|
|
~ National Lightning Safety Institute ~ |
|
Section 5.5.2 GIS-Based Study of Lightning DamagesLin Cao, Wei-Ning Xiang, and Joseph C. Wilson (Republished with permission) ABSTRACTLightning can cause severe damage to property. In Charlotte, North Carolina, from July 1993 to July 1996, lightning strikes caused 52 fires with $1.3 million in damage. A lot of researches have been done in the area of lightning damage protection, but rarely has study looked at the geographic correlation and distribution of the lightning damage. The development of the GIS (Geographic Information System) provides a new technique in displaying and manipulating of geographic information. In our study, this new method was applied, and the geographic correlation of the lightning damage with several environmental and socio-economic variables were examined. Lightning strikes that caused damage from January 1993 to December 1995 in Mecklenburg County, North Carolina were geocoded and the possible areas where lightning strikes could occur were located, and the geographical pattern of lightning damage was studied. In addition, the statistical correlation between the cost of the lightning damage and different variables was analyzed. INTRODUCTIONLightning strikes cause tremendous losses each year and pose threat to property. For instance, in Charlotte, North Carolina, from 1993 to 1995, eleven lightning strikes caused over $100,000 damages. Also, everyone could have the chance of damaging strikes. It has been estimated that a home owner can expect a damaging strike once every 100 to 200 years. In this exploratory study, we reviewed the cost of lightning
strikes that occurred in Mecklenburg County, North Carolina from January
1993 to December 1995. We were trying to find out the geographic distribution
of the cost of lightning damage and whether any environmental or socio-economic
variable had significant effect on the cost of lightning damage. If we
could find the GIS was applied in this study. GIS is a newly developed computer
software which can capture, store, manage, extract and display geographically
referenced information. It provide statistical summaries, calculations,
interrelationships of data, buffer generation and overlay functions. In
our study, we used ARC/INFO -a major software in GIS. The geocoding of
the Lightning strike, locating of the exact area of lightning strikes,
integrating of the environmental variables and socio-economic variables
with The geographic pattern of the lightning damage was studied and we found most of the high cost of lightning damage occurred in the South Planning District in Mecklenburg County. Correlation and regression analysis were performed in testing the interrelationships of the environmental and socio-economic variables with the cost of lighting damage. The environmental variables included soil types, pH value, water capacity and slope. The socio-economic variables included the age of the building and the property value. This study demonstrated the ability of GIS method to locate the possible area of the lighting strikes. This enables the linking of the geographic and socio-economic variables with the cost of lightning damage and makes the study of the causes of lightning damage feasible. METHODOLOGYThe lightning damage assessment composed of four steps. The first step is the Data Collection, the second step is the GIS Data Base Development, the third step is the Classification of Lightning Damage and the four step is the study of the Geographic Correlation. 1. Data CollectionThe lightning damage data were obtained from Mecklenburg County Fire Department. These included 95 cases of lightning damages from January 1993 to December 1995 with the street addresses and the cost measured in dollars. The environmental variables included soil type, pH value, water capacity and slope. They came from the Soil Conservation Survey (SCS). The socio-economic variables included the age of the building and the property value. They were obtained from Zoning and Addressing Department in Mecklenburg County. In this study, several other GIS data layers were used. Streets centerline file in 1:100,000 scale updated in June 1996 was used in the geocoding and locating of the area of lightning damage. The Planimetric layer in scale 1:2,400 obtained from a 1992 airphoto was used in the locating of the lightning stricken area. Soil coverage in scale 1:24,000 was used in the integration of data. They all were obtained from the Engineering Department of Mecklenburg County. 2. GIS Database DevelopmentThe database development included the following two steps: 1. The first step of the data base development was to find the possible area for each lightning strike that caused damage. There are two types of lightning damage: One is caused by direct hits from lightning strikes, which means lightning directly hits a building and causes damage; the other is caused by indirect hits, such as lightning hits a tree and travels into a house through a power line and causes damage. The lighting damage data obtained in this study were all 911 calls and had the exact address of each building. Since no records were obtained to show whether these damage were from direct hits or indirect hits of lighting strikes, all the possible area that lightning strike could occur should be included in our study. And it could be an polygon area surrounding each building. In this study, the following steps was performed to define the area of lightning strikes.
2. In the second step of database development, all the environmental and socio-economic variables that we wanted to test was integrated with the cost of lightning damage. First, the address and cost of lighting damage was added to the PAT file of the buffered study area from the point coverage of lightning damage from the former step by OVERLAY and JOINITEM function. Secondly, the overlay of the study area with the soil coverage was performed and the information of the type of soil was joined into the PAT file of the output coverage. By ADDITEM and JOIITEM function, soil types, pH value, water capacity, the age of each building and property value of the parcel were also added into the same PAT file. This PAT file also contained the addresses and cost of lightning damages. At this point, we integrated all the variables that we wanted to test with the cost of lightning damage, and we were ready to do the analysis. Lightning Damage ClassificationIn order to show the pattern of the cost of the lightning damage, all the data were classified into five categories based on the amount of cost from lightning damage:
Geographic CorrelationThe distribution of the cost of lightning damage was studied by overlaying it with the layer of the Planning District and the land use in Mecklenburg County. Statistical function in ARC/INFO was performed, and the frequency was calculated for each Planing District by the total number of lightning strikes and also by each category of the cost from lightning damage. The geographical correlation between environmental and socio-economic variables, and the cost of lightning damage was tested. The statistical correlation of these variables with the cost of lightning damage was also examined in SYSTAT. RESULTSMecklenburg County is divided into seven Planning Districts. The study showed that all the lightning damage occurred in or close to the South Planning District which includes some areas of the Central, Southwest, South and East Districts. About 56% of lightning damage occurred in the South District, 23% occurred in the Central District, 17% occurred in the East District and 4% occurred in the Southwest District. No record was found in the North, Northeast and Northwest Districts. Also, based on our classification of the cost of lightning damage, most of the tremendous damage occurred in the South Planning District which include all the Severe Damage, 87.5% of the Major Damage and 50% of the Moderate Damage ( see the classification of the cost above ). The study of environmental variables shows that the 62% of the slope was 5o , 56% of the pH value was 5.1, 67% of the water capacity ranged between 0.14 to 0.15 and about 62% of all the soils was CeB2 or CeD2. The result of the socio-economic variables showed that 90% of all the building was built after 1950 and 50% of the property value was over $100,000, while comparing with the 22% of the cost of lightning damage was over $100,000. This illustrated the severity of lightning damage. Correlation and regression analysis were performed for these factors with the cost of lightning damage in SYSTAT but no significant result was found. CONCLUSIONSFrom this study, we found the majority of lightning damage
during 1993 to 1995 occurred in the South Planning District. This District
has historically absorbed much of the suburban growth in Mecklenburg County
and contains the typical single family residences. The area where the
lightning damage occurred has been one of the primary locations for new
residential developments in this area. And based on the South District
Plan for the year 2015 (Mecklenburg Planning Commission, June 1, There are some limitations of this study. First, there was no significant correlation found between the cost of lightning damage and the variables we chose in this study. One reason for this could be the limitation of lightning damage data. The data that were available at the beginning of our study were for 1993 to 1995 and contained 95 cases. There is a possibility that these data could not show the statistical correlation. Secondly, some of the data were not available at the time of our study. All these limitations could affect the statistical results. This study showed the feasibility and capability of applying GIS to the study of Lightning Damage. In testing the geographic distribution of the lightning damage, we found some geographic pattern of lightning damages. However, this study is still at preliminary stage. More variables such as the sea level, building height, aspect of slope and construction of buildings should be analyzed. We prospect this study will lead more thorough and intensive studies of this field. REFERENCESJack Dangermond. " Geographic information system technology and development planning " Regional Development Dialogue.Vol. 11, No. 3, Autumn 1990. Jack Horan. " Some residents fear they're in line of fire. " Charlotte Observer, August 17, 1996. Eric S. Livingston, John W. Nielsen-Gammon, and Richard E. Orville. " A climatology, synoptic assessment, and thermodynamic evaluation for cloud-to-ground lightning in georgia: a study for the 1996 summer olympics " . Bulletin of the American Meteorological Society. vol.77, No. 7, July 1996. Mecklenburg Planning Commission. " South District Plan ", June 1, 1992. Environmental System Research Institute, Inc. " Understanding GIS", 1995. AUTHORSLin Cao Wei-Ning Xiang Joseph C. Wilson |