CONSEQx bits as
discussed in Table 17-1.

Table 17-1.Conversion Mode Summary

17-10 ADC12

CONSEQx MODE OPERATION

00 Single channel A single channel is converted once.
single-conversion

01 Sequence-of- A sequence of channels is converted once.
channels

10 Repeat-single- A single channel is converted repeatedly.
channel

11 Repeat-sequence- A sequence of channels is converted
of-channels repeatedly.

ADC12 Operation

Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to
the ADC12MEMXx defined by the CSTARTADDX bits. Figure 17—6 shows the
flow of the Single-Channel, Single-Conversion mode. When ADC12SC
triggers a conversion, successive conversions can be triggered by the
ADC12SC bit. When any other trigger source is used, ENC must be toggled
between each conversion.

Figure 17-6. Single-Channel, Single-Conversion Mode

CONSEQx =00
ADC120N =1

x = CSTARTADDXx

7 Wait for Enable
s
/ SHSx=0
/ and
| ENC=1o0r 4
and
I\ ADC12SC= 4
I
II | “ENC =0 SAMPCON = &
\ R
AN SAMPCON = 1
’ \ g Sample, Input
‘ \ Channel Defined in
ll ‘Enc oot N\ ADC12MCTLx
{ \\ SAMPCON =¥
\‘ AN 12 x ADC12CLK
| N C
\ onvert
ENC = of
\
\ 1 x ADC12CLK
\\ Conversion
N Completed,
~ Result Stored Into
ADC12MEMX,

ADC12IFG.x is Set

X = pointer to ADC12MCTLx
tConversion result is unpredictable

ADC12

17-11

ADC12 Operation

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are
written to the conversion memories starting with the ADCMEMx defined by the
CSTARTADDx bits. The sequence stops after the measurement of the
channel with a set EOS bit. Figure 17—7 shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be
triggered by the ADC12SC bit. When any other trigger source is used, ENC

must be toggled between each sequence.

Figure 17-7. Sequence-of-Channels Mode

CONSEQx = 01

ADC120N =1

ENC = 4

X = CSTARTADDx
Wait for Enable

SHSx =0
and
ENC=1ord
and
ADC12SC =

Wait for Trigger

4

EOSx=1

SAMPCON =1

Sample, Input
Channel Defined in

Ifx<15thenx=x+1 ADC12MCTLxX Ifx<15thenx=x+1

elsex=0 elsex=0
/ SAMPCON =¥
12 x ADC12CLK
MSC =1
and
nver
SHP =1 Convert
and
EOS.x=0

1 x ADC12CLK

Conversion
Completed,
Result Stored Into
ADC12MEMX,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

17-12 ADC12

ADC12 Operation

Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are
written to the ADC12MEMx defined by the CSTARTADDX bits. It is necessary
to read the result after the completed conversion because only one
ADC12MEMx memory is used and is overwritten by the next conversion.
Figure 17—8 shows repeat-single-channel mode

Figure 17-8. Repeat-Single-Channel Mode

MSC =1

and
SHP =1

and
ENC=1

X = pointer to ADC12MCTLx

CONSEQx = 10

ENC=1o0r4

ADC12SC = 4

ADC120N =1
ENC = 4

x = CSTARTADDx
Wait for Enable

SHSx =0
and

and
Wait for Trigger

SAMPCON = & ENC=0

SAMPCON =1

Sample, Input
Channel Defined in
ADC12MCTLx

SAMPCON ='¥Y_

12 x ADC12CLK

Convert

1 x ADC12CLK

Conversion
Completed,
Result Stored Into
ADC12MEMX,
ADC12IFG.x is Set

ADC12 17-13

ADC12 Operation

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC
results are written to the conversion memories starting with the ADC12MEMx
defined by the CSTARTADDX bits. The sequence ends after the measurement
of the channel with a set EOS bit and the next trigger signal re-starts the

sequence. Figure 17-9 shows the repeat-sequence-of-channels mode.

Figure 17-9. Repeat-Sequence-of-Channels Mode

CONSEQx = 11

ADC120N =1

X = CSTARTADDX
Wait for Enable

SHSx =0
and
ENC=1ord

and
ADC12SC = _4_

Wait for Trigger

ENC =0
and
EOSx=1

SAMPCON = 4

SAMPCON =1

Sample, Input
Channel Defined in

If EOS.x =1thenx =

ADC12MCTLx CSTARTADDXx
else {if x < 15then x = x + 1 else
SAMPCON ='Y_ x = 0}
If EOS.x =1thenx =

12 x ADC12CLK

CSTARTADDXx
else {if x <15then x =x + 1 else (MSC=0
— Convert
x =0} or
sc= SHP =0)
Msa(rjld_ ' and
SHP=1 1 x ADC12CLK (ENC=1
and Conversion or)
(ENC=1 Completed, EOS.x =0)
Result Stored Into

or

EOS.x = 0) ADC12MEMKX,

ADC12IFG.x is Set

X = pointer to ADC12MCTLx

17-14 ADC12

ADC12 Operation

Using the Multiple Sample and Convert (MSC) Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC =1, CONSEQx > 0, and the sample timer is used, the first rising
edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed.
Additional rising edges on SHI are ignored until the sequence is completed in
the single-sequence mode or untili the ENC bit is toggled in
repeat-single-channel, or repeated-sequence modes. The function ofthe ENC
bit is unchanged when using the MSC bit.

Stopping Conversions

Stopping ADC12 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

(1 Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the busy bit until reset before clearing ENC.

[0 Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

(1 Resetting ENC during a sequence or repeat-sequence mode stops the
converter at the end of the sequence.

[Any conversion mode may be stopped immediately by setting the
CONSEQx = 0 and resetting ENC bit. Conversion data are unreliable.

Note: No EOS Bit Set For Sequence

If no EOS bit is set and a sequence mode is selected, resetting the ENC bit
does not stop the sequence. To stop the sequence, first select a
single-channel mode and then reset ENC.

17.2.7 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any ADC12MEMX register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the ADC12 module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQX
={0,2} the ADC12IFGx flag for the ADC12MEMXx used for the conversion can
trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the
last ADC12MEMx in the sequence can trigger a DMA transfer. Any
ADCI12IFGx flag is automatically cleared when the DMA controller accesses
the corresponding ADC12MEMx. See the DMA Controller chapter.

ADC12 17-15

ADC12 Operation

17.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 17-10.
When using the temperature sensor, the sample period must be greater than
30 us. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See device-specific data sheet for
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltage source for the temperature sensor. However, it does not
enable the VRgEg+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 17-10. Typical Temperature Sensor Transfer Function

17-16

ADC12

Volts

1.300 —

1.200 —

1.100 —

1.000 —

0.900 —

VTEMP=0.00355(TEMP)+0.986
0.800 —

0.700 T T T
Celsius

-50 0 50 100

ADC12 Operation

17.2.9 ADC12 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted
parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 17-11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design using separate analog and digital ground planes
with a single-point connection is recommend to achieve high accuracy.

Figure 17-11.ADC12 Grounding and Noise Considerations

| —» DVce
Digita
Power Supply L £
Decoupling k
—» = DVgg

10 uF 100 nF

Analog [, [{Acc
Power Supply 7~ -
Decoupling AVgs
10 uF 100 nF MSP430F13x
MSP430F14x

MSP430F15x

Using an External VeREF+ MSP430E16x

Positive
Reference

10 uF

Using the Internal | |
Reference fE - /
Generator

10 uF 100 nF

100 nF

VREF+

Using an External VRefr_! VeREF-
Negative

Reference

10 uF 100 nF

ADC12 17-17

ADC12 Operation

17.2.10 ADCI12 Interrupts

The ADC12 has 18 interrupt sources:

(1 ADC12IFGO-ADC12IFG15

(1 ADC120V, ADC12MEMXx overflow

[ADC12TOV, ADC12 conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory
register is loaded with a conversion result. An interrupt request is generated
if the corresponding ADC12IEx bit and the GIE bit are set. The ADC120V
condition occurs when a conversion result is written to any ADC12MEMXx
before its previous conversion result was read. The ADC12TOV condition is
generated when another sample-and-conversion is requested before the
current conversion is completed.

ADC121V, Interrupt Vector Generator

17-18

ADC12

All ADC12 interrupt sources are prioritized and combined to source a single
interrupt vector. The interrupt vector register ADC121V is used to determine
which enabled ADC12 interrupt source requested an interrupt.

The highest priority enabled ADC12 interrupt generates a number in the
ADC12IV register (see register description). This number can be evaluated or
added to the program counter to automatically enter the appropriate software
routine. Disabled ADC12 interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the
ADC120V condition or the ADC12TOV condition if either was the highest
pending interrupt. Neither interrupt condition has an accessible interrupt flag.
The ADC12IFGx flags are not reset by an ADC12|V access. ADC12IFGx bits
are reset automatically by accessing their associated ADC12MEMX register
or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the ADC120V and ADC12IFG3 interrupts are
pending when the interrupt service routine accesses the ADC12|V register, the
ADC120V interrupt condition is reset automatically. After the RETI instruction
ofthe interrupt service routine is executed, the ADC12IFG3 generates another
interrupt.

ADC12 Operation

ADC12 Interrupt Handling Software Example

The following software example shows the recommended use of ADC12IV
and the handling overhead. The ADC12IV value is added to the PC to
automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

[0 ADC12IFGO - ADC12IFG14, ADC12TOV and ADC120V 16 cycles
(g ADCI12IFG15 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if
a higher prioritized interrupt occurred during the processing of ADC12IFG15.
This saves nine cycles if another ADC12 interrupt is pending.

; Interrupt handl er for ADC12.

I NT_ADC12 ; Enter Interrupt Service Routine 6
ADD&ADC121V, PC ; Add offset to PC 3
RETI ; Vector 0: No interrupt 5
JMPADOV ; Vector 2: ADC overfl ow 2
JMPADTOV ; Vector 4: ADC timng overflow 2
JMPADM) ; Vector 6: ADCl2l FQ&O 2

: Vectors 8-32 2
JMPADML4 ; Vector 34: ADC12l FGL4 2

; Handl er for ADC12l FGL5 starts here. No JMP required.

ADML5 MOV &ADCL12MEML5, xxx; Move result, flag is reset
C ; Other instruction needed?
JWP | NT_ADC12 ; Check other int pending

; ADC12| FG14- ADC121 FGL handl ers go here

ADMD MOV &ADCL12MEMD, xxx ; Move result, flag is reset

- ; Other instruction needed?
RETI ; Return 5
ADTOV e ; Handl e Conv. tinme overfl ow
RETI ;. Return 5
ADOV e ; Handl e ADCVEMK overfl ow
RETI ;. Return 5

ADC12 17-19

ADC12 Registers

17.3 ADC12 Registers

The ADC12 registers are listed in Table 17-2:

Table 17-2.ADC12 Registers

Register Short Form Register Type Address Initial State
ADC12 control register 0 ADC12CTLO Read/write 01A0h Reset with POR
ADC12 control register 1 ADC12CTL1 Read/write 01A2h Reset with POR
ADC12 interrupt flag register ADCI12IFG Read/write 01A4h Reset with POR
ADC12 interrupt enable register ADC12IE Read/write 01A6h Reset with POR
ADC12 interrupt vector word ADC121V Read 01A8h Reset with POR
ADC12 memory O ADC12MEMO Read/write 0140h Unchanged
ADC12 memory 1 ADC12MEM1 Read/write 0142h Unchanged
ADC12 memory 2 ADC12MEM2 Read/write 0144h Unchanged
ADC12 memory 3 ADC12MEM3 Read/write 0146h Unchanged
ADC12 memory 4 ADC12MEM4 Read/write 0148h Unchanged
ADC12 memory 5 ADC12MEM5 Read/write 014Ah Unchanged
ADC12 memory 6 ADC12MEM6 Read/write 014Ch Unchanged
ADC12 memory 7 ADC12MEM7 Read/write 014Eh Unchanged
ADC12 memory 8 ADC12MEM8 Read/write 0150h Unchanged
ADC12 memory 9 ADC12MEM9 Read/write 0152h Unchanged
ADC12 memory 10 ADC12MEM10 Read/write 0154h Unchanged
ADC12 memory 11 ADC12MEM11 Read/write 0156h Unchanged
ADC12 memory 12 ADC12MEM12 Read/write 0158h Unchanged
ADC12 memory 13 ADC12MEM13 Read/write 015Ah Unchanged
ADC12 memory 14 ADC12MEM14 Read/write 015Ch Unchanged
ADC12 memory 15 ADC12MEM15 Read/write 015Eh Unchanged
ADC12 memory control 0 ADC12MCTLO Read/write 080h Reset with POR
ADC12 memory control 1 ADC12MCTL1 Read/write 081h Reset with POR
ADC12 memory control 2 ADC12MCTL2 Read/write 082h Reset with POR
ADC12 memory control 3 ADC12MCTL3 Read/write 083h Reset with POR
ADC12 memory control 4 ADC12MCTL4 Read/write 084h Reset with POR
ADC12 memory control 5 ADC12MCTL5 Read/write 085h Reset with POR
ADC12 memory control 6 ADC12MCTL6 Read/write 086h Reset with POR
ADC12 memory control 7 ADC12MCTL7 Read/write 087h Reset with POR
ADC12 memory control 8 ADC12MCTL8 Read/write 088h Reset with POR
ADC12 memory control 9 ADC12MCTL9 Read/write 089h Reset with POR
ADC12 memory control 10 ADC12MCTL10 Read/write 08Ah Reset with POR
ADC12 memory control 11 ADC12MCTL11 Read/write 08Bh Reset with POR
ADC12 memory control 12 ADC12MCTL12 Read/write 08Ch Reset with POR
ADC12 memory control 13 ADC12MCTL13 Read/write 08Dh Reset with POR
ADC12 memory control 14 ADC12MCTL14 Read/write 08Eh Reset with POR
ADC12 memory control 15 ADC12MCTL15 Read/write 08Fh Reset with POR

17-20 ADC12

ADC12 Registers

ADC12CTLO, ADC12 Control Register O

15 14 13 12 1 10 9 8
SHT1x SHTOx
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
ADC12
MSC REF2_5V REFON ADC120N [ADC120VIE TOVIE ENC ADC12SC
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

SHT1x

SHTOX

Bits
15-12
Bits
11-8

\ModmameomywhmeNC:O

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEMS8 to ADC12MEM15.

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEMO to ADC12MEM?7.

SHTx Bits = ADC12CLK cycles

0000 4
0001 8
0010 16
0011 32
0100 64
0101 96
0110 128
0111 192
1000 256
1001 384
1010 512
1011 768
1100 1024
1101 1024
1110 1024
1111 1024

ADC12 17-21

ADC12 Registers

MSC

REF2_5V

REFON

ADC120N

Bit 7

Bit 6

Bit 5

Bit 4

ADC120VIE Bit3

ADC12
TOVIE

ENC

ADC12SC

17-22

Bit 2

Bit 1

Bit 0

ADC12

Multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling timer requires a rising edge of the SHI signal to trigger
each sample-and-conversion.

1 The first rising edge of the SHI signal triggers the sampling timer, but
further sample-and-conversions are performed automatically as soon
as the prior conversion is completed.

Reference generator voltage. REFON must also be set.
0 15V
1 25V

Reference generator on
0 Reference off
1 Reference on

ADC12 on
0 ADC12 off
1 ADC12 on

ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to
enable the interrupt.

0 Overflow interrupt disabled

1 Overflow interrupt enabled

ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be
set to enable the interrupt.

0 Conversion time overflow interrupt disabled

1 Conversion time overflow interrupt enabled

Enable conversion
0 ADC12 disabled
1 ADC12 enabled

Start conversion. Software-controlled sample-and-conversion start.
ADC12SC and ENC may be set together with one instruction. ADC12SC is
reset automatically.

0 No sample-and-conversion-start

1 Start sample-and-conversion

ADC12 Registers

ADC12CTL1, ADC12 Control Register 1

15 14 13 12 11 10 9 8
CSTARTADDx SHSx SHP ISSH
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
ADC12DIVx ADC12SSELx CONSEQX ez
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) r—(0)

CSTART Bits

ADDX 15-12
SHSx Bits
11-10
SHP Bit 9
ISSH Bit 8

ADC12DIVx Bits
7-5

\ Modifiable only when ENC =0

Conversion start address. These bits select which ADC12
conversion-memory register is used for a single conversion or for the first
conversion in a sequence. The value of CSTARTADDx is 0 to OFh,
corresponding to ADC12MEMO to ADC12MEM15.

Sample-and-hold source select
00 ADC12SC bit

01 Timer_A.OUT1

10 Timer_B.OUTO

11 Timer_B.OUT1

Sample-and-hold pulse-mode select. This bit selects the source of the
sampling signal (SAMPCON) to be either the output of the sampling timer or
the sample-input signal directly.

0 SAMPCON signal is sourced from the sample-input signal.

1 SAMPCON signal is sourced from the sampling timer.

Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC12 clock divider
000 /1
o001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC12 17-23

ADC12 Registers

ADC12
SSELX

CONSEQx

ADC12
BUSY

Bits
4-3

Bits
2-1

Bit O

ADC12 clock source select
00 ADC120SC

01 ACLK
10 MCLK
11 SMCLK

Conversion sequence mode select

00 Single-channel, single-conversion
01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC12 busy. This bit indicates an active sample or conversion operation.
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC12MEMx, ADC12 Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results ‘

ro r0 r0 ro rw rw rw rw

7 6 5 4 3 2 1 0
Conversion Results ‘

rw rw rw rw rw rw rw rw

Conversion Bits
15-0

Results

17-24

ADC12

The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12
are always 0. Writing to the conversion memory registers will corrupt the
results.

ADC12 Registers

ADC12MCTLx, ADC12 Conversion Memory Control Registers

7

5 4 3 2 1

EOS

SREFX INCHx

rw—(0)

EOS

SREFX

INCHXx

rw—(0)

Bit 7

Bits

Bits

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

\ Modifiable only when ENC =0

End of sequence. Indicates the last conversion in a sequence.

0
1

Not end of sequence
End of sequence

Select reference

000 VR+ = AVCC and VR— = AVSS

001 VR4 =VREr+and VR_ = AVgg

010 VR+ = VeRE|:+ and VR— = AVSS

011 VR+ = VeRE|:+ and VR— = AVSS

100 VR+ =AVcc and VR_ = VRep/ VEREE-
101 VR+ = VREfr+ and VR_ = VR VEREF-
110 VR+ = Vergr+ and VR_ = VRep_/ VEeREF—
111 VR+ = Vergr+ and VR_ = VRep_/ VEeREp_
Input channel select

0000 A0

0001 A1

0010 A2

0011 AS

0100 A4

0101 A5

0110 A6

0111 A7

1000 VeRE|:+

1001 VREF—/VeREF—

1010 Temperature diode

1011 (AVge — AVgs) /2

1100 (AVec - AVgg) /2

1101 (AVec — AVgg) /2

1110 (AVce —AVgg) /2

1111 (AVge — AVsg) /2

ADC12

rw—(0)

17-25

ADC12 Registers

ADCI12IE, ADC12 Interrupt Enable Register

15 14 13 12 1 10 9 8
ADCI12IE15 | ADC12IE14 | ADC12IE13 | ADC12IE12 | ADC12IE11l | ADC12IE10 | ADC12IFGY | ADCI12IES
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

7 6 5 4 3 2 1 0
ADCI2IE7 | ADC12IE6 | ADC12IE5 | ADCI12IE4 | ADCI12IE3 | ADCI12IE2 | ADCI2IE1 | ADCI2IEQ
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
ADCI12IEx Bits Interrupt enable. These bits enable or disable the interrupt request for the

15-0 ADC12IFGx bits.

0 Interrupt disabled
1 Interrupt enabled

ADCI12IFG, ADC12 Interrupt Flag Register

15 14 13 12 1 10 9 8
ADC12 ADC12 ADC12 ADC12 ADC12 ADC12 ADC12 ADC12
IFG15 IFG14 IFG13 IFG12 IFG11 IFG10 IFG9 IFG8
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

7 6 5 4 3 2 1 0
ADC12 ADC12 ADC12 ADC12 ADC12 ADC12 ADC12 ADC12
IFG7 IFG6 IFG5 IFG4 IFG3 IFG2 IFG1 IFGO
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
ADCI12IFGx Bits ADC12MEMXx Interrupt flag. These bits are set when corresponding

15-0 ADC12MEMKX is loaded with a conversion result. The ADC12IFGx bits are
reset if the corresponding ADC12MEMX is accessed, or may be reset with
software.

0 No interrupt pending
1 Interrupt pending
17-26 ADC12

ADC12lV, ADC12 Interrupt Vector Register

ADC12 Registers

15 14 13 12 11 9 8
0 0 0 0 0 0 0
r0 ro ro r0 r0 r0 r0
7 6 5 4 3 1 0
0 0 ADC12IVx 0
r0 r0 r—(0) r—(0) r—(0) r—(0) r—(0) r0
ADC12IVx Bits ADC12 interrupt vector value
15-0
ADC12IV Interrupt
Contents Interrupt Source Interrupt Flag Priority

000h No interrupt pending -

002h ADC12MEMx overflow - Highest

004h Conversion time overflow -

006h ADC12MEMO interrupt flag ADC12IFGO

008h ADC12MEML1 interrupt flag ADC12IFG1

00Ah ADC12MEM2 interrupt flag ADC12IFG2

00Ch ADC12MEMS interrupt flag ADC12IFG3

00Eh ADC12MEM4 interrupt flag ADC12IFG4

010h ADC12MEMS interrupt flag ADC12IFG5

012h ADC12MEMS interrupt flag ADC12IFG6

014h ADC12MEM?Y interrupt flag ADC12IFG7

016h ADC12MEMS interrupt flag ADC12IFG8

018h ADC12MEMS9 interrupt flag ADC12IFG9

01Ah ADC12MEM10 interrupt flag ADC12IFG10

01Ch ADC12MEM11 interrupt flag ADC12IFG11

01Eh ADC12MEM12 interrupt flag ADC12IFG12

020h ADC12MEM13 interrupt flag ADC12IFG13

022h ADC12MEM14 interrupt flag ADC12IFG14

024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest

ADC12

17-27

17-28 ADC12

Chapter 18

ADC10

The ADC10 module is a high-performance 10-bit analog-to-digital converter.
This chapter describes the ADC10. The ADC10 is implemented in the
MSP430x11x2, MSP430x12x2 devices.

Topic Page
18.1 ADCI10 INtroducCtiont 18-2
18.2 ADCIL0 Operationouuiiiieie it e 18-4
18.3 ADCI0 REQISIErS ...\ttt e 18-24

18-1

ADC10 Introduction

18.1 ADC10 Introduction

18-2

ADC10

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The
module implements a 10-bit SAR core, sample select control, reference
generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in
memory without CPU intervention. The module can be configured with user
software to support a variety of applications.

ADC10 features include:

Iy N I N AN N

U O

J
a

Greater than 200-ksps maximum conversion rate

Monotonic10-bit converter with no missing codes

Sample-and-hold with programmable sample periods

Conversion initiation by software or Timer_A

Software selectable on-chip reference voltage generation (1.5V or 2.5 V)
Software selectable internal or external reference

Eight external input channels

Conversion channels for internal temperature sensor, AVcc, and external
references

Selectable conversion clock source

Single-channel, repeated single-channel, sequence, and repeated
sequence conversion modes

ADC core and reference voltage can be powered down separately

Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 18—1.

Figure 18-1. ADC10 Block Diagram

REFOUT

T

VeReF+

VREF+

ADC10 Introduction

REFBURST
T ADC10SR

I

I

2 5V

REFON
INCHx=0Ah

-

15Vor25V

VREF+ VeREF-

on

— Avce
Reference

INCHx

Auto

0000

0001
0010

0011
0100

0101
0110

0111

1000

1001
1010

1011
1100
1101
1110
1111

Avce

b

Ayss

SREF2

—m
CONSEQx

11 10 01 00

Avss
0

1 ADC100N

!

Sample
and
Hold

SIH

VR— VR+

10-bit SAR

Convert

/
\

|~

INCHx=0Bh

Ref_x

SAMPCON

BUSY

-

Ref_x

Avce

SREF1
SREFO

ADC10SSELx

ADC10DIVx

IT1

Divider
1..18

ADC10CLK

ISSH

Sample Timer
14/8/16/64

SHI

~

ADC100SC

ACLK
MCLK
SMCLK

SHSXx

ENC
ADC10SC

o<

.

ADC10DF

!

AV4

ADC10MEM

V

TAl

Sync
y TAO

.

ADC10SHTx MSC

TA2

Data Transfer
Controller

ADC10SA

______________.>

RAM, Flash, Peripherials

E Halt CPU

. . .

ADC10CT ADC10TB ADC10B1

ADC10 18-3

ADC10 Operation

18.2 ADC10 Operation

The ADC10 module is configured with user software. The setup and operation
of the ADC10 is discussed in the following sections.

18.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and
stores the result in the ADC1OMEM register. The core uses two
programmable/selectable voltage levels (Vr+and VR_) to define the upperand
lower limits of the conversion. The digital output (Napc) is full scale (O3FFh)
when the input signal is equal to or higher than V., and zero when the input
signal is equal to or lower than Vi_. The input channel and the reference
voltage levels (Vg4 and VR_) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format.
The conversion formula for the ADC result when using straight binary format
is:

Vin—Vp_

N
Ve, Ve

Apc = 1023 x
R+

The ADC10 core is configured by two control registers, ADC10CTLO and
ADC10CTL1. The core is enabled with the ADC100N bit. With few exceptions
the ADC10 control bits can only be modified when ENC = 0. ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection

18-4

ADC10

The ADC10CLK is used both as the conversion clock and to generate the
sampling period. The ADC10 source clock is selected using the ADC10SSELXx
bits and can be divided from 1-8 using the ADC10DIVx bits. Possible
ADC10CLK sources are SMCLK, MCLK, ACLK and an internal oscillator
ADC100SC.

The ADC100SC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
data sheet for the ADC100SC specification.

The user must ensure that the clock chosen for ADC10CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete, and any result will be invalid.

ADC10 Operation

18.2.2 ADCI10 Inputs and Multiplexer

Figure 18-2. Analog

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 18-2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (AVgg) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Multiplexer

R ~1000hm INCHXx

| t

Analog Port Selection

L L
ESD Protection

~

The ADC10 external inputs AO to A4 and Vergpr+ and VRgg— share terminals
with 1/0O port P2, which are digital CMOS gates. Optional inputs A5 to A7 are
shared on port P3 on selected devices (see device-specific data sheet). When
analog signals are applied to digital CMOS gates, parasitic current can flow
from V¢ to GND. This parasitic current occurs if the input voltage is near the
transition level of the gate. Disabling the port pin buffer eliminates the parasitic
current flow and therefore reduces overall current consumption. The
ADC10AEX bits provide the ability to disable the port pin input buffer.

; P2.3 configured for anal og input

Bl S. B #4h, &ADC10AE ; P2.3 ADC10 function and enable
BIC.B #4h,&P2DIR ; P2.3 input direction

ADC10 18-5

ADC10 Operation

18.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable
voltage levels, 1.5V and 2.5 V. Either of these reference voltages may be used
internally and externally on pin VReE+-

Setting REFON = 1 enables the internal reference. When REF2_5V =1, the
internal reference is 2.5V, the reference is 1.5 V when REF2_5V = 0.

External references may be supplied for VR4 and Vr_through pins A4 and A3
respectively.

Low Power Applications

18-6

ADC10

The ADC10 internal voltage reference generator is designed for low power
applications, with specific features for a fast startup. For proper operation, an
external storage capacitance is not required and has no associated bias time.
The total reference turn on time is less than 30 us. Normal power supply
decoupling across V¢ and Vgg using a parallel combination of 10-uF and
100-nF capacitors are all that is required.

(d When using Vcc and Vgg as reference voltages, the internal reference
should be powered off completely with REFON = 0.

[When using an external reference, the internal reference should be
powered off completely. External references may be supplied for Vg and
VR_ through pins A4 and A3 respectively.

[When the internal reference is used, and the maximum conversion rate is
below 50 ksps, setting ADC10SR = 1 reduces the current consumption of
the internal reference buffer approximately 50%.

(1 When both REFOUT =1 and REFBURST = 1, the reference is present
externally only during the sample and conversion period. When REFOUT
=1, and REFBURST = 0 is cleared, the reference voltage is continuously
present externally.

ADC10 Operation

18.2.4 Sample and Conversion Timing

Figure 18-3. Sample

SHI

SAMPCON

ADC10CLK

An analog-to-digital conversion is initiated with a rising edge of sample input
signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

[The ADC10SC bit

[The Timer_A Output Unit 1
[The Timer_A Output Unit 0
[The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SHTX bits select the sample period tsample to be 4, 8, 16, or 64 ADC10CLK
cycles. The sampling timer sets SAMPCON high for the selected sample
period after synchronization with ADC10CLK. Total sampling time is tsample
plus tsynC.The high-to-low SAMPCON transition starts the analog-to-digital
conversion, which requires 13 ADC10CLK cycles as shown in Figure 18-3.

Timing

Start Stop Start Conversion
Sampling Sampling Conversion Complete

v v v
N

13 x ADC10CLKs

4—— 'sample —P—— teopyerr—————P
e
tsync |

BVARN WA N A N A WA W AR WA

ADC10 18-7

ADC10 Operation

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tgample, @s shown below in Figure 18—4. An internal MUX-on
input resistance R| (max. 2 kQ) in series with capacitor C; (max. 20 pF) is seen
by the source. The capacitor C; voltage V¢ must be charged to within 2 LSB
of the source voltage Vg for an accurate 10-bit conversion.

Figure 18-4. Analog Input Equivalent Circuit

18-8

Rs
Vs

ADC10

} MSP430
V| = Input voltage at pin Ax
| R| Vg = External source voltage
Vi Rg= External source resistance
| Ve R| = Internal MUX-on input resistance
| ¢ C| = Input capacitance

V¢ = Capacitance-charging voltage

| 2

The resistance of the source Rg and R affect tsample- The following equation
can be used to calculate the minimum sampling time tgample for a 10-bit
conversion:

t > (Rg + R) x In211) x ¢, 1)

sample

Substituting the values for R| and C; given above, the equation becomes:

t > (Rg + 2k) X 7.625 x 20pF 2

sample

For example, if Rg is 10 kQ, tsample Must be greater than 1.83 ps.

18.2.5 Conversion Modes

ADC10 Operation

The ADC10 has four operating modes selected by the CONSEQx bits as

discussed in Table 18-1.

Table 18—1.Conversion Mode Summary

CONSEQx MODE OPERATION

00 Single channel A single channel is converted once.
single-conversion

01 Sequence-of- A sequence of channels is converted once.
channels

10 Repeat single A single channel is converted repeatedly.
channel

11 Repeat sequence- A sequence of channels is converted
of-channels repeatedly.

ADC10 18-9

ADC10 Operation

Single-Channel Single-Conversion Mode

A single channel selected by INCHx is sampled and converted once. The ADC
result is written to ADC10MEM. Figure 18-5 shows the flow of the
single-channel, single-conversion mode. When ADC10SC triggers a
conversion, successive conversions can be triggered by the ADC10SC bit.
When any other trigger source is used, ENC must be toggled between each
conversion.

Figure 18-5. Single-Channel Single-Conversion Mode

CONSEQx = 00

ADC100N =1

Wait for Enable

SHS =0

and
ENC=1or 4
and
ADC10SC = 4 Wait for Trigger

SAMPCON = &
(4/8/16/64) x ADC10CLK

Sample, Input
Channel

12 x ADC10CLK

Convert

1 x ADC10CLK

Conversion
Completed,
Result to
ADC10MEM,
ADCI10IFG is Set

X = input channel Ax
T Conversion result is unpredictable

18-10 ADC10

ADC10 Operation

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence
begins with the channel selected by INCHx and decrements to channel AO.
Each ADC result is written to ADC10MEM. The sequence stops after
conversion of channel AO. Figure 18-6 shows the sequence-of-channels
mode. When ADC10SC triggers a sequence, successive sequences can be
triggered by the ADC10SC bit . When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 18-6. Sequence-of-Channels Mode

MSC =1

X = input channel Ax

X = INCHXx
Wait for Enable

SHS =0

and
ENC=1o0r 4
and
ADC10SC = 4 Wait for Trigger

SAMPCON = 4~

(4/8/16/64) x ADC10CLK

Sample,
Input Channel Ax

Ifx>0thenx=x-1
If x>0thenx=x-1

/

12 x ADC10CLK

and
X#0

Convert

1 x ADC10CLK

Conversion
Completed,
Result to ADC10MEM,
ADCI10IFG is Set

ADC10 18-11

ADC10 Operation
Repeat-Single-Channel Mode

A single channel selected by INCHXx is sampled and converted continuously.

Each ADC result is written to ADC10OMEM. Figure 18-7 shows the
repeat-single-channel mode.

Figure 18-7. Repeat-Single-Channel Mode

X = INCHXx
Wait for Enable

SHS =0
and

ENC=1or 4

and

ADC10SC = 4 Wait for Trigger

SAMPCON = 4~ ENC = 0

(:/8/16/64) x ADC10CLK

Sample,
Input Channel Ax

12 x ADC10CLK
MSC=1
and
ENC =1

Convert

1 x ADC10CLK

Conversion
Completed,
Result to ADC10MEM,
ADCI10IFG is Set

X = input channel Ax

18-12 ADC10

ADC10 Operation

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence
begins with the channel selected by INCHx and decrements to channel AO.
Each ADC result is written to ADC10MEM. The sequence ends after
conversion of channel AQ, and the next trigger signal re-starts the sequence.
Figure 18-8 shows the repeat-sequence-of-channels mode.

Figure 18—-8. Repeat-Sequence-of-Channels Mode

X = INCHXx
Wait for Enable

SHS =0
and
ENC= lor 4
and
ADC10SC = _A_

Wait for Trigger

SAMPCON = 4

(4/8/16/64) x ADC10CLK \

If x = 0 then x = INCH

Sample
Input Channel Ax

else x =x-1
If x =0 then x = INCH i
else x = x -1 12 x ADC10CLK ENC=0
and
/ Convert x=0
MSC =1
and
(ENC =1 1 x ADC10CLK
or _
X #0) Conversion
Completed,
Result to ADC10MEM,

ADCI10IFG is Set

X = input channel Ax

ADC10 18-13

ADC10 Operation

Using the MSC Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC = 1 and CONSEQx > 0 the first rising edge of the SHI signal
triggers the first conversion. Successive conversions are triggered
automatically as soon as the prior conversion is completed. Additional rising
edges on SHI are ignored until the sequence is completed in the
single-sequence mode or until the ENC bit is toggled in repeat-single-channel,
or repeated-sequence modes. The function of the ENC bit is unchanged when
using the MSC bit.

Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

(1 Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the ADC10BUSY bit until reset before clearing ENC.

[0 Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

(1 Resetting ENC during a sequence or repeat sequence mode stops the
converter at the end of the sequence.

[Any conversion mode may be stopped immediately by setting the
CONSEQx=0 and resetting the ENC bit. Conversion data is unreliable.

18-14 ADC10

ADC10 Operation

18.2.6 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer
conversion results from ADC10MEM to other on-chip memory locations. The
DTC is enabled by setting the ADC10DTC1 register to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and
loads the result to ADC10MEM, a data transfer is triggered. No software
intervention is required to manage the ADC10 until the predefined amount of
conversion data has been transferred. Each DTC transfer requires one CPU
MCLK. To avoid any bus contention during the DTC transfer, the CPU is halted,
if active, for the one MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must
ensure that no active conversion or sequence is in progress when the DTC is
configured:

; ADCL0 activity test
Bl C. W #ENC, &ADC10CTLO ;
busy_test BI T. W #BUSY, &ADC10CTL1;
INZ busy_test ;
MOV. W #xxx, &ADCI0SA ; Safe
MOV. B #xx, &ADC10DTC1 ;
; continue setup

ADC10 18-15

ADC10 Operation

One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in
ADC10DTC1 defines the total number of transfers for a block. The block start
address is defined anywhere in the MSP430 address range using the 16-bit
register ADC10SA. The block ends at ADC10SA+2n-2. The one-block
transfer mode is shown in Figure 18-9.

Figure 18-9. One-Block Transfer

18-16

ADC10

TB=0

'n’th transfer ADC10SA+2n-2

ADC10SA+2n—-4

\ 2nd transfer ADC10SA+2
ADC10SA

1st transfer

DTC

(C
J)
[{d
J)

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer, the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. No additional DTC transfers
will occur until a write to ADC10SA. When using the DTC in the one-block
mode, the ADC10IFG flag is set only after a complete block has been
transferred. Figure 18-10 shows a state diagram of the one-block mode.

Figure 18-10. State Diagram for Data Transfer Control in One-Block Transfer Mode

n=0 (ADC10DTC1)

DTC reset

Wait for write to
ADC10SA

Initialize

DTC init Start Address in ADC10SA

Write to
ADC10SA

n is latched
in counter 'x’

Wait until ADC10MEM
is written

DTCidle

Write to ADC10MEM
completed

Write to ADC10SA

Wait .
for Synchronlze
CPU ready with MCLK

Write to ADC10SA
1 x MCLK cycle

Transfer data to
Address AD

AD =AD + 2
ADC10TB =0

and
x=0 ADC10CT = 1
ADC10TB =0
ADC10IFG=1 and
ADC10CT = 0

ADC10 Operation

Prepare
DTC

DTC
operation

ADC10

18-17

ADC10 Operation

Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in
ADC10DTC1 defines the number of transfers for one block. The address
range of the first block is defined anywhere in the MSP430 address range with
the 16-bit register ADC10SA. The first block ends at ADC10SA+2n—2. The
address range for the second block is defined as SA+2n to SA+4n-2. The
two-block transfer mode is shown in Figure 18-11.

Figure 18-11.Two-Block Transfer

18-18

ADC10

TB=1
2 x 'n'th transfer ADC10SA+4n-2
ADC10SA+4n-4
DTC 'n'th transfer ADC10SA+2n-2
ADC10SA+2n-4
2nd transfer ADC10SA+2
1st transfer ADC10SA

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue, with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. At this point, block one is full
and both the ADC10IFG flag the ADC10BL1 bit are set. The user can test the
ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is
automatically reloaded with 'n’. At the next load of the ADC10MEM, the DTC
begins transferring conversion results to block two. After n transfers have
completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit
is cleared. User software can test the cleared ADC10B1 bit to determine that
block two is full. Figure 18—-12 shows a state diagram of the two-block mode.

ADC10 Operation

Figure 18-12. State Diagram for Data Transfer Control in Two-Block Transfer Mode

n=0 (ADC10DTC1)

DTC reset

ADC10B1=0
ADC10TB =1

Wait for write to
ADC10SA

Initialize
Start Address in ADC10SA

DTC init

Write to
ADC10SA

n is latched
in counter 'x’
Write to ADC10SA
%o Wait until ADC10MEM
n= is written

Write to ADC10MEM
completed

Write to ADC10SA ’

Synchronize

CPU ready with MCLK x>0
Write to ADC10SA
1 x MCLK cycle
Transfer data to
Address AD
AD =AD + 2
Xx=x-1
ADC10B1=1
x=0

or
ADC10CT=1

ADC10CT =0
and
ADC10B1 =0

ADC10IFG=1

Toggle
ADC10B1

Prepare
DTC

DTC
operation

ADC10 18-19

ADC10 Operation

Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC will not stop
after block one in (one-block mode) or block two (two-block mode) has been
transferred. The internal address pointer and transfer counter are set equal to
ADC10SA and n respectively. Transfers continue starting in block one. If the
ADCI10CT bit is reset, DTC transfers cease after the current completion of
transfers into block one (in the one-block mode) or block two (in the two-block
mode) have been transfer.

DTC Transfer Cycle Time

Table 18—2.Maximum

18-20 ADC10

For each ADC10MEM transfer, the DTC requires one or two MCLK clock
cyclesto synchronize, one for the actual transfer (while the CPU is halted), and
one cycle of wait time. Because the DTC uses MCLK, the DTC cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DTC uses the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DTC temporarily restarts MCLK, sourced with DCOCLK, only during
a transfer. The CPU remains off and after the DTC transfer, MCLK is again
turned off. The maximum DTC cycle time for all operating modes is show in
Table 18-2.

DTC Cycle Time

CPU Operating Mode Clock Source Maximum DTC Cycle Time

Active mode MCLK=DCOCLK 3 MCLK cycles

Active mode MCLK=LFXT1CLK 3 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 4 MCLK cycles + 6 psT

Low-power mode LPM0/1 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 4 MCLK cycles + 6 usT

T The additional 6 ys are needed to startthe DCOCLK. Itisthe t(LPMx) Parameterinthe datasheet.

ADC10 Operation

18.2.7 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 18-13.
When using the temperature sensor, the sample period must be greater than
30 ps. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See the device-specific data sheet for the
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as avoltage source for the temperature sensor. However, it does not
enable the VRgg+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 18-14. Typical Temperature Sensor Transfer Function

Volts

1.300

1.200

1.100

1.000

0.900

0.800

0.700

VTEMP=0.00355(TEMP)+0.986

Celsius
-50 0 50 100

ADC10 18-21

ADC10 Operation

18.2.8 A/D Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted
parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 18-15 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design is important to achieve high accuracy.

Figure 18-16. ADC10 Grounding and Noise Considerations

18-22

ADC10

> Vee
Power supply /
Decoupling k
Vss
10 uF 100 nF MSP430F12x2
MSP430F11x2
> Ve REF+
External
Reference
> VREF-

ADC10 Operation

18.2.9 ADCI10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as
shown in Figure 18-17. When the DTC is not used (ADC10DTC1 = 0)
ADC10IFG is set when conversion results are loaded into ADC10MEM. When
DTC is used (ADC10DTC1 > 0) ADC10IFG is set when a block transfer
completes and the internal transfer counter 'n’ = 0. If both the ADC10IE and
the GIE bits are set, then the ADC10IFG flag generates an interrupt request.
The ADCI10IFG flag is automatically reset when the interrupt request is
serviced or may be reset by software.

Figure 18-17. ADCI10 Interrupt System

Set ADC10IFG

n"=0

ADCI10IE

) D Q _)—> IRQ, Interrupt Service Requested

ADC10CLK —>

Reset

IRACC, Interrupt Request Accepted
POR

ADC10 18-23

ADC10 Registers

18.3 ADC10 Registers

The ADC10 registers are listed in Table 18-3.

Table 18-3.ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 Input enable register ADC10AE Read/write 04Ah Reset with POR
ADC10 control register 0 ADC10CTLO Read/write 01BOh Reset with POR
ADC10 control register 1 ADC10CTL1 Read/write 01B2h Reset with POR
ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTCO Read/write 048h Reset with POR
ADC10 data transfer control register 1 ADC10DTC1 Read/write 04%9h Reset with POR
ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR

18-24 ADC10

ADC10 Registers

ADC10CTLO, ADC10 Control Register O

15 14 13 12 11 10 9 8
SREFx ADC10SHTx ADC10SR REFOUT REFBURST
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
MSC REF2_5V REFON ADC100N ADCI10IE ADCI10IFG ENC ADC10SC
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

SREFX

ADC10
SHTX

ADC10SR

REFOUT

REFBURST

Bits
15-13

Bits

12-11

Bit 10

Bit 9

Bit 8

\ Modifiable only when ENC =0

Select reference

000 VR+ = AVCC and VR— = AVSS

001 VR+ = VREF+ and VR— = AVSS

010 VR+ = VeRE|:+ and VR— = AVSS

011 VR+ = VeRE|:+ and VR— = AVSS

100 VR4 =AVcc and VR_ = VRer_/ VEeREF-
101 VR+ = VRgefr+ and VR_ = VRep_/ VEREF_
110 VR+ = VeRE|:+ and VR— = VREF—/ VeREF_
111 VR+ = Vergr+ and VR_ = VRer—/ VEREE-

ADC10 sample-and-hold time
00 4 xADC10CLKs

01 8 xADC10CLKs

10 16 x ADC10CLKs

11 64 x ADC10CLKs

ADC10 sampling rate. This bit selects the approximate maximum sample rate
of the ADC10.

0 ~200 ksps

1 ~50 ksps

Reference output
0 Reference output off
1 Reference output on

Reference burst. REFOUT must also be set.
0 Reference voltage output continuously
1 Reference voltage output only during sample-and-conversion

ADC10 18-25

ADC10 Registers

MSC

REF2_5V

REFON

ADC100N

ADCI10IE

ADC10IFG

ENC

ADC10SC

18-26

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

ADC10

Multiple sample and conversion. Valid only for sequence or repeated modes.

0 The sampling requires a rising edge of the SHI signal to trigger each
sample-and-conversion.

1 The first rising edge of the SHI signal triggers the sampling timer, but
further sample-and-conversions are performed automatically as soon
as the prior conversion is completed

Reference-generator voltage. REFON must also be set.
0 15V
1 25V

Reference generator on
0 Reference off
1 Reference on

ADC10 on
0 ADC10 off
1 ADC10 on

ADC10 interrupt enable
0 Interrupt disabled
1 interrupt enabled

ADC10 interrupt flag. This bitis setif ADC10MEM is loaded with a conversion
result. Itis automatically reset when the interrupt request is accepted, or it may
be reset by software. When using the DTC this flag is set when a block of
transfers is completed.

0 No interrupt pending

1 Interrupt pending

Enable conversion
0 ADC10 disabled
1 ADC10 enabled

Start conversion. Software-controlled sample-and-conversion start.
ADC10SC and ENC may be set together with one instruction. ADC10SC is
reset automatically.

0 No sample-and-conversion start

1 Start sample-and-conversion

ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11

ADC10 Registers

10 9

INCHx

SHSX

ADC10DF

ISSH

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

7 6 5 4 3

rw—(0) rw—(0)

rw—(0)

ADC10DIVx ADC10SSELx

CONSEQx

ADC10
BUSY

rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

\ Modifiable only when ENC =0

INCHx Bits Input channel select

15-12 0000 A0
0001 A1l
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeRE|:+
1001 VRgp_/VeRgp—
1010 Temperature diode
1011 (AVec —AVgg) /2
1100 (AVcc—AVgg)/2
1101 (AVec —AVgg) /2
1110 (AVec —AVgg) /2
1111 (AVec —AVgg) /2

SHSx Bits Sample-and-hold source select
11-10 00 ADC10SC hit
10 Timer_A.OUT1
10 Timer_A.OUTO
11 Timer_A.QUT2

ADC10DF Bit 9 ADC10 data format
0 Straight binary
1 2's complement

ISSH Bit 8 Invert signal sample-and-hold

rw—(0) rw—(0)

0 The sample-input signal is not inverted.

1 The sample-input signal is inverted.

ADC10

18-27

ADC10 Registers

ADC10DIVx

ADC10
SSELX

CONSEQx

ADC10
BUSY

Bits ADC10 clock divider
7-5 000 /1

001 /2

010 /3

011 /4

100 /5

101 /6

110 /7

111 /8

Bits ADC10 clock source select

4-3 00
01
10
11

ADC100SC
ACLK
MCLK
SMCLK

Bits Conversion sequence mode select

2-1 00
01
10
11

Single-channel-single-conversion
Sequence-of-channels
Repeat-single-channel
Repeat-sequence-of-channels

Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation

0
1

No operation is active.
A sequence, sample, or conversion is active.

ADC10AE, Analog (Input) Enable Control Register

7 6 5 4 3 2 1 0
ADCI10AE7 | ADC10AE6 | ADC10AE5 | ADC10AE4 | ADC10AE3 | ADC10AE2 | ADC10AEl | ADC10AEO
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
ADCI10AEx Bits ADC10 analog enable

7-0 0
1

18-28 ADC10

Analog input disabled
Analog input enabled

ADC10MEM, Conversion-Memory Register, Binary Format

ADC10 Registers

15 14 13 12 11 10 9 8

0 0 0 0 0 0 Conversion Results
r0 r0 r0 r0 (0] r0 r r

7 6 5 4 3 2 1 0

Conversion Results

Conversion Bits
Results 15-0

The 10-bit conversion results are right justified, straight-binary format. Bit 9

is the MSB. Bits 15-10 are always 0.

ADC10MEM, Conversion-Memory Register, 2's Complement Format

15 14 13 12 11 10 9 8
Conversion Results ‘

r r r r r r r r

7 6 5 4 3 2 1 0
Conversion Results 0 0 0 0 0 0 ‘

r r ro ro r0 ro ro r0

Conversion Bits
Results 15-0

The 10-bit conversion results are left-justified, 2's complement format. Bit 15

is the MSB. Bits 5-0 are always 0.

ADC10

18-29

ADC10 Registers

ADC10DTCO, Data Transfer Control Register 0

7 5 4 3 2 1 0
ADC10
Reserved ADC10TB ADC10CT ADC10B1 FETCH
ro r0 r0 ro rw—(0) rw—(0) rw—(0) rw—(0)

Reserved

ADC10TB

ADC10CT

ADC10B1

ADC10
FETCH

18-30

Bits

Bit 3

Bit 2

Bit 1

Bit 0

ADC10

Reserved. Always read as 0.

ADC10 two-block mode.
0 One-block transfer mode
1 Two-block transfer mode

ADC10 continuous transfer.

0 Data transfer stops when one block (one-block mode) or two blocks
(two-block mode) have completed.

1 Data is transferred continuously. DTC operation is stopped only if
ADCI10CT cleared, or ADC10SA is written to.

ADC10 block one. This bit indicates for two-block mode which block is filled
with ADC10 conversion results. ADC10BL1 is valid only after ADC10IFG has
been set the first time during DTC operation. ADC10TB must also be set

0 Block 1 is filled

1 Block 2 is filled

This bit should normally be reset.

ADC10 Registers

ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0
DTC Transfers
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
DTC Bits DTC transfers. These bits define the number of transfers in each block.
Transfers 7-0 0 DTC is disabled

01h-OFFh Number of transfers per block

ADC10SA, Start Address Register for Data Transfer

15 14 13 12 11 10 9 8
ADC10SAX ‘
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(1) rw—(0)
7 6 5 4 3 2 1 0
ADC10SAX 0 ‘
w—(0) rw—(0) w—(0) w—(0) rw—(0) w—(0) w—(0) ro

ADC10SAx Bits ADC10 start address. These bits are the start address for the DTC. A write
15-1 to register ADC10SA is required to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.

ADC10 18-31

18-32 ADC10

Chapter 19

DAC12

The DAC12 module is a 12-bit, voltage output digital-to-analog converter. This
chapter describes the DAC12. Two DAC12 modules are implemented in the
MSP430x15x and MSP430x16x devices.

Topic Page
19.1 DACIL2 INtroducCtiont 19-2
19.2 DACIL2 Operationiiuiii ittt 19-4
19.3 DACI2 REQISIEIS ...\ttt e e 19-10

19-1

DAC12 Introduction

19.1 DAC12 Introduction

19-2

DAC12

The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 can
be configured in 8- or 12-bit mode and may be used in conjunction with the
DMA controller. When multiple DAC12 modules are present, they may be
grouped together for synchronous update operation.

Features of the DAC12 include:

12-hit monotonic output

8- or 12-bit voltage output resolution
Programmable settling time vs power consumption
Internal or external reference selection

Straight binary or 2's compliment data format
Self-calibration option for offset correction

Synchronized update capability for multiple DAC12s

U U U o od d oo

Multiple DAC12 modules can be grouped for simultaneous update

Note: Multiple DAC12 Modules

Some devices may integrate more than one DAC12 module. In the case
where more than one DAC12 is present on a device, the multiple DAC12
modules operate identically.

Throughout this chapter, nomenclature appears such as DAC12_xDAT or
DAC12_xCTL to describe register names. When this occurs, the x is used
to indicate which DAC12 module is being discussed. In cases where
operation is identical, the register is simply referred to as DAC12_xCTL.

The block diagram of the two DAC12 modules in the MSP430F15x/16x
devices is shown in Figure 19-1.

DAC12 Introduction

Figure 19-1. DAC12 Block Diagram

—>—0—|§3—>— To ADC12 module
VeREF+

—*.——()V —4-2.5Vor 1.5V from ADC12 DAC12SREFx
REF+ module internal reference
DAC12AMP
[B
‘ I
2R ®
2R R ®
= J
—
_} < \1 9
N\ \ L J
—@—u DAC12IR AVSS
h v
VR VR
DAC12LSELx
u DAC12 0 DAC12_00UT
00 Latch Bypass
i I
TA1 — 10 —a DAC12RES
1 DAC12_OLatch
™2 — 11 — —a& DAC12DF
- < {b
DAC12GRP
DAC12_ODAT ENC «“ DAC12 ODAT
Updated —
Group [~ DAC12SREFx
Load
p| Logic |¢—— DAC12AMP
[B
b I
2R
2R R 01 ® 9
C .
oa J
R -® 1
<7
C (—
| A ®e
1% 0 (—e—=m DAC12IR AVSS¢ i
Via_ Vig
DAC12LSELx R R
DAC12_1 DAC12_10UT
00 Latch Bypass
; It
TA1 —] 10 |—a DAC12RE
. DAC12_1Latch c S
TB2 —] 11 - = DAC12DF
Fc i
DAC12GRP
DAC12_1DAT ENC < DAC12_1DAT
Updated —

DAC12 19-3

DAC12 Operation

19.2 DAC12 Operation

The DAC12 module is configured with user software. The setup and operation
of the DAC12 is discussed in the following sections.

19.2.1 DAC12 Core

The DAC12 can be configured to operate in 8- or 12-bit mode using the
DAC12RES bit. In addition, the full-scale output is programmable to be 1x or
3x the selected reference voltage via the DAC12IR bit. This feature allows the
user to control the dynamic range of the DAC12. When using the internal
reference, the full-scale output is always 1x the reference voltage. The
DAC12DF bit allows the user to select between straight binary data and 2's
compliment data for the DAC. When using straight binary data format, the
formula for the output voltage is given in Table 19-1.

Table 19-1.DAC12 Full-Scale Range (Vref = Vereg+ Of VREF+)

Resolution DAC12RES DACI12IR Output Voltage Formula
12 bit 0 0 DAC12_xDAT
Vout = Vref x 3 x — 1006
12 bit 0 1 DAC12_xDAT
Vout = Vref x ~ 1006
8 bit 1 0
Vout = Vref x 3 x DAC12_xDAT
256
8 hit 1 1
Vout = Vref x %

In 8-bit mode, the maximum useable value for DAC12_xDAT is OFFh and in
12-bit mode the maximum useable value for DAC12_xDAT is OFFFh. Values
greater than these may be written to the register, but all leading bits are
ignored.

DAC12 Port Selection

The DAC12 outputs are multiplexed with the port P6 pins and ADC12 analog
inputs. When DAC12AMPx > 0, the DAC12 function is automatically selected
for the pin, regardless of the state of the associated P6SELx and P6DIRX bits.

19-4 DAC12

DAC12 Operation

19.2.2 DAC12 Reference

The reference for the DAC12 is configured to use either of two external
reference voltages or the internal 1.5-V/2.5-V reference from the ADC12
module with the DAC12SREFx bits. When DAC12SREFx = {0,1} the VRgE+
signal is used as the reference and when DAC12SREFx = {2,3} the Vergfr+
signal is used as the reference.

To use the ADC12 internal reference, it must be enabled and configured via
the applicable ADC12 control bits (see the ADC12 chapter). Once the ADC12
reference is configured, the reference voltage appears on the VRgg+ signal.

DAC12 Reference Input and Voltage Output Buffers

19.2.3 Updating the

The reference input and voltage output buffers of the DAC12 can be
configured for optimized settling time vs power consumption. Eight
combinations are selected using the DAC12AMPX bits. In the low/low setting,
the settling time is the slowest, and the current consumption of both buffers is
the lowest. The medium and high settings have faster settling times, but the
current consumption increases. See the device-specific data sheet for
parameters.

DAC12 Voltage Output

The DAC12_xDAT register can be connected directly to the DAC12 core or
double buffered. The trigger for updating the DAC12 voltage output is selected
with the DAC12LSELX bits.

When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT
register is applied directly to the DAC12 core. the DAC12 output updates
immediately when new DAC12 data is written to the DAC12_xDAT register,
regardless of the state of the DAC12ENC bit.

When DAC12LSELx = 1, DAC12 data is latched and applied to the DAC12
core after new data is written to DAC12_xDAT. When DAC12LSELx =2 or 3,
data is latched on the rising edge from the Timer_A CCR1 output or Timer_B
CCR2 output respectively. DAC12ENC must be set to latch the new data when
DAC12LSELx > 0.

DAC12 19-5

DAC12 Operation

19.2.4 DAC12_ xDAT Data Format

The DAC12 supports both straight binary and 2’s compliment data formats.
When using straight binary data format, the full-scale output value is OFFFh
in 12-bit mode (OFFh in 8-bit mode) as shown in Figure 19-2.

Figure 19-2. Output Voltage vs DAC12 Data, 12-Bit, Straight Binary Mode

Output Voltage
A

Full-Scale Output

0 » DAC Data

0 OFFFh

When using 2's compliment data format, the range is shifted such that a
DAC12_xDAT value of 0800h (0080h in 8-bit mode) results in a zero output
voltage, 0000h is the mid-scale output voltage, and 07FFh (007Fh for 8-bit
mode) is the full-scale voltage output as shown in Figure 19-3.

Figure 19-3. Output Voltage vs DAC12 Data, 12-Bit, 2s Compliment Mode

Output Voltage
A

Full-Scale Output

Mid-Scale output {————————~Ff —— —— — — — -

» DAC Data
L

0

0800h (—2048) 0 07FFh (+2047)

19-6 DAC12

DAC12 Operation

19.2.5 DAC12 Output Amplifier Offset Calibration

The offset voltage of the DAC12 output amplifier can be positive or negative.
When the offset is negative, the output amplifier attempts to drive the voltage
negative, but cannot do so. The output voltage remains at zero until the DAC12
digital input produces a sufficient positive output voltage to overcome the
negative offset voltage, resulting in the transfer function shown in Figure 19-4.

Figure 19-4. Negative Offset

Output Voltage

0

Negative Offset{

v

/ DAC Data

When the output amplifier has a positive offset, a digital input of zero does not
result in a zero output voltage. The DAC12 output voltage reaches the
maximum output level before the DAC12 data reaches the maximum code.
This is shown in Figure 19-5.

Figure 19-5. Positive Offset

Output Voltage

| >
Ll

DAC Data Full-Scale Code

The DAC12 has the capability to calibrate the offset voltage of the output
amplifier. Setting the DAC12CALON bit initiates the offset calibration. The
calibration should complete before using the DAC12. When the calibration is
complete, the DAC12CALON bitis automatically reset. The DAC12AMPX bits
should be configured before calibration.

DAC12 19-7

DAC12 Operation

19.2.6 Grouping Multiple DAC12 Modules

Multiple DAC12s can be grouped together with the DAC12GRP bit to
synchronize the update of each DAC12 output. Hardware ensures that all
DAC12 modules in a group update simultaneously independent of any
interrupt or NMI event.

On the MSP430x15x and MSP430x16x devices, DAC12_0and DAC12_1are
grouped by setting the DAC12GRP bit of DAC12_0. The DAC12GRP bit of
DAC12_1is don't care. When DAC12_0 and DAC12_1 are grouped:

(10 The DAC12_1 DAC12LSELXx bits select the update trigger for both DACs
[0 The DAC12LSELX bits for both DACs must be > 0

[The DAC12ENC bits of both DACs must be set to 1

When DAC12_0 and DAC12_1 are grouped, both DAC12_xDAT registers
must be written to before the outputs update - even if data for one or both of
the DACs is not changed. Figure 19—6 shows a latch-update timing example
for grouped DAC12_0 and DAC12_1.

When DAC12_0 DAC12GRP = 1 and both DAC12_x DAC12LSELx > 0 and
either DAC12ENC = 0, neither DAC12 will update.

Figure 19-6. DAC12 Group Update Example, Timer_A3 Trigger

A

DAC12_0
DAC12GRP

DAC12_ 0
DAC12ENC Q |—,

TimerA_OUT1 [] [[| [| L[1 | |

DAC12_0 and DAC12_1
Updated Simultaneously \‘

> e bata | | |

DAC12_1DAT & DAC12_0Updated T |

New Data

Lotch Triggor [L [

DAC12 0 DAC12LSELx = 2 DAC12_0 DAC12LSELx > 0 AND
- DAC12_1 DAC12LSELx =2

19-8 DAC12

DAC12 Operation

19.2.7 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the DAC12_xDAT register. DMA transfers are done without CPU
intervention and independently of any low-power modes. The DMA controller
increases throughput to the DAC12 module, and enhances low-power
applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using
the DMA controller with the DAC12. For example, an application that produces
a sinusoidal waveform may store the sinusoid values in a table. The DMA
controller can continuously and automatically transfer the values to the DAC12
at specific intervals creating the sinusoid zero CPU execution. See the DMA
Controller chapter for more information on the DMA controller.

Note: DAC12 Settling Time

The DMA controller is capable of transferring data to the DAC12 faster than
the DAC12 output can settle. The user must assure the DAC12 settling time
is not violated when using the DMA controller. See the device-specific data
sheet for parameters.

19.2.8 DAC12 Interrupts

The DAC12 interrupt vector is shared with the DMA controller. Software must
check the DAC12IFG and DMAIFG flags to determine the source of the
interrupt.

The DAC12IFG bit is set when DAC12xLSELx >0 and DAC12 data is latched
from the DAC12_xDAT register into the data latch. When DAC12XLSELx =0,
the DAC12IFG flag is not set.

A set DAC12IFG bit indicates that the DAC12 is ready for new data. If both the
DAC12IE and GIE bits are set, the DAC12IFG generates an interrupt request.
The DAC12IFG flag is not reset automatically. It must be reset by software.

DAC12 19-9

DAC12 Registers

19.3 DAC12 Registers
The DAC12 registers are listed in Table 19-2:

Table 19-2.DAC12 Registers

Register Short Form Register Type Address Initial State

DAC12_0 control DAC12_0CTL Read/write 01COh Reset with POR
DAC12_0 data DAC12_ODAT Read/write 01C8h Reset with POR
DAC12_1 control DAC12_1CTL Read/write 01C2h Reset with POR
DAC12_1 data DAC12_1DAT Read/write 01CAh Reset with POR

19-10 DAC12

DAC12 xCTL, DAC12 Control Register

DAC12 Registers

15 14 13 12 11 10 9 8
Reserved DAC12SREFx DACI12RES DAC12LSELx AT DACI12IR
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)

7 6 5 4 3 2 1 0
DACI12AMPx DAC12DF | DACI2IE | DACI12IFG | DAC12ENC | T0Ch
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
\ModmameomywhenDAC12ENC:0
1 Not used for DAC12_1 on MSP430x15x and MSP430x16x devices.
Reserved Bit 15 Reserved
DAC12 Bits DAC12 select reference voltage
SREFX 14-13 00 VREF+
01 VREF+
10 Vergr+
11 Verer+
DAC12 Bit 12 DAC12 resolution select
RES 0 12-bit resolution
1 8-bit resolution
DAC12 Bits DAC12 load select. Selects the load trigger for the DAC12 latch. DAC12ENC
LSELXx 11-10 must be set for the DAC to update, except when DAC12LSELx = 0.

00 DAC12latchloadswhen DAC12_xDAT written (DAC12ENC is ignored)
01 DAC12 latch loads when DAC12_ xDAT written, or, when grouped,
when all DAC12_xDAT registers in the group have been written.

10 Rising edge of Timer_A3.0UT1 (TA1)
11 Rising edge of Timer_B7.0UT2 (TB2)

DAC12 Bit 9 DAC12 calibration on. This bit initiates the DAC12 offset calibration sequence
CALON and is automatically reset when the calibration completes.

0 Calibration is not active
1 Initiate calibration/calibration in progress

DAC12IR Bit 8 DAC12inputrange. This bit sets the reference input and voltage output range.
0 DAC12 full-scale output = 3x reference voltage
1 DAC12 full-scale output = 1x reference voltage

DAC12

19-11

DAC12 Registers

DAC12
AMPx

DAC12DF

DACI12IE

DAC12IFG

DAC12
ENC

DAC12
GRP

19-12

Bits
7-5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

DAC12

DAC12 amplifier setting. These bits select settling time vs. current

consumption for the DAC12 input and output amplifiers.

Output Buffer

DAC12AMPx Input Buffer
000 Off
001 Off
010 Low speed/current
011 Low speed/current
100 Low speed/current
101 Medium speed/current
110 Medium speed/current
111 High speed/current

DAC12 off, output high Z
DAC12 off, output 0 V
Low speed/current
Medium speed/current
High speed/current
Medium speed/current
High speed/current

High speed/current

DAC12 data format
0 Straight Binary
1 2's compliment

DAC12 interrupt enable
0 Disabled
1 Enabled

DAC12 Interrupt flag
0 No interrupt pending
1 Interrupt pending

DAC12 enable conversion. This bit enables the DAC12 module when

DAC12LSELx > 0. when DAC12LSELx = 0, DAC12ENC is ignored.

0 DAC12 disabled
1 DAC12 enabled

DAC12 group. Groups DAC12_x with the next higher DAC12_x.

0 Not grouped
1 Grouped

DAC12 xDAT, DAC12 Data Register

DAC12 Registers

15 14 13 12 11 10 9 8
0 0 0 0 DAC12 Data
r(0) r(0) r(0) r(0) rw—(0) rw—(0) rw—(0) rw—(0)
7 6 5 4 3 2 1 0
DAC12 Data
rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0) rw—(0)
Unused Bits Unused. These bits are always 0 and do not affect the DAC12 core.
15-12
DAC12 Data Bits DAC12 data
11-0
DAC12 Data Format DAC12 Data

12-bit binary
12-bit 2’'s complement

8-bit binary

8-bit 2’'s complement

The DAC12 data are right-justified. Bit 11 is the
MSB.

The DAC12 data are right-justified. Bit 11 is the
MSB (sign).
The DAC12 data are right-justified. Bit 7 is the

MSB. Bits 11-8 are don’t care and do not effect
the DAC12 core.

The DAC12 data are right-justified. Bit 7 is the
MSB (sign). Bits 11-8 are don'’t care and do not
effect the DAC12 core.

DAC12 19-13

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	FCC Warning
	Notational Conventions
	Glossary
	Register Bit Conventions

	Contents
	Chapter 1: Introduction
	Architecture
	Flexible Clock System
	Embedded Emulation
	Address Space
	Flash/ROM
	RAM
	Peripheral Modules
	Special Function Registers (SFRs)
	Memory Organization

	Chapter 2: System Resets, Interrupts, and Operating Modes
	System Reset and Initialization
	Power-On Reset (POR)
	Brownout Reset (BOR)
	Device Initial Conditions After System Reset
	Software Initialization

	Interrupts
	(Non)-Maskable Interrupts (NMI)
	Reset/NMI Pin
	Oscillator Fault
	Flash Access Violation
	Example of an NMI Interrupt Handler

	Maskable Interrupts
	Interrupt Processing
	Interrupt Acceptance
	Return From Interrupt

	Interrupt Vectors
	Special Function Registers (SFRs)

	Operating Modes
	Entering and Exiting Low-Power Modes
	Extended Time in Low-Power Modes

	Principles for Low-Power Applications
	Connection of Unused Pins

	Chapter 3: RISC 16-Bit CPU
	CPU Introduction
	CPU Registers
	Program Counter (PC)
	Stack Pointer (SP)
	Status Register (SR)
	Constant Generator Registers CG1 and CG2
	Constant Generator – Expanded Instruction Set

	General–Purpose Registers R4 - R15

	Addressing Modes
	Register Mode
	Indexed Mode
	Symbolic Mode
	Absolute Mode
	Indirect Register Mode
	Indirect Autoincrement Mode
	Immediate Mode

	Instruction Set
	Double-Operand (Format I) Instructions
	Single-Operand (Format II) Instructions
	Jumps
	Instruction Cycles and Lengths
	Interrupt and Reset Cycles
	Format-II (Single Operand) Instruction Cycles and Lengths
	Format-III (Jump) Instruction Cycles and Lengths
	Format-I (Double Operand) Instruction Cycles and Lengths

	Instruction Set Description

	Chapter 4: Basic Clock Module
	Basic Clock Module Introduction
	Basic Clock Module Operation
	Basic Clock Module Features for Low-Power Applications
	LFXT1 Oscillator
	XT2 Oscillator
	Digitally-Controlled Oscillator (DCO)
	Disabling the DCO
	Adjusting the DCO frequency
	Using an External Resistor (R OSC) for the DCO

	DCO Modulator
	Basic Clock Module Fail-Safe Operation
	Oscillator Fault Detection
	Sourcing MCLK from a Crystal

	Synchronization of Clock Signals

	Basic Clock Module Registers
	DCOCTL, DCO Control Register
	BCSCTL1, Basic Clock System Control Register 1
	BCSCTL2, Basic Clock System Control Register 2
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Chapter 5: Flash Memory Controller
	Flash Memory Introduction
	Flash Memory Segmentation
	Flash Memory Operation
	Flash Memory Timing Generator
	Erasing Flash Memory
	Initiating an Erase from Within Flash Memory
	Initiating an Erase from RAM

	Writing Flash Memory
	Byte/Word Write
	Initiating a Byte/Word Write from Within Flash Memory
	Initiating a Byte/Word Write from RAM
	Block Write
	Block Write Flow and Example

	Flash Memory Access During Write or Erase
	Stopping a Write or Erase Cycle
	Configuring and Accessing the Flash Memory Controller
	Flash Memory Controller Interrupts
	Programming Flash Memory Devices
	Programming Flash Memory via JTAG
	Programming Flash Memory via the Bootstrap loader (BSL)
	Programming Flash Memory via a Custom Solution

	Flash Memory Registers
	FCTL1, Flash Memory Control Register
	FCTL2, Flash Memory Control Register
	FCTL3, Flash Memory Control Register FCTL3
	IE1, Interrupt Enable Register 1

	Chapter 6: Supply Voltage Supervisor
	SVS Introduction
	SVS Operation
	Configuring the SVS
	SVS Comparator Operation
	Changing the VLDx Bits
	SVS Operating Range

	SVS Registers
	SVSCTL, SVS Control Register

	Chapter 7: Hardware Multiplier
	Hardware Multiplier Introduction
	Hardware Multiplier Operation
	Operand Registers
	Result Registers
	MACS Underflow and Overflow

	Software Examples
	Indirect Addressing of RESLO
	Using Interrupts

	Hardware Multiplier Registers

	Chapter 8: DMA Controller
	DMA Introduction
	DMA Operation
	DMA Addressing Modes
	DMA Transfer Modes
	Single Transfer
	Block Transfers
	Burst-Block Transfers

	Initiating DMA Transfers
	Edge-Sensitive Triggers
	Level-Sensitive Triggers
	Halting Executing Instructions for DMA Transfers

	Stopping DMA Transfers
	DMA Channel Priorities
	DMA Transfer Cycle Time
	Using DMA with System Interrupts
	DMA Controller Interrupts

	DMA Registers
	DMACTL0, DMA Control Register 0
	DMACTL1, DMA Control Register 1
	DMAxCTL, DMA Channel x Control Register
	DMAxSA, DMA Source Address Register
	DMAxDA, DMA Destination Address Register
	DMAxSZ, DMA Size Address Register

	Chapter 9: Digital I/O
	Digital I/O Introduction
	Digital I/O Operation
	Input Register PnIN
	Output Registers PnOUT
	Direction Registers PnDIR
	Function Select Registers PnSEL
	P1 and P2 Interrupts
	Interrupt Flag Registers P1IFG, P2IFG
	Interrupt Edge Select Registers P1IES, P2IES
	Interrupt Enable P1IE, P2IE

	Configuring Unused Port Pins

	Digital I/O Registers

	Chapter 10: Watchdog Timer
	Watchdog Timer Introduction
	Watchdog Timer Operation
	Watchdog Timer Counter
	Watchdog Mode
	Interval Timer Mode
	Watchdog Timer Interrupts
	Operation in Low-Power Modes
	Software Examples

	Watchdog Timer Registers
	WDTCTL, Watchdog Timer Register
	IE1, Interrupt Enable Register 1
	IFG1, Interrupt Flag Register 1

	Chapter 11: Timer_A
	Timer_A Introduction
	Timer_A Operation
	16-Bit Timer Counter
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TACCR0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Period Register TACCR0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example—Timer in Up/Down Mode

	Timer_A Interrupts
	TACCR0 Interrupt
	TAIV, Interrupt Vector Generator
	TAIV Software Example

	Timer_A Registers
	TACTL, Timer_A Control Register
	TAR, Timer_A Register
	TACCTLx, Capture/Compare Control Register
	TAIV, Timer_A Interrupt Vector Register

	Chapter 12: Timer_B
	Timer_B Introduction
	Similarities and Differences From Timer_A

	Timer_B Operation
	16-Bit Timer Counter
	TBR Length
	Clock Source Select and Divider

	Starting the Timer
	Timer Mode Control
	Up Mode
	Changing the Period Register TBCL0

	Continuous Mode
	Use of the Continuous Mode
	Up/Down Mode
	Changing the Value of Period Register TBCL0

	Use of the Up/Down Mode

	Capture/Compare Blocks
	Capture Mode
	Capture Initiated by Software

	Compare Mode
	Compare Latch TBCLx
	Grouping Compare Latches

	Output Unit
	Output Modes
	Output Example—Timer in Up Mode
	Output Example—Timer in Continuous Mode
	Output Example – Timer in Up/Down Mode

	Timer_B Interrupts
	TBCCR0 Interrupt Vector
	TBIV, Interrupt Vector Generator
	TBIV, Interrupt Handler Examples

	Timer_B Registers
	Timer_B Control Register TBCTL
	TBR, Timer_B Register
	TBCCTLx, Capture/Compare Control Register
	TBIV, Timer_B Interrupt Vector Register

	Chapter 13: USART Peripheral Interface, UART Mode
	USART Introduction: UART Mode
	USART Operation: UART Mode
	USART Initialization and Reset
	Character Format
	Asynchronous Communication Formats
	Idle-Line Multiprocessor Format
	Address-Bit Multiprocessor Format
	Automatic Error Detection

	USART Receive Enable
	USART Transmit Enable
	UART Baud Rate Generation
	Baud Rate Bit Timing
	Determining the Modulation Value
	Transmit Bit Timing
	Receive Bit Timing
	Typical Baud Rates and Errors

	USART Interrupts
	USART Transmit Interrupt Operation
	USART Receive Interrupt Operation
	Receive-Start Edge Detect Operation
	Receive-Start Edge Detect Conditions

	USART Registers: UART Mode
	UxCTL, USART Control Register
	UxTCTL, USART Transmit Control Register
	UxRCTL, USART Receive Control Register
	UxBR0, USART Baud Rate Control Register 0
	UxBR1, USART Baud Rate Control Register 1
	UxMCTL, USART Modulation Control Register
	UxRXBUF, USART Receive Buffer Register
	UxTXBUF, USART Transmit Buffer Register
	ME1, Module Enable Register 1
	ME2, Module Enable Register 2
	IE1, Interrupt Enable Register 1
	IE2, Interrupt Enable Register 2
	IFG1, Interrupt Flag Register 1
	IFG2, Interrupt Flag Register 2

	Chapter 14: USART Peripheral Interface, SPI Mode
	USART Introduction: SPI Mode
	USART Operation: SPI Mode
	USART Initialization and Reset
	Master Mode
	Four-Pin SPI Master Mode

	Slave Mode
	Four-Pin SPI Slave Mode

	SPI Enable
	Transmit Enable
	Receive Enable

	Serial Clock Control
	Serial Clock Polarity and Phase

	SPI Interrupts
	SPI Transmit Interrupt Operation
	SPI Receive Interrupt Operation

	USART Registers: SPI Mode
	UxCTL, USART Control Register
	UxTCTL, USART Transmit Control Register
	UxRCTL, USART Receive Control Register
	UxBR0, USART Baud Rate Control Register 0
	UxBR1, USART Baud Rate Control Register 1
	UxMCTL, USART Modulation Control Register
	UxRXBUF, USART Receive Buffer Register
	UxTXBUF, USART Transmit Buffer Register
	ME1, Module Enable Register 1
	ME2, Module Enable Register 2
	IE1, Interrupt Enable Register 1
	IE2, Interrupt Enable Register 2
	IFG1, Interrupt Flag Register 1
	IFG2, Interrupt Flag Register 2

	Chapter 15: USART Peripheral Interface, I2C Mode
	i2C Module Introduction
	I2C Module Operation
	I2C Serial Data
	I2C START and STOP Conditions
	I2C Addressing Modes
	7-Bit Addressing
	10-Bit Addressing
	Repeated Start Conditions

	I2C Module Operating Modes
	Master Mode
	I2C State Diagrams
	Arbitration

	Slave Mode

	The I2C Data Register I2CDR
	Transmit Underflow
	Receive Overrun

	I2C Clock Generation and Synchronization
	Using the I2C Module with Low Power Modes
	Using the I2C Module with the DMA Controller
	Configuring the USART for I2C Operation
	I2C Module Reset

	I2C Interrupts
	I2CIV, Interrupt Vector Generator
	I2CIV Software Example

	I2C Module Registers
	U0CTL, USART0 Control Register-I2C Mode
	I2CTCTL, I2C Transmit Control Register
	I2CDCTL, I2C Data Control Register
	I2CDR, I2C Data Register
	I2CNDAT, I2C Transfer Byte Count Register
	I2CPSC, I2C Clock Prescaler Register
	I2CSCLH, I2C Shift Clock High Register
	I2CSCLL, Shift Clock Low Register
	I2COA, I2C Own Address Register, 7-Bit Addressing Mode
	I2COA, I2C Own Address Register, 10-Bit Addressing Mode
	I2CSA, I2C Slave Address Register, 7-Bit Addressing Mode
	I2CSA, I2C Slave Address Register, 10-Bit Addressing Mode
	I2CIE, I2C Interrupt Enable Register
	I2CIFG, I2C Interrupt Flag Register
	I2CIV, I2C Interrupt Vector Register

	Chapter 16: Comparator_A
	Comparator_A Introduction
	Comparator_A Operation
	Comparator
	Input Analog Switches
	Output Filter
	Voltage Reference Generator
	Comparator_A, Port Disable Register CAPD
	Comparator_A Interrupts
	Comparator_A Used to Measure Resistive Elements

	Comparator_A Registers
	CACTL1, Comparator_A Control Register 1
	Comparator_A, Control Register CACTL2
	Comparator_A, Port Disable Register CAPD

	Chapter 17: ADC12
	ADC12 Introduction
	ADC12 Operation
	12-Bit ADC Core
	Conversion Clock Selection

	ADC12 Inputs and Multiplexer
	Analog Port Selection

	Voltage Reference Generator
	Sample and Conversion Timing
	Extended Sample Mode
	Pulse Sample Mode
	Sample Timing Considerations

	Conversion Memory
	ADC12 Conversion Modes
	Single-Channel Single-Conversion Mode
	Sequence-of-Channels Mode
	Repeat-Single-Channel Mode
	Repeat-Sequence-of-Channels Mode
	Using the Multiple Sample and Convert (MSC) Bit
	Stopping Conversions

	Using ADC12 with the DMA Controller
	Using the Integrated Temperature Sensor
	ADC12 Grounding and Noise Considerations
	ADC12 Interrupts
	ADC12IV, Interrupt Vector Generator
	ADC12 Interrupt Handling Software Example

	ADC12 Registers
	ADC12CTL0, ADC12 Control Register 0
	ADC12CTL1, ADC12 Control Register 1
	ADC12MEMx, ADC12 Conversion Memory Registers
	ADC12MCTLx, ADC12 Conversion Memory Control Registers
	ADC12IE, ADC12 Interrupt Enable Register
	ADC12IFG, ADC12 Interrupt Flag Register
	ADC12IV, ADC12 Interrupt Vector Register

	Chapter 18: ADC10
	ADC10 Introduction
	ADC10 Operation
	10-Bit ADC Core
	Conversion Clock Selection

	ADC10 Inputs and Multiplexer
	Analog Port Selection

	Voltage Reference Generator
	Low Power Applications

	Sample and Conversion Timing
	Sample Timing Considerations

	Conversion Modes
	Single-Channel Single-Conversion Mode
	Sequence-of-Channels Mode
	Repeat-Single-Channel Mode
	Repeat-Sequence-of-Channels Mode
	Using the MSC Bit
	Stopping Conversions

	ADC10 Data Transfer Controller
	One-Block Transfer Mode
	Two-Block Transfer Mode
	Continuous Transfer
	DTC Transfer Cycle Time

	Using the Integrated Temperature Sensor
	A/D Grounding and Noise Considerations
	ADC10 Interrupts

	ADC10 Registers
	ADC10CTL0, ADC10 Control Register 0
	ADC10CTL1, ADC10 Control Register 1
	ADC10AE, Analog (Input) Enable Control Register
	ADC10MEM, Conversion-Memory Register, Binary Format
	ADC10MEM, Conversion-Memory Register, 2’s Complement Format
	ADC10DTC0, Data Transfer Control Register 0
	ADC10DTC1, Data Transfer Control Register 1
	ADC10SA, Start Address Register for Data Transfer

	Chapter 19: DAC12
	DAC12 Introduction
	DAC12 Operation
	DAC12 Core
	DAC12 Port Selection

	DAC12 Reference
	DAC12 Reference Input and Voltage Output Buffers

	Updating the DAC12 Voltage Output
	DAC12_xDAT Data Format
	DAC12 Output Amplifier Offset Calibration
	Grouping Multiple DAC12 Modules
	Using DAC12 With the DMA Controller
	DAC12 Interrupts

	DAC12 Registers
	DAC12_xCTL, DAC12 Control Register
	DAC12_xDAT, DAC12 Data Register

